]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/data.c
Merge remote-tracking branch 'ext4/dev'
[karo-tx-linux.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26
27 /*
28  * Lock ordering for the change of data block address:
29  * ->data_page
30  *  ->node_page
31  *    update block addresses in the node page
32  */
33 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
34 {
35         struct f2fs_node *rn;
36         __le32 *addr_array;
37         struct page *node_page = dn->node_page;
38         unsigned int ofs_in_node = dn->ofs_in_node;
39
40         f2fs_wait_on_page_writeback(node_page, NODE, false);
41
42         rn = F2FS_NODE(node_page);
43
44         /* Get physical address of data block */
45         addr_array = blkaddr_in_node(rn);
46         addr_array[ofs_in_node] = cpu_to_le32(new_addr);
47         set_page_dirty(node_page);
48 }
49
50 int reserve_new_block(struct dnode_of_data *dn)
51 {
52         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
53
54         if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
55                 return -EPERM;
56         if (!inc_valid_block_count(sbi, dn->inode, 1))
57                 return -ENOSPC;
58
59         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
60
61         __set_data_blkaddr(dn, NEW_ADDR);
62         dn->data_blkaddr = NEW_ADDR;
63         sync_inode_page(dn);
64         return 0;
65 }
66
67 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
68                                         struct buffer_head *bh_result)
69 {
70         struct f2fs_inode_info *fi = F2FS_I(inode);
71 #ifdef CONFIG_F2FS_STAT_FS
72         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
73 #endif
74         pgoff_t start_fofs, end_fofs;
75         block_t start_blkaddr;
76
77         read_lock(&fi->ext.ext_lock);
78         if (fi->ext.len == 0) {
79                 read_unlock(&fi->ext.ext_lock);
80                 return 0;
81         }
82
83 #ifdef CONFIG_F2FS_STAT_FS
84         sbi->total_hit_ext++;
85 #endif
86         start_fofs = fi->ext.fofs;
87         end_fofs = fi->ext.fofs + fi->ext.len - 1;
88         start_blkaddr = fi->ext.blk_addr;
89
90         if (pgofs >= start_fofs && pgofs <= end_fofs) {
91                 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
92                 size_t count;
93
94                 clear_buffer_new(bh_result);
95                 map_bh(bh_result, inode->i_sb,
96                                 start_blkaddr + pgofs - start_fofs);
97                 count = end_fofs - pgofs + 1;
98                 if (count < (UINT_MAX >> blkbits))
99                         bh_result->b_size = (count << blkbits);
100                 else
101                         bh_result->b_size = UINT_MAX;
102
103 #ifdef CONFIG_F2FS_STAT_FS
104                 sbi->read_hit_ext++;
105 #endif
106                 read_unlock(&fi->ext.ext_lock);
107                 return 1;
108         }
109         read_unlock(&fi->ext.ext_lock);
110         return 0;
111 }
112
113 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
114 {
115         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
116         pgoff_t fofs, start_fofs, end_fofs;
117         block_t start_blkaddr, end_blkaddr;
118
119         BUG_ON(blk_addr == NEW_ADDR);
120         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
121                                                         dn->ofs_in_node;
122
123         /* Update the page address in the parent node */
124         __set_data_blkaddr(dn, blk_addr);
125
126         write_lock(&fi->ext.ext_lock);
127
128         start_fofs = fi->ext.fofs;
129         end_fofs = fi->ext.fofs + fi->ext.len - 1;
130         start_blkaddr = fi->ext.blk_addr;
131         end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
132
133         /* Drop and initialize the matched extent */
134         if (fi->ext.len == 1 && fofs == start_fofs)
135                 fi->ext.len = 0;
136
137         /* Initial extent */
138         if (fi->ext.len == 0) {
139                 if (blk_addr != NULL_ADDR) {
140                         fi->ext.fofs = fofs;
141                         fi->ext.blk_addr = blk_addr;
142                         fi->ext.len = 1;
143                 }
144                 goto end_update;
145         }
146
147         /* Front merge */
148         if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
149                 fi->ext.fofs--;
150                 fi->ext.blk_addr--;
151                 fi->ext.len++;
152                 goto end_update;
153         }
154
155         /* Back merge */
156         if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
157                 fi->ext.len++;
158                 goto end_update;
159         }
160
161         /* Split the existing extent */
162         if (fi->ext.len > 1 &&
163                 fofs >= start_fofs && fofs <= end_fofs) {
164                 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
165                         fi->ext.len = fofs - start_fofs;
166                 } else {
167                         fi->ext.fofs = fofs + 1;
168                         fi->ext.blk_addr = start_blkaddr +
169                                         fofs - start_fofs + 1;
170                         fi->ext.len -= fofs - start_fofs + 1;
171                 }
172                 goto end_update;
173         }
174         write_unlock(&fi->ext.ext_lock);
175         return;
176
177 end_update:
178         write_unlock(&fi->ext.ext_lock);
179         sync_inode_page(dn);
180 }
181
182 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
183 {
184         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
185         struct address_space *mapping = inode->i_mapping;
186         struct dnode_of_data dn;
187         struct page *page;
188         int err;
189
190         page = find_get_page(mapping, index);
191         if (page && PageUptodate(page))
192                 return page;
193         f2fs_put_page(page, 0);
194
195         set_new_dnode(&dn, inode, NULL, NULL, 0);
196         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
197         if (err)
198                 return ERR_PTR(err);
199         f2fs_put_dnode(&dn);
200
201         if (dn.data_blkaddr == NULL_ADDR)
202                 return ERR_PTR(-ENOENT);
203
204         /* By fallocate(), there is no cached page, but with NEW_ADDR */
205         if (dn.data_blkaddr == NEW_ADDR)
206                 return ERR_PTR(-EINVAL);
207
208         page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
209         if (!page)
210                 return ERR_PTR(-ENOMEM);
211
212         if (PageUptodate(page)) {
213                 unlock_page(page);
214                 return page;
215         }
216
217         err = f2fs_readpage(sbi, page, dn.data_blkaddr,
218                                         sync ? READ_SYNC : READA);
219         if (sync) {
220                 wait_on_page_locked(page);
221                 if (!PageUptodate(page)) {
222                         f2fs_put_page(page, 0);
223                         return ERR_PTR(-EIO);
224                 }
225         }
226         return page;
227 }
228
229 /*
230  * If it tries to access a hole, return an error.
231  * Because, the callers, functions in dir.c and GC, should be able to know
232  * whether this page exists or not.
233  */
234 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
235 {
236         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
237         struct address_space *mapping = inode->i_mapping;
238         struct dnode_of_data dn;
239         struct page *page;
240         int err;
241
242 repeat:
243         page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
244         if (!page)
245                 return ERR_PTR(-ENOMEM);
246
247         set_new_dnode(&dn, inode, NULL, NULL, 0);
248         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
249         if (err) {
250                 f2fs_put_page(page, 1);
251                 return ERR_PTR(err);
252         }
253         f2fs_put_dnode(&dn);
254
255         if (dn.data_blkaddr == NULL_ADDR) {
256                 f2fs_put_page(page, 1);
257                 return ERR_PTR(-ENOENT);
258         }
259
260         if (PageUptodate(page))
261                 return page;
262
263         /*
264          * A new dentry page is allocated but not able to be written, since its
265          * new inode page couldn't be allocated due to -ENOSPC.
266          * In such the case, its blkaddr can be remained as NEW_ADDR.
267          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
268          */
269         if (dn.data_blkaddr == NEW_ADDR) {
270                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
271                 SetPageUptodate(page);
272                 return page;
273         }
274
275         err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
276         if (err)
277                 return ERR_PTR(err);
278
279         lock_page(page);
280         if (!PageUptodate(page)) {
281                 f2fs_put_page(page, 1);
282                 return ERR_PTR(-EIO);
283         }
284         if (page->mapping != mapping) {
285                 f2fs_put_page(page, 1);
286                 goto repeat;
287         }
288         return page;
289 }
290
291 /*
292  * Caller ensures that this data page is never allocated.
293  * A new zero-filled data page is allocated in the page cache.
294  *
295  * Also, caller should grab and release a mutex by calling mutex_lock_op() and
296  * mutex_unlock_op().
297  * Note that, npage is set only by make_empty_dir.
298  */
299 struct page *get_new_data_page(struct inode *inode,
300                 struct page *npage, pgoff_t index, bool new_i_size)
301 {
302         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
303         struct address_space *mapping = inode->i_mapping;
304         struct page *page;
305         struct dnode_of_data dn;
306         int err;
307
308         set_new_dnode(&dn, inode, npage, npage, 0);
309         err = get_dnode_of_data(&dn, index, ALLOC_NODE);
310         if (err)
311                 return ERR_PTR(err);
312
313         if (dn.data_blkaddr == NULL_ADDR) {
314                 if (reserve_new_block(&dn)) {
315                         if (!npage)
316                                 f2fs_put_dnode(&dn);
317                         return ERR_PTR(-ENOSPC);
318                 }
319         }
320         if (!npage)
321                 f2fs_put_dnode(&dn);
322 repeat:
323         page = grab_cache_page(mapping, index);
324         if (!page)
325                 return ERR_PTR(-ENOMEM);
326
327         if (PageUptodate(page))
328                 return page;
329
330         if (dn.data_blkaddr == NEW_ADDR) {
331                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
332                 SetPageUptodate(page);
333         } else {
334                 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
335                 if (err)
336                         return ERR_PTR(err);
337                 lock_page(page);
338                 if (!PageUptodate(page)) {
339                         f2fs_put_page(page, 1);
340                         return ERR_PTR(-EIO);
341                 }
342                 if (page->mapping != mapping) {
343                         f2fs_put_page(page, 1);
344                         goto repeat;
345                 }
346         }
347
348         if (new_i_size &&
349                 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
350                 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
351                 /* Only the directory inode sets new_i_size */
352                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
353                 mark_inode_dirty_sync(inode);
354         }
355         return page;
356 }
357
358 static void read_end_io(struct bio *bio, int err)
359 {
360         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
361         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
362
363         do {
364                 struct page *page = bvec->bv_page;
365
366                 if (--bvec >= bio->bi_io_vec)
367                         prefetchw(&bvec->bv_page->flags);
368
369                 if (uptodate) {
370                         SetPageUptodate(page);
371                 } else {
372                         ClearPageUptodate(page);
373                         SetPageError(page);
374                 }
375                 unlock_page(page);
376         } while (bvec >= bio->bi_io_vec);
377         bio_put(bio);
378 }
379
380 /*
381  * Fill the locked page with data located in the block address.
382  * Return unlocked page.
383  */
384 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
385                                         block_t blk_addr, int type)
386 {
387         struct block_device *bdev = sbi->sb->s_bdev;
388         struct bio *bio;
389
390         trace_f2fs_readpage(page, blk_addr, type);
391
392         down_read(&sbi->bio_sem);
393
394         /* Allocate a new bio */
395         bio = f2fs_bio_alloc(bdev, 1);
396
397         /* Initialize the bio */
398         bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
399         bio->bi_end_io = read_end_io;
400
401         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
402                 bio_put(bio);
403                 up_read(&sbi->bio_sem);
404                 f2fs_put_page(page, 1);
405                 return -EFAULT;
406         }
407
408         submit_bio(type, bio);
409         up_read(&sbi->bio_sem);
410         return 0;
411 }
412
413 /*
414  * This function should be used by the data read flow only where it
415  * does not check the "create" flag that indicates block allocation.
416  * The reason for this special functionality is to exploit VFS readahead
417  * mechanism.
418  */
419 static int get_data_block_ro(struct inode *inode, sector_t iblock,
420                         struct buffer_head *bh_result, int create)
421 {
422         unsigned int blkbits = inode->i_sb->s_blocksize_bits;
423         unsigned maxblocks = bh_result->b_size >> blkbits;
424         struct dnode_of_data dn;
425         pgoff_t pgofs;
426         int err;
427
428         /* Get the page offset from the block offset(iblock) */
429         pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
430
431         if (check_extent_cache(inode, pgofs, bh_result)) {
432                 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
433                 return 0;
434         }
435
436         /* When reading holes, we need its node page */
437         set_new_dnode(&dn, inode, NULL, NULL, 0);
438         err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
439         if (err) {
440                 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
441                 return (err == -ENOENT) ? 0 : err;
442         }
443
444         /* It does not support data allocation */
445         BUG_ON(create);
446
447         if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
448                 int i;
449                 unsigned int end_offset;
450
451                 end_offset = IS_INODE(dn.node_page) ?
452                                 ADDRS_PER_INODE(F2FS_I(inode)) :
453                                 ADDRS_PER_BLOCK;
454
455                 clear_buffer_new(bh_result);
456
457                 /* Give more consecutive addresses for the read ahead */
458                 for (i = 0; i < end_offset - dn.ofs_in_node; i++)
459                         if (((datablock_addr(dn.node_page,
460                                                         dn.ofs_in_node + i))
461                                 != (dn.data_blkaddr + i)) || maxblocks == i)
462                                 break;
463                 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
464                 bh_result->b_size = (i << blkbits);
465         }
466         f2fs_put_dnode(&dn);
467         trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
468         return 0;
469 }
470
471 static int f2fs_read_data_page(struct file *file, struct page *page)
472 {
473         return mpage_readpage(page, get_data_block_ro);
474 }
475
476 static int f2fs_read_data_pages(struct file *file,
477                         struct address_space *mapping,
478                         struct list_head *pages, unsigned nr_pages)
479 {
480         return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
481 }
482
483 int do_write_data_page(struct page *page)
484 {
485         struct inode *inode = page->mapping->host;
486         block_t old_blk_addr, new_blk_addr;
487         struct dnode_of_data dn;
488         int err = 0;
489
490         set_new_dnode(&dn, inode, NULL, NULL, 0);
491         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
492         if (err)
493                 return err;
494
495         old_blk_addr = dn.data_blkaddr;
496
497         /* This page is already truncated */
498         if (old_blk_addr == NULL_ADDR)
499                 goto out_writepage;
500
501         set_page_writeback(page);
502
503         /*
504          * If current allocation needs SSR,
505          * it had better in-place writes for updated data.
506          */
507         if (unlikely(old_blk_addr != NEW_ADDR &&
508                         !is_cold_data(page) &&
509                         need_inplace_update(inode))) {
510                 rewrite_data_page(F2FS_SB(inode->i_sb), page,
511                                                 old_blk_addr);
512         } else {
513                 write_data_page(inode, page, &dn,
514                                 old_blk_addr, &new_blk_addr);
515                 update_extent_cache(new_blk_addr, &dn);
516         }
517 out_writepage:
518         f2fs_put_dnode(&dn);
519         return err;
520 }
521
522 static int f2fs_write_data_page(struct page *page,
523                                         struct writeback_control *wbc)
524 {
525         struct inode *inode = page->mapping->host;
526         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
527         loff_t i_size = i_size_read(inode);
528         const pgoff_t end_index = ((unsigned long long) i_size)
529                                                         >> PAGE_CACHE_SHIFT;
530         unsigned offset;
531         bool need_balance_fs = false;
532         int err = 0;
533
534         if (page->index < end_index)
535                 goto write;
536
537         /*
538          * If the offset is out-of-range of file size,
539          * this page does not have to be written to disk.
540          */
541         offset = i_size & (PAGE_CACHE_SIZE - 1);
542         if ((page->index >= end_index + 1) || !offset) {
543                 if (S_ISDIR(inode->i_mode)) {
544                         dec_page_count(sbi, F2FS_DIRTY_DENTS);
545                         inode_dec_dirty_dents(inode);
546                 }
547                 goto out;
548         }
549
550         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
551 write:
552         if (sbi->por_doing) {
553                 err = AOP_WRITEPAGE_ACTIVATE;
554                 goto redirty_out;
555         }
556
557         /* Dentry blocks are controlled by checkpoint */
558         if (S_ISDIR(inode->i_mode)) {
559                 dec_page_count(sbi, F2FS_DIRTY_DENTS);
560                 inode_dec_dirty_dents(inode);
561                 err = do_write_data_page(page);
562         } else {
563                 int ilock = mutex_lock_op(sbi);
564                 err = do_write_data_page(page);
565                 mutex_unlock_op(sbi, ilock);
566                 need_balance_fs = true;
567         }
568         if (err == -ENOENT)
569                 goto out;
570         else if (err)
571                 goto redirty_out;
572
573         if (wbc->for_reclaim)
574                 f2fs_submit_bio(sbi, DATA, true);
575
576         clear_cold_data(page);
577 out:
578         unlock_page(page);
579         if (need_balance_fs)
580                 f2fs_balance_fs(sbi);
581         return 0;
582
583 redirty_out:
584         wbc->pages_skipped++;
585         set_page_dirty(page);
586         return err;
587 }
588
589 #define MAX_DESIRED_PAGES_WP    4096
590
591 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
592                         void *data)
593 {
594         struct address_space *mapping = data;
595         int ret = mapping->a_ops->writepage(page, wbc);
596         mapping_set_error(mapping, ret);
597         return ret;
598 }
599
600 static int f2fs_write_data_pages(struct address_space *mapping,
601                             struct writeback_control *wbc)
602 {
603         struct inode *inode = mapping->host;
604         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
605         bool locked = false;
606         int ret;
607         long excess_nrtw = 0, desired_nrtw;
608
609         /* deal with chardevs and other special file */
610         if (!mapping->a_ops->writepage)
611                 return 0;
612
613         if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
614                 desired_nrtw = MAX_DESIRED_PAGES_WP;
615                 excess_nrtw = desired_nrtw - wbc->nr_to_write;
616                 wbc->nr_to_write = desired_nrtw;
617         }
618
619         if (!S_ISDIR(inode->i_mode)) {
620                 mutex_lock(&sbi->writepages);
621                 locked = true;
622         }
623         ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
624         if (locked)
625                 mutex_unlock(&sbi->writepages);
626         f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
627
628         remove_dirty_dir_inode(inode);
629
630         wbc->nr_to_write -= excess_nrtw;
631         return ret;
632 }
633
634 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
635                 loff_t pos, unsigned len, unsigned flags,
636                 struct page **pagep, void **fsdata)
637 {
638         struct inode *inode = mapping->host;
639         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
640         struct page *page;
641         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
642         struct dnode_of_data dn;
643         int err = 0;
644         int ilock;
645
646         f2fs_balance_fs(sbi);
647 repeat:
648         page = grab_cache_page_write_begin(mapping, index, flags);
649         if (!page)
650                 return -ENOMEM;
651         *pagep = page;
652
653         ilock = mutex_lock_op(sbi);
654
655         set_new_dnode(&dn, inode, NULL, NULL, 0);
656         err = get_dnode_of_data(&dn, index, ALLOC_NODE);
657         if (err)
658                 goto err;
659
660         if (dn.data_blkaddr == NULL_ADDR)
661                 err = reserve_new_block(&dn);
662
663         f2fs_put_dnode(&dn);
664         if (err)
665                 goto err;
666
667         mutex_unlock_op(sbi, ilock);
668
669         if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
670                 return 0;
671
672         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
673                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
674                 unsigned end = start + len;
675
676                 /* Reading beyond i_size is simple: memset to zero */
677                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
678                 goto out;
679         }
680
681         if (dn.data_blkaddr == NEW_ADDR) {
682                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
683         } else {
684                 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
685                 if (err)
686                         return err;
687                 lock_page(page);
688                 if (!PageUptodate(page)) {
689                         f2fs_put_page(page, 1);
690                         return -EIO;
691                 }
692                 if (page->mapping != mapping) {
693                         f2fs_put_page(page, 1);
694                         goto repeat;
695                 }
696         }
697 out:
698         SetPageUptodate(page);
699         clear_cold_data(page);
700         return 0;
701
702 err:
703         mutex_unlock_op(sbi, ilock);
704         f2fs_put_page(page, 1);
705         return err;
706 }
707
708 static int f2fs_write_end(struct file *file,
709                         struct address_space *mapping,
710                         loff_t pos, unsigned len, unsigned copied,
711                         struct page *page, void *fsdata)
712 {
713         struct inode *inode = page->mapping->host;
714
715         SetPageUptodate(page);
716         set_page_dirty(page);
717
718         if (pos + copied > i_size_read(inode)) {
719                 i_size_write(inode, pos + copied);
720                 mark_inode_dirty(inode);
721                 update_inode_page(inode);
722         }
723
724         unlock_page(page);
725         page_cache_release(page);
726         return copied;
727 }
728
729 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
730                 struct iov_iter *iter, loff_t offset)
731 {
732         struct file *file = iocb->ki_filp;
733         struct inode *inode = file->f_mapping->host;
734
735         if (rw == WRITE)
736                 return 0;
737
738         /* Needs synchronization with the cleaner */
739         return blockdev_direct_IO(rw, iocb, inode, iter, offset,
740                                                   get_data_block_ro);
741 }
742
743 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
744                                       unsigned int length)
745 {
746         struct inode *inode = page->mapping->host;
747         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
748         if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
749                 dec_page_count(sbi, F2FS_DIRTY_DENTS);
750                 inode_dec_dirty_dents(inode);
751         }
752         ClearPagePrivate(page);
753 }
754
755 static int f2fs_release_data_page(struct page *page, gfp_t wait)
756 {
757         ClearPagePrivate(page);
758         return 1;
759 }
760
761 static int f2fs_set_data_page_dirty(struct page *page)
762 {
763         struct address_space *mapping = page->mapping;
764         struct inode *inode = mapping->host;
765
766         SetPageUptodate(page);
767         if (!PageDirty(page)) {
768                 __set_page_dirty_nobuffers(page);
769                 set_dirty_dir_page(inode, page);
770                 return 1;
771         }
772         return 0;
773 }
774
775 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
776 {
777         return generic_block_bmap(mapping, block, get_data_block_ro);
778 }
779
780 const struct address_space_operations f2fs_dblock_aops = {
781         .readpage       = f2fs_read_data_page,
782         .readpages      = f2fs_read_data_pages,
783         .writepage      = f2fs_write_data_page,
784         .writepages     = f2fs_write_data_pages,
785         .write_begin    = f2fs_write_begin,
786         .write_end      = f2fs_write_end,
787         .set_page_dirty = f2fs_set_data_page_dirty,
788         .invalidatepage = f2fs_invalidate_data_page,
789         .releasepage    = f2fs_release_data_page,
790         .direct_IO      = f2fs_direct_IO,
791         .bmap           = f2fs_bmap,
792 };