]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/f2fs.h
mm: fix overflow check in expand_upwards()
[karo-tx-linux.git] / fs / f2fs / f2fs.h
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)     BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)                                     \
37         do {                                                            \
38                 if (unlikely(condition)) {                              \
39                         WARN_ON(1);                                     \
40                         set_sbi_flag(sbi, SBI_NEED_FSCK);               \
41                 }                                                       \
42         } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47         FAULT_KMALLOC,
48         FAULT_PAGE_ALLOC,
49         FAULT_ALLOC_NID,
50         FAULT_ORPHAN,
51         FAULT_BLOCK,
52         FAULT_DIR_DEPTH,
53         FAULT_EVICT_INODE,
54         FAULT_TRUNCATE,
55         FAULT_IO,
56         FAULT_CHECKPOINT,
57         FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61         atomic_t inject_ops;
62         unsigned int inject_rate;
63         unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC                0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD              0x00000004
76 #define F2FS_MOUNT_NOHEAP               0x00000008
77 #define F2FS_MOUNT_XATTR_USER           0x00000010
78 #define F2FS_MOUNT_POSIX_ACL            0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR         0x00000080
81 #define F2FS_MOUNT_INLINE_DATA          0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY        0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE          0x00000400
84 #define F2FS_MOUNT_NOBARRIER            0x00000800
85 #define F2FS_MOUNT_FASTBOOT             0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE         0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC          0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH           0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION      0x00010000
90 #define F2FS_MOUNT_ADAPTIVE             0x00020000
91 #define F2FS_MOUNT_LFS                  0x00040000
92 #define F2FS_MOUNT_USRQUOTA             0x00080000
93 #define F2FS_MOUNT_GRPQUOTA             0x00100000
94
95 #define clear_opt(sbi, option)  ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
96 #define set_opt(sbi, option)    ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
97 #define test_opt(sbi, option)   ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
98
99 #define ver_after(a, b) (typecheck(unsigned long long, a) &&            \
100                 typecheck(unsigned long long, b) &&                     \
101                 ((long long)((a) - (b)) > 0))
102
103 typedef u32 block_t;    /*
104                          * should not change u32, since it is the on-disk block
105                          * address format, __le32.
106                          */
107 typedef u32 nid_t;
108
109 struct f2fs_mount_info {
110         unsigned int    opt;
111 };
112
113 #define F2FS_FEATURE_ENCRYPT    0x0001
114 #define F2FS_FEATURE_BLKZONED   0x0002
115
116 #define F2FS_HAS_FEATURE(sb, mask)                                      \
117         ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
118 #define F2FS_SET_FEATURE(sb, mask)                                      \
119         (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
120 #define F2FS_CLEAR_FEATURE(sb, mask)                                    \
121         (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
122
123 /*
124  * For checkpoint manager
125  */
126 enum {
127         NAT_BITMAP,
128         SIT_BITMAP
129 };
130
131 #define CP_UMOUNT       0x00000001
132 #define CP_FASTBOOT     0x00000002
133 #define CP_SYNC         0x00000004
134 #define CP_RECOVERY     0x00000008
135 #define CP_DISCARD      0x00000010
136 #define CP_TRIMMED      0x00000020
137
138 #define DEF_BATCHED_TRIM_SECTIONS       2048
139 #define BATCHED_TRIM_SEGMENTS(sbi)      \
140                 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
141 #define BATCHED_TRIM_BLOCKS(sbi)        \
142                 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
143 #define MAX_DISCARD_BLOCKS(sbi)         BLKS_PER_SEC(sbi)
144 #define DISCARD_ISSUE_RATE              8
145 #define DEF_CP_INTERVAL                 60      /* 60 secs */
146 #define DEF_IDLE_INTERVAL               5       /* 5 secs */
147
148 struct cp_control {
149         int reason;
150         __u64 trim_start;
151         __u64 trim_end;
152         __u64 trim_minlen;
153         __u64 trimmed;
154 };
155
156 /*
157  * For CP/NAT/SIT/SSA readahead
158  */
159 enum {
160         META_CP,
161         META_NAT,
162         META_SIT,
163         META_SSA,
164         META_POR,
165 };
166
167 /* for the list of ino */
168 enum {
169         ORPHAN_INO,             /* for orphan ino list */
170         APPEND_INO,             /* for append ino list */
171         UPDATE_INO,             /* for update ino list */
172         MAX_INO_ENTRY,          /* max. list */
173 };
174
175 struct ino_entry {
176         struct list_head list;  /* list head */
177         nid_t ino;              /* inode number */
178 };
179
180 /* for the list of inodes to be GCed */
181 struct inode_entry {
182         struct list_head list;  /* list head */
183         struct inode *inode;    /* vfs inode pointer */
184 };
185
186 /* for the bitmap indicate blocks to be discarded */
187 struct discard_entry {
188         struct list_head list;  /* list head */
189         block_t start_blkaddr;  /* start blockaddr of current segment */
190         unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
191 };
192
193 /* max discard pend list number */
194 #define MAX_PLIST_NUM           512
195 #define plist_idx(blk_num)      ((blk_num) >= MAX_PLIST_NUM ?           \
196                                         (MAX_PLIST_NUM - 1) : (blk_num - 1))
197
198 enum {
199         D_PREP,
200         D_SUBMIT,
201         D_DONE,
202 };
203
204 struct discard_info {
205         block_t lstart;                 /* logical start address */
206         block_t len;                    /* length */
207         block_t start;                  /* actual start address in dev */
208 };
209
210 struct discard_cmd {
211         struct rb_node rb_node;         /* rb node located in rb-tree */
212         union {
213                 struct {
214                         block_t lstart; /* logical start address */
215                         block_t len;    /* length */
216                         block_t start;  /* actual start address in dev */
217                 };
218                 struct discard_info di; /* discard info */
219
220         };
221         struct list_head list;          /* command list */
222         struct completion wait;         /* compleation */
223         struct block_device *bdev;      /* bdev */
224         unsigned short ref;             /* reference count */
225         unsigned char state;            /* state */
226         int error;                      /* bio error */
227 };
228
229 struct discard_cmd_control {
230         struct task_struct *f2fs_issue_discard; /* discard thread */
231         struct list_head entry_list;            /* 4KB discard entry list */
232         struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
233         struct list_head wait_list;             /* store on-flushing entries */
234         wait_queue_head_t discard_wait_queue;   /* waiting queue for wake-up */
235         struct mutex cmd_lock;
236         unsigned int nr_discards;               /* # of discards in the list */
237         unsigned int max_discards;              /* max. discards to be issued */
238         unsigned int undiscard_blks;            /* # of undiscard blocks */
239         atomic_t issued_discard;                /* # of issued discard */
240         atomic_t issing_discard;                /* # of issing discard */
241         atomic_t discard_cmd_cnt;               /* # of cached cmd count */
242         struct rb_root root;                    /* root of discard rb-tree */
243 };
244
245 /* for the list of fsync inodes, used only during recovery */
246 struct fsync_inode_entry {
247         struct list_head list;  /* list head */
248         struct inode *inode;    /* vfs inode pointer */
249         block_t blkaddr;        /* block address locating the last fsync */
250         block_t last_dentry;    /* block address locating the last dentry */
251 };
252
253 #define nats_in_cursum(jnl)             (le16_to_cpu((jnl)->n_nats))
254 #define sits_in_cursum(jnl)             (le16_to_cpu((jnl)->n_sits))
255
256 #define nat_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].ne)
257 #define nid_in_journal(jnl, i)          ((jnl)->nat_j.entries[i].nid)
258 #define sit_in_journal(jnl, i)          ((jnl)->sit_j.entries[i].se)
259 #define segno_in_journal(jnl, i)        ((jnl)->sit_j.entries[i].segno)
260
261 #define MAX_NAT_JENTRIES(jnl)   (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
262 #define MAX_SIT_JENTRIES(jnl)   (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
263
264 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
265 {
266         int before = nats_in_cursum(journal);
267
268         journal->n_nats = cpu_to_le16(before + i);
269         return before;
270 }
271
272 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
273 {
274         int before = sits_in_cursum(journal);
275
276         journal->n_sits = cpu_to_le16(before + i);
277         return before;
278 }
279
280 static inline bool __has_cursum_space(struct f2fs_journal *journal,
281                                                         int size, int type)
282 {
283         if (type == NAT_JOURNAL)
284                 return size <= MAX_NAT_JENTRIES(journal);
285         return size <= MAX_SIT_JENTRIES(journal);
286 }
287
288 /*
289  * ioctl commands
290  */
291 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
292 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
293 #define F2FS_IOC_GETVERSION             FS_IOC_GETVERSION
294
295 #define F2FS_IOCTL_MAGIC                0xf5
296 #define F2FS_IOC_START_ATOMIC_WRITE     _IO(F2FS_IOCTL_MAGIC, 1)
297 #define F2FS_IOC_COMMIT_ATOMIC_WRITE    _IO(F2FS_IOCTL_MAGIC, 2)
298 #define F2FS_IOC_START_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 3)
299 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
300 #define F2FS_IOC_ABORT_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 5)
301 #define F2FS_IOC_GARBAGE_COLLECT        _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
302 #define F2FS_IOC_WRITE_CHECKPOINT       _IO(F2FS_IOCTL_MAGIC, 7)
303 #define F2FS_IOC_DEFRAGMENT             _IOWR(F2FS_IOCTL_MAGIC, 8,      \
304                                                 struct f2fs_defragment)
305 #define F2FS_IOC_MOVE_RANGE             _IOWR(F2FS_IOCTL_MAGIC, 9,      \
306                                                 struct f2fs_move_range)
307 #define F2FS_IOC_FLUSH_DEVICE           _IOW(F2FS_IOCTL_MAGIC, 10,      \
308                                                 struct f2fs_flush_device)
309 #define F2FS_IOC_GARBAGE_COLLECT_RANGE  _IOW(F2FS_IOCTL_MAGIC, 11,      \
310                                                 struct f2fs_gc_range)
311
312 #define F2FS_IOC_SET_ENCRYPTION_POLICY  FS_IOC_SET_ENCRYPTION_POLICY
313 #define F2FS_IOC_GET_ENCRYPTION_POLICY  FS_IOC_GET_ENCRYPTION_POLICY
314 #define F2FS_IOC_GET_ENCRYPTION_PWSALT  FS_IOC_GET_ENCRYPTION_PWSALT
315
316 /*
317  * should be same as XFS_IOC_GOINGDOWN.
318  * Flags for going down operation used by FS_IOC_GOINGDOWN
319  */
320 #define F2FS_IOC_SHUTDOWN       _IOR('X', 125, __u32)   /* Shutdown */
321 #define F2FS_GOING_DOWN_FULLSYNC        0x0     /* going down with full sync */
322 #define F2FS_GOING_DOWN_METASYNC        0x1     /* going down with metadata */
323 #define F2FS_GOING_DOWN_NOSYNC          0x2     /* going down */
324 #define F2FS_GOING_DOWN_METAFLUSH       0x3     /* going down with meta flush */
325
326 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
327 /*
328  * ioctl commands in 32 bit emulation
329  */
330 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
331 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
332 #define F2FS_IOC32_GETVERSION           FS_IOC32_GETVERSION
333 #endif
334
335 struct f2fs_gc_range {
336         u32 sync;
337         u64 start;
338         u64 len;
339 };
340
341 struct f2fs_defragment {
342         u64 start;
343         u64 len;
344 };
345
346 struct f2fs_move_range {
347         u32 dst_fd;             /* destination fd */
348         u64 pos_in;             /* start position in src_fd */
349         u64 pos_out;            /* start position in dst_fd */
350         u64 len;                /* size to move */
351 };
352
353 struct f2fs_flush_device {
354         u32 dev_num;            /* device number to flush */
355         u32 segments;           /* # of segments to flush */
356 };
357
358 /*
359  * For INODE and NODE manager
360  */
361 /* for directory operations */
362 struct f2fs_dentry_ptr {
363         struct inode *inode;
364         const void *bitmap;
365         struct f2fs_dir_entry *dentry;
366         __u8 (*filename)[F2FS_SLOT_LEN];
367         int max;
368 };
369
370 static inline void make_dentry_ptr_block(struct inode *inode,
371                 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
372 {
373         d->inode = inode;
374         d->max = NR_DENTRY_IN_BLOCK;
375         d->bitmap = &t->dentry_bitmap;
376         d->dentry = t->dentry;
377         d->filename = t->filename;
378 }
379
380 static inline void make_dentry_ptr_inline(struct inode *inode,
381                 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
382 {
383         d->inode = inode;
384         d->max = NR_INLINE_DENTRY;
385         d->bitmap = &t->dentry_bitmap;
386         d->dentry = t->dentry;
387         d->filename = t->filename;
388 }
389
390 /*
391  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
392  * as its node offset to distinguish from index node blocks.
393  * But some bits are used to mark the node block.
394  */
395 #define XATTR_NODE_OFFSET       ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
396                                 >> OFFSET_BIT_SHIFT)
397 enum {
398         ALLOC_NODE,                     /* allocate a new node page if needed */
399         LOOKUP_NODE,                    /* look up a node without readahead */
400         LOOKUP_NODE_RA,                 /*
401                                          * look up a node with readahead called
402                                          * by get_data_block.
403                                          */
404 };
405
406 #define F2FS_LINK_MAX   0xffffffff      /* maximum link count per file */
407
408 #define MAX_DIR_RA_PAGES        4       /* maximum ra pages of dir */
409
410 /* vector size for gang look-up from extent cache that consists of radix tree */
411 #define EXT_TREE_VEC_SIZE       64
412
413 /* for in-memory extent cache entry */
414 #define F2FS_MIN_EXTENT_LEN     64      /* minimum extent length */
415
416 /* number of extent info in extent cache we try to shrink */
417 #define EXTENT_CACHE_SHRINK_NUMBER      128
418
419 struct rb_entry {
420         struct rb_node rb_node;         /* rb node located in rb-tree */
421         unsigned int ofs;               /* start offset of the entry */
422         unsigned int len;               /* length of the entry */
423 };
424
425 struct extent_info {
426         unsigned int fofs;              /* start offset in a file */
427         unsigned int len;               /* length of the extent */
428         u32 blk;                        /* start block address of the extent */
429 };
430
431 struct extent_node {
432         struct rb_node rb_node;
433         union {
434                 struct {
435                         unsigned int fofs;
436                         unsigned int len;
437                         u32 blk;
438                 };
439                 struct extent_info ei;  /* extent info */
440
441         };
442         struct list_head list;          /* node in global extent list of sbi */
443         struct extent_tree *et;         /* extent tree pointer */
444 };
445
446 struct extent_tree {
447         nid_t ino;                      /* inode number */
448         struct rb_root root;            /* root of extent info rb-tree */
449         struct extent_node *cached_en;  /* recently accessed extent node */
450         struct extent_info largest;     /* largested extent info */
451         struct list_head list;          /* to be used by sbi->zombie_list */
452         rwlock_t lock;                  /* protect extent info rb-tree */
453         atomic_t node_cnt;              /* # of extent node in rb-tree*/
454 };
455
456 /*
457  * This structure is taken from ext4_map_blocks.
458  *
459  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
460  */
461 #define F2FS_MAP_NEW            (1 << BH_New)
462 #define F2FS_MAP_MAPPED         (1 << BH_Mapped)
463 #define F2FS_MAP_UNWRITTEN      (1 << BH_Unwritten)
464 #define F2FS_MAP_FLAGS          (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
465                                 F2FS_MAP_UNWRITTEN)
466
467 struct f2fs_map_blocks {
468         block_t m_pblk;
469         block_t m_lblk;
470         unsigned int m_len;
471         unsigned int m_flags;
472         pgoff_t *m_next_pgofs;          /* point next possible non-hole pgofs */
473 };
474
475 /* for flag in get_data_block */
476 #define F2FS_GET_BLOCK_READ             0
477 #define F2FS_GET_BLOCK_DIO              1
478 #define F2FS_GET_BLOCK_FIEMAP           2
479 #define F2FS_GET_BLOCK_BMAP             3
480 #define F2FS_GET_BLOCK_PRE_DIO          4
481 #define F2FS_GET_BLOCK_PRE_AIO          5
482
483 /*
484  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
485  */
486 #define FADVISE_COLD_BIT        0x01
487 #define FADVISE_LOST_PINO_BIT   0x02
488 #define FADVISE_ENCRYPT_BIT     0x04
489 #define FADVISE_ENC_NAME_BIT    0x08
490 #define FADVISE_KEEP_SIZE_BIT   0x10
491
492 #define file_is_cold(inode)     is_file(inode, FADVISE_COLD_BIT)
493 #define file_wrong_pino(inode)  is_file(inode, FADVISE_LOST_PINO_BIT)
494 #define file_set_cold(inode)    set_file(inode, FADVISE_COLD_BIT)
495 #define file_lost_pino(inode)   set_file(inode, FADVISE_LOST_PINO_BIT)
496 #define file_clear_cold(inode)  clear_file(inode, FADVISE_COLD_BIT)
497 #define file_got_pino(inode)    clear_file(inode, FADVISE_LOST_PINO_BIT)
498 #define file_is_encrypt(inode)  is_file(inode, FADVISE_ENCRYPT_BIT)
499 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
500 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
501 #define file_enc_name(inode)    is_file(inode, FADVISE_ENC_NAME_BIT)
502 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
503 #define file_keep_isize(inode)  is_file(inode, FADVISE_KEEP_SIZE_BIT)
504 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
505
506 #define DEF_DIR_LEVEL           0
507
508 struct f2fs_inode_info {
509         struct inode vfs_inode;         /* serve a vfs inode */
510         unsigned long i_flags;          /* keep an inode flags for ioctl */
511         unsigned char i_advise;         /* use to give file attribute hints */
512         unsigned char i_dir_level;      /* use for dentry level for large dir */
513         unsigned int i_current_depth;   /* use only in directory structure */
514         unsigned int i_pino;            /* parent inode number */
515         umode_t i_acl_mode;             /* keep file acl mode temporarily */
516
517         /* Use below internally in f2fs*/
518         unsigned long flags;            /* use to pass per-file flags */
519         struct rw_semaphore i_sem;      /* protect fi info */
520         atomic_t dirty_pages;           /* # of dirty pages */
521         f2fs_hash_t chash;              /* hash value of given file name */
522         unsigned int clevel;            /* maximum level of given file name */
523         struct task_struct *task;       /* lookup and create consistency */
524         nid_t i_xattr_nid;              /* node id that contains xattrs */
525         loff_t  last_disk_size;         /* lastly written file size */
526
527 #ifdef CONFIG_QUOTA
528         struct dquot *i_dquot[MAXQUOTAS];
529
530         /* quota space reservation, managed internally by quota code */
531         qsize_t i_reserved_quota;
532 #endif
533         struct list_head dirty_list;    /* dirty list for dirs and files */
534         struct list_head gdirty_list;   /* linked in global dirty list */
535         struct list_head inmem_pages;   /* inmemory pages managed by f2fs */
536         struct mutex inmem_lock;        /* lock for inmemory pages */
537         struct extent_tree *extent_tree;        /* cached extent_tree entry */
538         struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
539         struct rw_semaphore i_mmap_sem;
540 };
541
542 static inline void get_extent_info(struct extent_info *ext,
543                                         struct f2fs_extent *i_ext)
544 {
545         ext->fofs = le32_to_cpu(i_ext->fofs);
546         ext->blk = le32_to_cpu(i_ext->blk);
547         ext->len = le32_to_cpu(i_ext->len);
548 }
549
550 static inline void set_raw_extent(struct extent_info *ext,
551                                         struct f2fs_extent *i_ext)
552 {
553         i_ext->fofs = cpu_to_le32(ext->fofs);
554         i_ext->blk = cpu_to_le32(ext->blk);
555         i_ext->len = cpu_to_le32(ext->len);
556 }
557
558 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
559                                                 u32 blk, unsigned int len)
560 {
561         ei->fofs = fofs;
562         ei->blk = blk;
563         ei->len = len;
564 }
565
566 static inline bool __is_discard_mergeable(struct discard_info *back,
567                                                 struct discard_info *front)
568 {
569         return back->lstart + back->len == front->lstart;
570 }
571
572 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
573                                                 struct discard_info *back)
574 {
575         return __is_discard_mergeable(back, cur);
576 }
577
578 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
579                                                 struct discard_info *front)
580 {
581         return __is_discard_mergeable(cur, front);
582 }
583
584 static inline bool __is_extent_mergeable(struct extent_info *back,
585                                                 struct extent_info *front)
586 {
587         return (back->fofs + back->len == front->fofs &&
588                         back->blk + back->len == front->blk);
589 }
590
591 static inline bool __is_back_mergeable(struct extent_info *cur,
592                                                 struct extent_info *back)
593 {
594         return __is_extent_mergeable(back, cur);
595 }
596
597 static inline bool __is_front_mergeable(struct extent_info *cur,
598                                                 struct extent_info *front)
599 {
600         return __is_extent_mergeable(cur, front);
601 }
602
603 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
604 static inline void __try_update_largest_extent(struct inode *inode,
605                         struct extent_tree *et, struct extent_node *en)
606 {
607         if (en->ei.len > et->largest.len) {
608                 et->largest = en->ei;
609                 f2fs_mark_inode_dirty_sync(inode, true);
610         }
611 }
612
613 enum nid_list {
614         FREE_NID_LIST,
615         ALLOC_NID_LIST,
616         MAX_NID_LIST,
617 };
618
619 struct f2fs_nm_info {
620         block_t nat_blkaddr;            /* base disk address of NAT */
621         nid_t max_nid;                  /* maximum possible node ids */
622         nid_t available_nids;           /* # of available node ids */
623         nid_t next_scan_nid;            /* the next nid to be scanned */
624         unsigned int ram_thresh;        /* control the memory footprint */
625         unsigned int ra_nid_pages;      /* # of nid pages to be readaheaded */
626         unsigned int dirty_nats_ratio;  /* control dirty nats ratio threshold */
627
628         /* NAT cache management */
629         struct radix_tree_root nat_root;/* root of the nat entry cache */
630         struct radix_tree_root nat_set_root;/* root of the nat set cache */
631         struct rw_semaphore nat_tree_lock;      /* protect nat_tree_lock */
632         struct list_head nat_entries;   /* cached nat entry list (clean) */
633         unsigned int nat_cnt;           /* the # of cached nat entries */
634         unsigned int dirty_nat_cnt;     /* total num of nat entries in set */
635         unsigned int nat_blocks;        /* # of nat blocks */
636
637         /* free node ids management */
638         struct radix_tree_root free_nid_root;/* root of the free_nid cache */
639         struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
640         unsigned int nid_cnt[MAX_NID_LIST];     /* the number of free node id */
641         spinlock_t nid_list_lock;       /* protect nid lists ops */
642         struct mutex build_lock;        /* lock for build free nids */
643         unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
644         unsigned char *nat_block_bitmap;
645         unsigned short *free_nid_count; /* free nid count of NAT block */
646
647         /* for checkpoint */
648         char *nat_bitmap;               /* NAT bitmap pointer */
649
650         unsigned int nat_bits_blocks;   /* # of nat bits blocks */
651         unsigned char *nat_bits;        /* NAT bits blocks */
652         unsigned char *full_nat_bits;   /* full NAT pages */
653         unsigned char *empty_nat_bits;  /* empty NAT pages */
654 #ifdef CONFIG_F2FS_CHECK_FS
655         char *nat_bitmap_mir;           /* NAT bitmap mirror */
656 #endif
657         int bitmap_size;                /* bitmap size */
658 };
659
660 /*
661  * this structure is used as one of function parameters.
662  * all the information are dedicated to a given direct node block determined
663  * by the data offset in a file.
664  */
665 struct dnode_of_data {
666         struct inode *inode;            /* vfs inode pointer */
667         struct page *inode_page;        /* its inode page, NULL is possible */
668         struct page *node_page;         /* cached direct node page */
669         nid_t nid;                      /* node id of the direct node block */
670         unsigned int ofs_in_node;       /* data offset in the node page */
671         bool inode_page_locked;         /* inode page is locked or not */
672         bool node_changed;              /* is node block changed */
673         char cur_level;                 /* level of hole node page */
674         char max_level;                 /* level of current page located */
675         block_t data_blkaddr;           /* block address of the node block */
676 };
677
678 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
679                 struct page *ipage, struct page *npage, nid_t nid)
680 {
681         memset(dn, 0, sizeof(*dn));
682         dn->inode = inode;
683         dn->inode_page = ipage;
684         dn->node_page = npage;
685         dn->nid = nid;
686 }
687
688 /*
689  * For SIT manager
690  *
691  * By default, there are 6 active log areas across the whole main area.
692  * When considering hot and cold data separation to reduce cleaning overhead,
693  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
694  * respectively.
695  * In the current design, you should not change the numbers intentionally.
696  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
697  * logs individually according to the underlying devices. (default: 6)
698  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
699  * data and 8 for node logs.
700  */
701 #define NR_CURSEG_DATA_TYPE     (3)
702 #define NR_CURSEG_NODE_TYPE     (3)
703 #define NR_CURSEG_TYPE  (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
704
705 enum {
706         CURSEG_HOT_DATA = 0,    /* directory entry blocks */
707         CURSEG_WARM_DATA,       /* data blocks */
708         CURSEG_COLD_DATA,       /* multimedia or GCed data blocks */
709         CURSEG_HOT_NODE,        /* direct node blocks of directory files */
710         CURSEG_WARM_NODE,       /* direct node blocks of normal files */
711         CURSEG_COLD_NODE,       /* indirect node blocks */
712         NO_CHECK_TYPE,
713 };
714
715 struct flush_cmd {
716         struct completion wait;
717         struct llist_node llnode;
718         int ret;
719 };
720
721 struct flush_cmd_control {
722         struct task_struct *f2fs_issue_flush;   /* flush thread */
723         wait_queue_head_t flush_wait_queue;     /* waiting queue for wake-up */
724         atomic_t issued_flush;                  /* # of issued flushes */
725         atomic_t issing_flush;                  /* # of issing flushes */
726         struct llist_head issue_list;           /* list for command issue */
727         struct llist_node *dispatch_list;       /* list for command dispatch */
728 };
729
730 struct f2fs_sm_info {
731         struct sit_info *sit_info;              /* whole segment information */
732         struct free_segmap_info *free_info;     /* free segment information */
733         struct dirty_seglist_info *dirty_info;  /* dirty segment information */
734         struct curseg_info *curseg_array;       /* active segment information */
735
736         block_t seg0_blkaddr;           /* block address of 0'th segment */
737         block_t main_blkaddr;           /* start block address of main area */
738         block_t ssa_blkaddr;            /* start block address of SSA area */
739
740         unsigned int segment_count;     /* total # of segments */
741         unsigned int main_segments;     /* # of segments in main area */
742         unsigned int reserved_segments; /* # of reserved segments */
743         unsigned int ovp_segments;      /* # of overprovision segments */
744
745         /* a threshold to reclaim prefree segments */
746         unsigned int rec_prefree_segments;
747
748         /* for batched trimming */
749         unsigned int trim_sections;             /* # of sections to trim */
750
751         struct list_head sit_entry_set; /* sit entry set list */
752
753         unsigned int ipu_policy;        /* in-place-update policy */
754         unsigned int min_ipu_util;      /* in-place-update threshold */
755         unsigned int min_fsync_blocks;  /* threshold for fsync */
756         unsigned int min_hot_blocks;    /* threshold for hot block allocation */
757
758         /* for flush command control */
759         struct flush_cmd_control *fcc_info;
760
761         /* for discard command control */
762         struct discard_cmd_control *dcc_info;
763 };
764
765 /*
766  * For superblock
767  */
768 /*
769  * COUNT_TYPE for monitoring
770  *
771  * f2fs monitors the number of several block types such as on-writeback,
772  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
773  */
774 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
775 enum count_type {
776         F2FS_DIRTY_DENTS,
777         F2FS_DIRTY_DATA,
778         F2FS_DIRTY_NODES,
779         F2FS_DIRTY_META,
780         F2FS_INMEM_PAGES,
781         F2FS_DIRTY_IMETA,
782         F2FS_WB_CP_DATA,
783         F2FS_WB_DATA,
784         NR_COUNT_TYPE,
785 };
786
787 /*
788  * The below are the page types of bios used in submit_bio().
789  * The available types are:
790  * DATA                 User data pages. It operates as async mode.
791  * NODE                 Node pages. It operates as async mode.
792  * META                 FS metadata pages such as SIT, NAT, CP.
793  * NR_PAGE_TYPE         The number of page types.
794  * META_FLUSH           Make sure the previous pages are written
795  *                      with waiting the bio's completion
796  * ...                  Only can be used with META.
797  */
798 #define PAGE_TYPE_OF_BIO(type)  ((type) > META ? META : (type))
799 enum page_type {
800         DATA,
801         NODE,
802         META,
803         NR_PAGE_TYPE,
804         META_FLUSH,
805         INMEM,          /* the below types are used by tracepoints only. */
806         INMEM_DROP,
807         INMEM_INVALIDATE,
808         INMEM_REVOKE,
809         IPU,
810         OPU,
811 };
812
813 enum temp_type {
814         HOT = 0,        /* must be zero for meta bio */
815         WARM,
816         COLD,
817         NR_TEMP_TYPE,
818 };
819
820 enum need_lock_type {
821         LOCK_REQ = 0,
822         LOCK_DONE,
823         LOCK_RETRY,
824 };
825
826 struct f2fs_io_info {
827         struct f2fs_sb_info *sbi;       /* f2fs_sb_info pointer */
828         enum page_type type;    /* contains DATA/NODE/META/META_FLUSH */
829         enum temp_type temp;    /* contains HOT/WARM/COLD */
830         int op;                 /* contains REQ_OP_ */
831         int op_flags;           /* req_flag_bits */
832         block_t new_blkaddr;    /* new block address to be written */
833         block_t old_blkaddr;    /* old block address before Cow */
834         struct page *page;      /* page to be written */
835         struct page *encrypted_page;    /* encrypted page */
836         struct list_head list;          /* serialize IOs */
837         bool submitted;         /* indicate IO submission */
838         int need_lock;          /* indicate we need to lock cp_rwsem */
839         bool in_list;           /* indicate fio is in io_list */
840 };
841
842 #define is_read_io(rw) ((rw) == READ)
843 struct f2fs_bio_info {
844         struct f2fs_sb_info *sbi;       /* f2fs superblock */
845         struct bio *bio;                /* bios to merge */
846         sector_t last_block_in_bio;     /* last block number */
847         struct f2fs_io_info fio;        /* store buffered io info. */
848         struct rw_semaphore io_rwsem;   /* blocking op for bio */
849         spinlock_t io_lock;             /* serialize DATA/NODE IOs */
850         struct list_head io_list;       /* track fios */
851 };
852
853 #define FDEV(i)                         (sbi->devs[i])
854 #define RDEV(i)                         (raw_super->devs[i])
855 struct f2fs_dev_info {
856         struct block_device *bdev;
857         char path[MAX_PATH_LEN];
858         unsigned int total_segments;
859         block_t start_blk;
860         block_t end_blk;
861 #ifdef CONFIG_BLK_DEV_ZONED
862         unsigned int nr_blkz;                   /* Total number of zones */
863         u8 *blkz_type;                          /* Array of zones type */
864 #endif
865 };
866
867 enum inode_type {
868         DIR_INODE,                      /* for dirty dir inode */
869         FILE_INODE,                     /* for dirty regular/symlink inode */
870         DIRTY_META,                     /* for all dirtied inode metadata */
871         NR_INODE_TYPE,
872 };
873
874 /* for inner inode cache management */
875 struct inode_management {
876         struct radix_tree_root ino_root;        /* ino entry array */
877         spinlock_t ino_lock;                    /* for ino entry lock */
878         struct list_head ino_list;              /* inode list head */
879         unsigned long ino_num;                  /* number of entries */
880 };
881
882 /* For s_flag in struct f2fs_sb_info */
883 enum {
884         SBI_IS_DIRTY,                           /* dirty flag for checkpoint */
885         SBI_IS_CLOSE,                           /* specify unmounting */
886         SBI_NEED_FSCK,                          /* need fsck.f2fs to fix */
887         SBI_POR_DOING,                          /* recovery is doing or not */
888         SBI_NEED_SB_WRITE,                      /* need to recover superblock */
889         SBI_NEED_CP,                            /* need to checkpoint */
890 };
891
892 enum {
893         CP_TIME,
894         REQ_TIME,
895         MAX_TIME,
896 };
897
898 struct f2fs_sb_info {
899         struct super_block *sb;                 /* pointer to VFS super block */
900         struct proc_dir_entry *s_proc;          /* proc entry */
901         struct f2fs_super_block *raw_super;     /* raw super block pointer */
902         int valid_super_block;                  /* valid super block no */
903         unsigned long s_flag;                           /* flags for sbi */
904
905 #ifdef CONFIG_BLK_DEV_ZONED
906         unsigned int blocks_per_blkz;           /* F2FS blocks per zone */
907         unsigned int log_blocks_per_blkz;       /* log2 F2FS blocks per zone */
908 #endif
909
910         /* for node-related operations */
911         struct f2fs_nm_info *nm_info;           /* node manager */
912         struct inode *node_inode;               /* cache node blocks */
913
914         /* for segment-related operations */
915         struct f2fs_sm_info *sm_info;           /* segment manager */
916
917         /* for bio operations */
918         struct f2fs_bio_info *write_io[NR_PAGE_TYPE];   /* for write bios */
919         struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
920                                                 /* bio ordering for NODE/DATA */
921         int write_io_size_bits;                 /* Write IO size bits */
922         mempool_t *write_io_dummy;              /* Dummy pages */
923
924         /* for checkpoint */
925         struct f2fs_checkpoint *ckpt;           /* raw checkpoint pointer */
926         int cur_cp_pack;                        /* remain current cp pack */
927         spinlock_t cp_lock;                     /* for flag in ckpt */
928         struct inode *meta_inode;               /* cache meta blocks */
929         struct mutex cp_mutex;                  /* checkpoint procedure lock */
930         struct rw_semaphore cp_rwsem;           /* blocking FS operations */
931         struct rw_semaphore node_write;         /* locking node writes */
932         struct rw_semaphore node_change;        /* locking node change */
933         wait_queue_head_t cp_wait;
934         unsigned long last_time[MAX_TIME];      /* to store time in jiffies */
935         long interval_time[MAX_TIME];           /* to store thresholds */
936
937         struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
938
939         /* for orphan inode, use 0'th array */
940         unsigned int max_orphans;               /* max orphan inodes */
941
942         /* for inode management */
943         struct list_head inode_list[NR_INODE_TYPE];     /* dirty inode list */
944         spinlock_t inode_lock[NR_INODE_TYPE];   /* for dirty inode list lock */
945
946         /* for extent tree cache */
947         struct radix_tree_root extent_tree_root;/* cache extent cache entries */
948         struct mutex extent_tree_lock;  /* locking extent radix tree */
949         struct list_head extent_list;           /* lru list for shrinker */
950         spinlock_t extent_lock;                 /* locking extent lru list */
951         atomic_t total_ext_tree;                /* extent tree count */
952         struct list_head zombie_list;           /* extent zombie tree list */
953         atomic_t total_zombie_tree;             /* extent zombie tree count */
954         atomic_t total_ext_node;                /* extent info count */
955
956         /* basic filesystem units */
957         unsigned int log_sectors_per_block;     /* log2 sectors per block */
958         unsigned int log_blocksize;             /* log2 block size */
959         unsigned int blocksize;                 /* block size */
960         unsigned int root_ino_num;              /* root inode number*/
961         unsigned int node_ino_num;              /* node inode number*/
962         unsigned int meta_ino_num;              /* meta inode number*/
963         unsigned int log_blocks_per_seg;        /* log2 blocks per segment */
964         unsigned int blocks_per_seg;            /* blocks per segment */
965         unsigned int segs_per_sec;              /* segments per section */
966         unsigned int secs_per_zone;             /* sections per zone */
967         unsigned int total_sections;            /* total section count */
968         unsigned int total_node_count;          /* total node block count */
969         unsigned int total_valid_node_count;    /* valid node block count */
970         loff_t max_file_blocks;                 /* max block index of file */
971         int active_logs;                        /* # of active logs */
972         int dir_level;                          /* directory level */
973
974         block_t user_block_count;               /* # of user blocks */
975         block_t total_valid_block_count;        /* # of valid blocks */
976         block_t discard_blks;                   /* discard command candidats */
977         block_t last_valid_block_count;         /* for recovery */
978         block_t reserved_blocks;                /* configurable reserved blocks */
979
980         u32 s_next_generation;                  /* for NFS support */
981
982         /* # of pages, see count_type */
983         atomic_t nr_pages[NR_COUNT_TYPE];
984         /* # of allocated blocks */
985         struct percpu_counter alloc_valid_block_count;
986
987         /* writeback control */
988         atomic_t wb_sync_req;                   /* count # of WB_SYNC threads */
989
990         /* valid inode count */
991         struct percpu_counter total_valid_inode_count;
992
993         struct f2fs_mount_info mount_opt;       /* mount options */
994
995         /* for cleaning operations */
996         struct mutex gc_mutex;                  /* mutex for GC */
997         struct f2fs_gc_kthread  *gc_thread;     /* GC thread */
998         unsigned int cur_victim_sec;            /* current victim section num */
999
1000         /* threshold for converting bg victims for fg */
1001         u64 fggc_threshold;
1002
1003         /* maximum # of trials to find a victim segment for SSR and GC */
1004         unsigned int max_victim_search;
1005
1006         /*
1007          * for stat information.
1008          * one is for the LFS mode, and the other is for the SSR mode.
1009          */
1010 #ifdef CONFIG_F2FS_STAT_FS
1011         struct f2fs_stat_info *stat_info;       /* FS status information */
1012         unsigned int segment_count[2];          /* # of allocated segments */
1013         unsigned int block_count[2];            /* # of allocated blocks */
1014         atomic_t inplace_count;         /* # of inplace update */
1015         atomic64_t total_hit_ext;               /* # of lookup extent cache */
1016         atomic64_t read_hit_rbtree;             /* # of hit rbtree extent node */
1017         atomic64_t read_hit_largest;            /* # of hit largest extent node */
1018         atomic64_t read_hit_cached;             /* # of hit cached extent node */
1019         atomic_t inline_xattr;                  /* # of inline_xattr inodes */
1020         atomic_t inline_inode;                  /* # of inline_data inodes */
1021         atomic_t inline_dir;                    /* # of inline_dentry inodes */
1022         atomic_t aw_cnt;                        /* # of atomic writes */
1023         atomic_t vw_cnt;                        /* # of volatile writes */
1024         atomic_t max_aw_cnt;                    /* max # of atomic writes */
1025         atomic_t max_vw_cnt;                    /* max # of volatile writes */
1026         int bg_gc;                              /* background gc calls */
1027         unsigned int ndirty_inode[NR_INODE_TYPE];       /* # of dirty inodes */
1028 #endif
1029         spinlock_t stat_lock;                   /* lock for stat operations */
1030
1031         /* For sysfs suppport */
1032         struct kobject s_kobj;
1033         struct completion s_kobj_unregister;
1034
1035         /* For shrinker support */
1036         struct list_head s_list;
1037         int s_ndevs;                            /* number of devices */
1038         struct f2fs_dev_info *devs;             /* for device list */
1039         struct mutex umount_mutex;
1040         unsigned int shrinker_run_no;
1041
1042         /* For write statistics */
1043         u64 sectors_written_start;
1044         u64 kbytes_written;
1045
1046         /* Reference to checksum algorithm driver via cryptoapi */
1047         struct crypto_shash *s_chksum_driver;
1048
1049         /* For fault injection */
1050 #ifdef CONFIG_F2FS_FAULT_INJECTION
1051         struct f2fs_fault_info fault_info;
1052 #endif
1053 };
1054
1055 #ifdef CONFIG_F2FS_FAULT_INJECTION
1056 #define f2fs_show_injection_info(type)                          \
1057         printk("%sF2FS-fs : inject %s in %s of %pF\n",          \
1058                 KERN_INFO, fault_name[type],                    \
1059                 __func__, __builtin_return_address(0))
1060 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1061 {
1062         struct f2fs_fault_info *ffi = &sbi->fault_info;
1063
1064         if (!ffi->inject_rate)
1065                 return false;
1066
1067         if (!IS_FAULT_SET(ffi, type))
1068                 return false;
1069
1070         atomic_inc(&ffi->inject_ops);
1071         if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1072                 atomic_set(&ffi->inject_ops, 0);
1073                 return true;
1074         }
1075         return false;
1076 }
1077 #endif
1078
1079 /* For write statistics. Suppose sector size is 512 bytes,
1080  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1081  */
1082 #define BD_PART_WRITTEN(s)                                               \
1083 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -            \
1084                 (s)->sectors_written_start) >> 1)
1085
1086 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1087 {
1088         sbi->last_time[type] = jiffies;
1089 }
1090
1091 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1092 {
1093         struct timespec ts = {sbi->interval_time[type], 0};
1094         unsigned long interval = timespec_to_jiffies(&ts);
1095
1096         return time_after(jiffies, sbi->last_time[type] + interval);
1097 }
1098
1099 static inline bool is_idle(struct f2fs_sb_info *sbi)
1100 {
1101         struct block_device *bdev = sbi->sb->s_bdev;
1102         struct request_queue *q = bdev_get_queue(bdev);
1103         struct request_list *rl = &q->root_rl;
1104
1105         if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1106                 return 0;
1107
1108         return f2fs_time_over(sbi, REQ_TIME);
1109 }
1110
1111 /*
1112  * Inline functions
1113  */
1114 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1115                            unsigned int length)
1116 {
1117         SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1118         u32 *ctx = (u32 *)shash_desc_ctx(shash);
1119         u32 retval;
1120         int err;
1121
1122         shash->tfm = sbi->s_chksum_driver;
1123         shash->flags = 0;
1124         *ctx = F2FS_SUPER_MAGIC;
1125
1126         err = crypto_shash_update(shash, address, length);
1127         BUG_ON(err);
1128
1129         retval = *ctx;
1130         barrier_data(ctx);
1131         return retval;
1132 }
1133
1134 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1135                                   void *buf, size_t buf_size)
1136 {
1137         return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1138 }
1139
1140 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1141 {
1142         return container_of(inode, struct f2fs_inode_info, vfs_inode);
1143 }
1144
1145 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1146 {
1147         return sb->s_fs_info;
1148 }
1149
1150 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1151 {
1152         return F2FS_SB(inode->i_sb);
1153 }
1154
1155 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1156 {
1157         return F2FS_I_SB(mapping->host);
1158 }
1159
1160 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1161 {
1162         return F2FS_M_SB(page->mapping);
1163 }
1164
1165 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1166 {
1167         return (struct f2fs_super_block *)(sbi->raw_super);
1168 }
1169
1170 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1171 {
1172         return (struct f2fs_checkpoint *)(sbi->ckpt);
1173 }
1174
1175 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1176 {
1177         return (struct f2fs_node *)page_address(page);
1178 }
1179
1180 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1181 {
1182         return &((struct f2fs_node *)page_address(page))->i;
1183 }
1184
1185 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1186 {
1187         return (struct f2fs_nm_info *)(sbi->nm_info);
1188 }
1189
1190 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1191 {
1192         return (struct f2fs_sm_info *)(sbi->sm_info);
1193 }
1194
1195 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1196 {
1197         return (struct sit_info *)(SM_I(sbi)->sit_info);
1198 }
1199
1200 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1201 {
1202         return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1203 }
1204
1205 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1206 {
1207         return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1208 }
1209
1210 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1211 {
1212         return sbi->meta_inode->i_mapping;
1213 }
1214
1215 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1216 {
1217         return sbi->node_inode->i_mapping;
1218 }
1219
1220 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1221 {
1222         return test_bit(type, &sbi->s_flag);
1223 }
1224
1225 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1226 {
1227         set_bit(type, &sbi->s_flag);
1228 }
1229
1230 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1231 {
1232         clear_bit(type, &sbi->s_flag);
1233 }
1234
1235 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1236 {
1237         return le64_to_cpu(cp->checkpoint_ver);
1238 }
1239
1240 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1241 {
1242         size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1243         return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1244 }
1245
1246 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1247 {
1248         unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1249
1250         return ckpt_flags & f;
1251 }
1252
1253 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1254 {
1255         return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1256 }
1257
1258 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1259 {
1260         unsigned int ckpt_flags;
1261
1262         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1263         ckpt_flags |= f;
1264         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1265 }
1266
1267 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1268 {
1269         unsigned long flags;
1270
1271         spin_lock_irqsave(&sbi->cp_lock, flags);
1272         __set_ckpt_flags(F2FS_CKPT(sbi), f);
1273         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1274 }
1275
1276 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1277 {
1278         unsigned int ckpt_flags;
1279
1280         ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1281         ckpt_flags &= (~f);
1282         cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1283 }
1284
1285 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1286 {
1287         unsigned long flags;
1288
1289         spin_lock_irqsave(&sbi->cp_lock, flags);
1290         __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1291         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1292 }
1293
1294 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1295 {
1296         unsigned long flags;
1297
1298         set_sbi_flag(sbi, SBI_NEED_FSCK);
1299
1300         if (lock)
1301                 spin_lock_irqsave(&sbi->cp_lock, flags);
1302         __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1303         kfree(NM_I(sbi)->nat_bits);
1304         NM_I(sbi)->nat_bits = NULL;
1305         if (lock)
1306                 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1307 }
1308
1309 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1310                                         struct cp_control *cpc)
1311 {
1312         bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1313
1314         return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1315 }
1316
1317 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1318 {
1319         down_read(&sbi->cp_rwsem);
1320 }
1321
1322 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1323 {
1324         return down_read_trylock(&sbi->cp_rwsem);
1325 }
1326
1327 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1328 {
1329         up_read(&sbi->cp_rwsem);
1330 }
1331
1332 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1333 {
1334         down_write(&sbi->cp_rwsem);
1335 }
1336
1337 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1338 {
1339         up_write(&sbi->cp_rwsem);
1340 }
1341
1342 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1343 {
1344         int reason = CP_SYNC;
1345
1346         if (test_opt(sbi, FASTBOOT))
1347                 reason = CP_FASTBOOT;
1348         if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1349                 reason = CP_UMOUNT;
1350         return reason;
1351 }
1352
1353 static inline bool __remain_node_summaries(int reason)
1354 {
1355         return (reason & (CP_UMOUNT | CP_FASTBOOT));
1356 }
1357
1358 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1359 {
1360         return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1361                         is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1362 }
1363
1364 /*
1365  * Check whether the given nid is within node id range.
1366  */
1367 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1368 {
1369         if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1370                 return -EINVAL;
1371         if (unlikely(nid >= NM_I(sbi)->max_nid))
1372                 return -EINVAL;
1373         return 0;
1374 }
1375
1376 /*
1377  * Check whether the inode has blocks or not
1378  */
1379 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1380 {
1381         block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1382
1383         return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1384 }
1385
1386 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1387 {
1388         return ofs == XATTR_NODE_OFFSET;
1389 }
1390
1391 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1392 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1393                                  struct inode *inode, blkcnt_t *count)
1394 {
1395         blkcnt_t diff = 0, release = 0;
1396         block_t avail_user_block_count;
1397         int ret;
1398
1399         ret = dquot_reserve_block(inode, *count);
1400         if (ret)
1401                 return ret;
1402
1403 #ifdef CONFIG_F2FS_FAULT_INJECTION
1404         if (time_to_inject(sbi, FAULT_BLOCK)) {
1405                 f2fs_show_injection_info(FAULT_BLOCK);
1406                 release = *count;
1407                 goto enospc;
1408         }
1409 #endif
1410         /*
1411          * let's increase this in prior to actual block count change in order
1412          * for f2fs_sync_file to avoid data races when deciding checkpoint.
1413          */
1414         percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1415
1416         spin_lock(&sbi->stat_lock);
1417         sbi->total_valid_block_count += (block_t)(*count);
1418         avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1419         if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1420                 diff = sbi->total_valid_block_count - avail_user_block_count;
1421                 *count -= diff;
1422                 release = diff;
1423                 sbi->total_valid_block_count = avail_user_block_count;
1424                 if (!*count) {
1425                         spin_unlock(&sbi->stat_lock);
1426                         percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1427                         goto enospc;
1428                 }
1429         }
1430         spin_unlock(&sbi->stat_lock);
1431
1432         if (release)
1433                 dquot_release_reservation_block(inode, release);
1434         f2fs_i_blocks_write(inode, *count, true, true);
1435         return 0;
1436
1437 enospc:
1438         dquot_release_reservation_block(inode, release);
1439         return -ENOSPC;
1440 }
1441
1442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1443                                                 struct inode *inode,
1444                                                 block_t count)
1445 {
1446         blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1447
1448         spin_lock(&sbi->stat_lock);
1449         f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1450         f2fs_bug_on(sbi, inode->i_blocks < sectors);
1451         sbi->total_valid_block_count -= (block_t)count;
1452         spin_unlock(&sbi->stat_lock);
1453         f2fs_i_blocks_write(inode, count, false, true);
1454 }
1455
1456 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1457 {
1458         atomic_inc(&sbi->nr_pages[count_type]);
1459
1460         if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1461                 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1462                 return;
1463
1464         set_sbi_flag(sbi, SBI_IS_DIRTY);
1465 }
1466
1467 static inline void inode_inc_dirty_pages(struct inode *inode)
1468 {
1469         atomic_inc(&F2FS_I(inode)->dirty_pages);
1470         inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1471                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1472 }
1473
1474 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1475 {
1476         atomic_dec(&sbi->nr_pages[count_type]);
1477 }
1478
1479 static inline void inode_dec_dirty_pages(struct inode *inode)
1480 {
1481         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1482                         !S_ISLNK(inode->i_mode))
1483                 return;
1484
1485         atomic_dec(&F2FS_I(inode)->dirty_pages);
1486         dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1487                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1488 }
1489
1490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1491 {
1492         return atomic_read(&sbi->nr_pages[count_type]);
1493 }
1494
1495 static inline int get_dirty_pages(struct inode *inode)
1496 {
1497         return atomic_read(&F2FS_I(inode)->dirty_pages);
1498 }
1499
1500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1501 {
1502         unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1503         unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1504                                                 sbi->log_blocks_per_seg;
1505
1506         return segs / sbi->segs_per_sec;
1507 }
1508
1509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1510 {
1511         return sbi->total_valid_block_count;
1512 }
1513
1514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1515 {
1516         return sbi->discard_blks;
1517 }
1518
1519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1520 {
1521         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1522
1523         /* return NAT or SIT bitmap */
1524         if (flag == NAT_BITMAP)
1525                 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1526         else if (flag == SIT_BITMAP)
1527                 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1528
1529         return 0;
1530 }
1531
1532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1533 {
1534         return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1535 }
1536
1537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1538 {
1539         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1540         int offset;
1541
1542         if (__cp_payload(sbi) > 0) {
1543                 if (flag == NAT_BITMAP)
1544                         return &ckpt->sit_nat_version_bitmap;
1545                 else
1546                         return (unsigned char *)ckpt + F2FS_BLKSIZE;
1547         } else {
1548                 offset = (flag == NAT_BITMAP) ?
1549                         le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1550                 return &ckpt->sit_nat_version_bitmap + offset;
1551         }
1552 }
1553
1554 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1555 {
1556         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1557
1558         if (sbi->cur_cp_pack == 2)
1559                 start_addr += sbi->blocks_per_seg;
1560         return start_addr;
1561 }
1562
1563 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1564 {
1565         block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1566
1567         if (sbi->cur_cp_pack == 1)
1568                 start_addr += sbi->blocks_per_seg;
1569         return start_addr;
1570 }
1571
1572 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1573 {
1574         sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1575 }
1576
1577 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1578 {
1579         return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1580 }
1581
1582 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1583                                         struct inode *inode, bool is_inode)
1584 {
1585         block_t valid_block_count;
1586         unsigned int valid_node_count;
1587         bool quota = inode && !is_inode;
1588
1589         if (quota) {
1590                 int ret = dquot_reserve_block(inode, 1);
1591                 if (ret)
1592                         return ret;
1593         }
1594
1595         spin_lock(&sbi->stat_lock);
1596
1597         valid_block_count = sbi->total_valid_block_count + 1;
1598         if (unlikely(valid_block_count + sbi->reserved_blocks >
1599                                                 sbi->user_block_count)) {
1600                 spin_unlock(&sbi->stat_lock);
1601                 goto enospc;
1602         }
1603
1604         valid_node_count = sbi->total_valid_node_count + 1;
1605         if (unlikely(valid_node_count > sbi->total_node_count)) {
1606                 spin_unlock(&sbi->stat_lock);
1607                 goto enospc;
1608         }
1609
1610         sbi->total_valid_node_count++;
1611         sbi->total_valid_block_count++;
1612         spin_unlock(&sbi->stat_lock);
1613
1614         if (inode) {
1615                 if (is_inode)
1616                         f2fs_mark_inode_dirty_sync(inode, true);
1617                 else
1618                         f2fs_i_blocks_write(inode, 1, true, true);
1619         }
1620
1621         percpu_counter_inc(&sbi->alloc_valid_block_count);
1622         return 0;
1623
1624 enospc:
1625         if (quota)
1626                 dquot_release_reservation_block(inode, 1);
1627         return -ENOSPC;
1628 }
1629
1630 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1631                                         struct inode *inode, bool is_inode)
1632 {
1633         spin_lock(&sbi->stat_lock);
1634
1635         f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1636         f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1637         f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1638
1639         sbi->total_valid_node_count--;
1640         sbi->total_valid_block_count--;
1641
1642         spin_unlock(&sbi->stat_lock);
1643
1644         if (!is_inode)
1645                 f2fs_i_blocks_write(inode, 1, false, true);
1646 }
1647
1648 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1649 {
1650         return sbi->total_valid_node_count;
1651 }
1652
1653 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1654 {
1655         percpu_counter_inc(&sbi->total_valid_inode_count);
1656 }
1657
1658 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1659 {
1660         percpu_counter_dec(&sbi->total_valid_inode_count);
1661 }
1662
1663 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1664 {
1665         return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1666 }
1667
1668 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1669                                                 pgoff_t index, bool for_write)
1670 {
1671 #ifdef CONFIG_F2FS_FAULT_INJECTION
1672         struct page *page = find_lock_page(mapping, index);
1673
1674         if (page)
1675                 return page;
1676
1677         if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1678                 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1679                 return NULL;
1680         }
1681 #endif
1682         if (!for_write)
1683                 return grab_cache_page(mapping, index);
1684         return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1685 }
1686
1687 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1688 {
1689         char *src_kaddr = kmap(src);
1690         char *dst_kaddr = kmap(dst);
1691
1692         memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1693         kunmap(dst);
1694         kunmap(src);
1695 }
1696
1697 static inline void f2fs_put_page(struct page *page, int unlock)
1698 {
1699         if (!page)
1700                 return;
1701
1702         if (unlock) {
1703                 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1704                 unlock_page(page);
1705         }
1706         put_page(page);
1707 }
1708
1709 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1710 {
1711         if (dn->node_page)
1712                 f2fs_put_page(dn->node_page, 1);
1713         if (dn->inode_page && dn->node_page != dn->inode_page)
1714                 f2fs_put_page(dn->inode_page, 0);
1715         dn->node_page = NULL;
1716         dn->inode_page = NULL;
1717 }
1718
1719 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1720                                         size_t size)
1721 {
1722         return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1723 }
1724
1725 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1726                                                 gfp_t flags)
1727 {
1728         void *entry;
1729
1730         entry = kmem_cache_alloc(cachep, flags);
1731         if (!entry)
1732                 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1733         return entry;
1734 }
1735
1736 static inline struct bio *f2fs_bio_alloc(int npages)
1737 {
1738         struct bio *bio;
1739
1740         /* No failure on bio allocation */
1741         bio = bio_alloc(GFP_NOIO, npages);
1742         if (!bio)
1743                 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1744         return bio;
1745 }
1746
1747 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1748                                 unsigned long index, void *item)
1749 {
1750         while (radix_tree_insert(root, index, item))
1751                 cond_resched();
1752 }
1753
1754 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1755
1756 static inline bool IS_INODE(struct page *page)
1757 {
1758         struct f2fs_node *p = F2FS_NODE(page);
1759
1760         return RAW_IS_INODE(p);
1761 }
1762
1763 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1764 {
1765         return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1766 }
1767
1768 static inline block_t datablock_addr(struct page *node_page,
1769                 unsigned int offset)
1770 {
1771         struct f2fs_node *raw_node;
1772         __le32 *addr_array;
1773
1774         raw_node = F2FS_NODE(node_page);
1775         addr_array = blkaddr_in_node(raw_node);
1776         return le32_to_cpu(addr_array[offset]);
1777 }
1778
1779 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1780 {
1781         int mask;
1782
1783         addr += (nr >> 3);
1784         mask = 1 << (7 - (nr & 0x07));
1785         return mask & *addr;
1786 }
1787
1788 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1789 {
1790         int mask;
1791
1792         addr += (nr >> 3);
1793         mask = 1 << (7 - (nr & 0x07));
1794         *addr |= mask;
1795 }
1796
1797 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1798 {
1799         int mask;
1800
1801         addr += (nr >> 3);
1802         mask = 1 << (7 - (nr & 0x07));
1803         *addr &= ~mask;
1804 }
1805
1806 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1807 {
1808         int mask;
1809         int ret;
1810
1811         addr += (nr >> 3);
1812         mask = 1 << (7 - (nr & 0x07));
1813         ret = mask & *addr;
1814         *addr |= mask;
1815         return ret;
1816 }
1817
1818 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1819 {
1820         int mask;
1821         int ret;
1822
1823         addr += (nr >> 3);
1824         mask = 1 << (7 - (nr & 0x07));
1825         ret = mask & *addr;
1826         *addr &= ~mask;
1827         return ret;
1828 }
1829
1830 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1831 {
1832         int mask;
1833
1834         addr += (nr >> 3);
1835         mask = 1 << (7 - (nr & 0x07));
1836         *addr ^= mask;
1837 }
1838
1839 /* used for f2fs_inode_info->flags */
1840 enum {
1841         FI_NEW_INODE,           /* indicate newly allocated inode */
1842         FI_DIRTY_INODE,         /* indicate inode is dirty or not */
1843         FI_AUTO_RECOVER,        /* indicate inode is recoverable */
1844         FI_DIRTY_DIR,           /* indicate directory has dirty pages */
1845         FI_INC_LINK,            /* need to increment i_nlink */
1846         FI_ACL_MODE,            /* indicate acl mode */
1847         FI_NO_ALLOC,            /* should not allocate any blocks */
1848         FI_FREE_NID,            /* free allocated nide */
1849         FI_NO_EXTENT,           /* not to use the extent cache */
1850         FI_INLINE_XATTR,        /* used for inline xattr */
1851         FI_INLINE_DATA,         /* used for inline data*/
1852         FI_INLINE_DENTRY,       /* used for inline dentry */
1853         FI_APPEND_WRITE,        /* inode has appended data */
1854         FI_UPDATE_WRITE,        /* inode has in-place-update data */
1855         FI_NEED_IPU,            /* used for ipu per file */
1856         FI_ATOMIC_FILE,         /* indicate atomic file */
1857         FI_ATOMIC_COMMIT,       /* indicate the state of atomical committing */
1858         FI_VOLATILE_FILE,       /* indicate volatile file */
1859         FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1860         FI_DROP_CACHE,          /* drop dirty page cache */
1861         FI_DATA_EXIST,          /* indicate data exists */
1862         FI_INLINE_DOTS,         /* indicate inline dot dentries */
1863         FI_DO_DEFRAG,           /* indicate defragment is running */
1864         FI_DIRTY_FILE,          /* indicate regular/symlink has dirty pages */
1865         FI_NO_PREALLOC,         /* indicate skipped preallocated blocks */
1866         FI_HOT_DATA,            /* indicate file is hot */
1867 };
1868
1869 static inline void __mark_inode_dirty_flag(struct inode *inode,
1870                                                 int flag, bool set)
1871 {
1872         switch (flag) {
1873         case FI_INLINE_XATTR:
1874         case FI_INLINE_DATA:
1875         case FI_INLINE_DENTRY:
1876                 if (set)
1877                         return;
1878         case FI_DATA_EXIST:
1879         case FI_INLINE_DOTS:
1880                 f2fs_mark_inode_dirty_sync(inode, true);
1881         }
1882 }
1883
1884 static inline void set_inode_flag(struct inode *inode, int flag)
1885 {
1886         if (!test_bit(flag, &F2FS_I(inode)->flags))
1887                 set_bit(flag, &F2FS_I(inode)->flags);
1888         __mark_inode_dirty_flag(inode, flag, true);
1889 }
1890
1891 static inline int is_inode_flag_set(struct inode *inode, int flag)
1892 {
1893         return test_bit(flag, &F2FS_I(inode)->flags);
1894 }
1895
1896 static inline void clear_inode_flag(struct inode *inode, int flag)
1897 {
1898         if (test_bit(flag, &F2FS_I(inode)->flags))
1899                 clear_bit(flag, &F2FS_I(inode)->flags);
1900         __mark_inode_dirty_flag(inode, flag, false);
1901 }
1902
1903 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1904 {
1905         F2FS_I(inode)->i_acl_mode = mode;
1906         set_inode_flag(inode, FI_ACL_MODE);
1907         f2fs_mark_inode_dirty_sync(inode, false);
1908 }
1909
1910 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1911 {
1912         if (inc)
1913                 inc_nlink(inode);
1914         else
1915                 drop_nlink(inode);
1916         f2fs_mark_inode_dirty_sync(inode, true);
1917 }
1918
1919 static inline void f2fs_i_blocks_write(struct inode *inode,
1920                                         block_t diff, bool add, bool claim)
1921 {
1922         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1923         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1924
1925         /* add = 1, claim = 1 should be dquot_reserve_block in pair */
1926         if (add) {
1927                 if (claim)
1928                         dquot_claim_block(inode, diff);
1929                 else
1930                         dquot_alloc_block_nofail(inode, diff);
1931         } else {
1932                 dquot_free_block(inode, diff);
1933         }
1934
1935         f2fs_mark_inode_dirty_sync(inode, true);
1936         if (clean || recover)
1937                 set_inode_flag(inode, FI_AUTO_RECOVER);
1938 }
1939
1940 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1941 {
1942         bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1943         bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1944
1945         if (i_size_read(inode) == i_size)
1946                 return;
1947
1948         i_size_write(inode, i_size);
1949         f2fs_mark_inode_dirty_sync(inode, true);
1950         if (clean || recover)
1951                 set_inode_flag(inode, FI_AUTO_RECOVER);
1952 }
1953
1954 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1955 {
1956         F2FS_I(inode)->i_current_depth = depth;
1957         f2fs_mark_inode_dirty_sync(inode, true);
1958 }
1959
1960 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1961 {
1962         F2FS_I(inode)->i_xattr_nid = xnid;
1963         f2fs_mark_inode_dirty_sync(inode, true);
1964 }
1965
1966 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1967 {
1968         F2FS_I(inode)->i_pino = pino;
1969         f2fs_mark_inode_dirty_sync(inode, true);
1970 }
1971
1972 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1973 {
1974         struct f2fs_inode_info *fi = F2FS_I(inode);
1975
1976         if (ri->i_inline & F2FS_INLINE_XATTR)
1977                 set_bit(FI_INLINE_XATTR, &fi->flags);
1978         if (ri->i_inline & F2FS_INLINE_DATA)
1979                 set_bit(FI_INLINE_DATA, &fi->flags);
1980         if (ri->i_inline & F2FS_INLINE_DENTRY)
1981                 set_bit(FI_INLINE_DENTRY, &fi->flags);
1982         if (ri->i_inline & F2FS_DATA_EXIST)
1983                 set_bit(FI_DATA_EXIST, &fi->flags);
1984         if (ri->i_inline & F2FS_INLINE_DOTS)
1985                 set_bit(FI_INLINE_DOTS, &fi->flags);
1986 }
1987
1988 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1989 {
1990         ri->i_inline = 0;
1991
1992         if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1993                 ri->i_inline |= F2FS_INLINE_XATTR;
1994         if (is_inode_flag_set(inode, FI_INLINE_DATA))
1995                 ri->i_inline |= F2FS_INLINE_DATA;
1996         if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1997                 ri->i_inline |= F2FS_INLINE_DENTRY;
1998         if (is_inode_flag_set(inode, FI_DATA_EXIST))
1999                 ri->i_inline |= F2FS_DATA_EXIST;
2000         if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2001                 ri->i_inline |= F2FS_INLINE_DOTS;
2002 }
2003
2004 static inline int f2fs_has_inline_xattr(struct inode *inode)
2005 {
2006         return is_inode_flag_set(inode, FI_INLINE_XATTR);
2007 }
2008
2009 static inline unsigned int addrs_per_inode(struct inode *inode)
2010 {
2011         if (f2fs_has_inline_xattr(inode))
2012                 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
2013         return DEF_ADDRS_PER_INODE;
2014 }
2015
2016 static inline void *inline_xattr_addr(struct page *page)
2017 {
2018         struct f2fs_inode *ri = F2FS_INODE(page);
2019
2020         return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2021                                         F2FS_INLINE_XATTR_ADDRS]);
2022 }
2023
2024 static inline int inline_xattr_size(struct inode *inode)
2025 {
2026         if (f2fs_has_inline_xattr(inode))
2027                 return F2FS_INLINE_XATTR_ADDRS << 2;
2028         else
2029                 return 0;
2030 }
2031
2032 static inline int f2fs_has_inline_data(struct inode *inode)
2033 {
2034         return is_inode_flag_set(inode, FI_INLINE_DATA);
2035 }
2036
2037 static inline int f2fs_exist_data(struct inode *inode)
2038 {
2039         return is_inode_flag_set(inode, FI_DATA_EXIST);
2040 }
2041
2042 static inline int f2fs_has_inline_dots(struct inode *inode)
2043 {
2044         return is_inode_flag_set(inode, FI_INLINE_DOTS);
2045 }
2046
2047 static inline bool f2fs_is_atomic_file(struct inode *inode)
2048 {
2049         return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2050 }
2051
2052 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2053 {
2054         return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2055 }
2056
2057 static inline bool f2fs_is_volatile_file(struct inode *inode)
2058 {
2059         return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2060 }
2061
2062 static inline bool f2fs_is_first_block_written(struct inode *inode)
2063 {
2064         return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2065 }
2066
2067 static inline bool f2fs_is_drop_cache(struct inode *inode)
2068 {
2069         return is_inode_flag_set(inode, FI_DROP_CACHE);
2070 }
2071
2072 static inline void *inline_data_addr(struct page *page)
2073 {
2074         struct f2fs_inode *ri = F2FS_INODE(page);
2075
2076         return (void *)&(ri->i_addr[1]);
2077 }
2078
2079 static inline int f2fs_has_inline_dentry(struct inode *inode)
2080 {
2081         return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2082 }
2083
2084 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2085 {
2086         if (!f2fs_has_inline_dentry(dir))
2087                 kunmap(page);
2088 }
2089
2090 static inline int is_file(struct inode *inode, int type)
2091 {
2092         return F2FS_I(inode)->i_advise & type;
2093 }
2094
2095 static inline void set_file(struct inode *inode, int type)
2096 {
2097         F2FS_I(inode)->i_advise |= type;
2098         f2fs_mark_inode_dirty_sync(inode, true);
2099 }
2100
2101 static inline void clear_file(struct inode *inode, int type)
2102 {
2103         F2FS_I(inode)->i_advise &= ~type;
2104         f2fs_mark_inode_dirty_sync(inode, true);
2105 }
2106
2107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2108 {
2109         if (dsync) {
2110                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2111                 bool ret;
2112
2113                 spin_lock(&sbi->inode_lock[DIRTY_META]);
2114                 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2115                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2116                 return ret;
2117         }
2118         if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2119                         file_keep_isize(inode) ||
2120                         i_size_read(inode) & PAGE_MASK)
2121                 return false;
2122         return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2123 }
2124
2125 static inline int f2fs_readonly(struct super_block *sb)
2126 {
2127         return sb->s_flags & MS_RDONLY;
2128 }
2129
2130 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2131 {
2132         return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2133 }
2134
2135 static inline bool is_dot_dotdot(const struct qstr *str)
2136 {
2137         if (str->len == 1 && str->name[0] == '.')
2138                 return true;
2139
2140         if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2141                 return true;
2142
2143         return false;
2144 }
2145
2146 static inline bool f2fs_may_extent_tree(struct inode *inode)
2147 {
2148         if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2149                         is_inode_flag_set(inode, FI_NO_EXTENT))
2150                 return false;
2151
2152         return S_ISREG(inode->i_mode);
2153 }
2154
2155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2156                                         size_t size, gfp_t flags)
2157 {
2158 #ifdef CONFIG_F2FS_FAULT_INJECTION
2159         if (time_to_inject(sbi, FAULT_KMALLOC)) {
2160                 f2fs_show_injection_info(FAULT_KMALLOC);
2161                 return NULL;
2162         }
2163 #endif
2164         return kmalloc(size, flags);
2165 }
2166
2167 #define get_inode_mode(i) \
2168         ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2169          (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2170
2171 /*
2172  * file.c
2173  */
2174 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2175 void truncate_data_blocks(struct dnode_of_data *dn);
2176 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2177 int f2fs_truncate(struct inode *inode);
2178 int f2fs_getattr(const struct path *path, struct kstat *stat,
2179                         u32 request_mask, unsigned int flags);
2180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2181 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2182 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2183 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2184 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2185
2186 /*
2187  * inode.c
2188  */
2189 void f2fs_set_inode_flags(struct inode *inode);
2190 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2191 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2192 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2193 int update_inode(struct inode *inode, struct page *node_page);
2194 int update_inode_page(struct inode *inode);
2195 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2196 void f2fs_evict_inode(struct inode *inode);
2197 void handle_failed_inode(struct inode *inode);
2198
2199 /*
2200  * namei.c
2201  */
2202 struct dentry *f2fs_get_parent(struct dentry *child);
2203
2204 /*
2205  * dir.c
2206  */
2207 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2208 unsigned char get_de_type(struct f2fs_dir_entry *de);
2209 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2210                         f2fs_hash_t namehash, int *max_slots,
2211                         struct f2fs_dentry_ptr *d);
2212 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2213                         unsigned int start_pos, struct fscrypt_str *fstr);
2214 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2215                         struct f2fs_dentry_ptr *d);
2216 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2217                         const struct qstr *new_name,
2218                         const struct qstr *orig_name, struct page *dpage);
2219 void update_parent_metadata(struct inode *dir, struct inode *inode,
2220                         unsigned int current_depth);
2221 int room_for_filename(const void *bitmap, int slots, int max_slots);
2222 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2223 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2224                         struct fscrypt_name *fname, struct page **res_page);
2225 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2226                         const struct qstr *child, struct page **res_page);
2227 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2228 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2229                         struct page **page);
2230 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2231                         struct page *page, struct inode *inode);
2232 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2233                         const struct qstr *name, f2fs_hash_t name_hash,
2234                         unsigned int bit_pos);
2235 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2236                         const struct qstr *orig_name,
2237                         struct inode *inode, nid_t ino, umode_t mode);
2238 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2239                         struct inode *inode, nid_t ino, umode_t mode);
2240 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2241                         struct inode *inode, nid_t ino, umode_t mode);
2242 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2243                         struct inode *dir, struct inode *inode);
2244 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2245 bool f2fs_empty_dir(struct inode *dir);
2246
2247 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2248 {
2249         return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2250                                 inode, inode->i_ino, inode->i_mode);
2251 }
2252
2253 /*
2254  * super.c
2255  */
2256 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2257 void f2fs_inode_synced(struct inode *inode);
2258 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2259 int f2fs_sync_fs(struct super_block *sb, int sync);
2260 extern __printf(3, 4)
2261 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2262 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2263
2264 /*
2265  * hash.c
2266  */
2267 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2268                                 struct fscrypt_name *fname);
2269
2270 /*
2271  * node.c
2272  */
2273 struct dnode_of_data;
2274 struct node_info;
2275
2276 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2277 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2278 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2279 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2281 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2282 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2283 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2284 int truncate_xattr_node(struct inode *inode, struct page *page);
2285 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2286 int remove_inode_page(struct inode *inode);
2287 struct page *new_inode_page(struct inode *inode);
2288 struct page *new_node_page(struct dnode_of_data *dn,
2289                         unsigned int ofs, struct page *ipage);
2290 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2291 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2292 struct page *get_node_page_ra(struct page *parent, int start);
2293 void move_node_page(struct page *node_page, int gc_type);
2294 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2295                         struct writeback_control *wbc, bool atomic);
2296 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2297 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2298 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2299 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2300 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2301 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2302 void recover_inline_xattr(struct inode *inode, struct page *page);
2303 int recover_xattr_data(struct inode *inode, struct page *page,
2304                         block_t blkaddr);
2305 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2306 int restore_node_summary(struct f2fs_sb_info *sbi,
2307                         unsigned int segno, struct f2fs_summary_block *sum);
2308 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2309 int build_node_manager(struct f2fs_sb_info *sbi);
2310 void destroy_node_manager(struct f2fs_sb_info *sbi);
2311 int __init create_node_manager_caches(void);
2312 void destroy_node_manager_caches(void);
2313
2314 /*
2315  * segment.c
2316  */
2317 void register_inmem_page(struct inode *inode, struct page *page);
2318 void drop_inmem_pages(struct inode *inode);
2319 void drop_inmem_page(struct inode *inode, struct page *page);
2320 int commit_inmem_pages(struct inode *inode);
2321 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2322 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2323 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2324 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2325 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2326 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2327 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2328 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2329 void stop_discard_thread(struct f2fs_sb_info *sbi);
2330 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2331 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2332 void release_discard_addrs(struct f2fs_sb_info *sbi);
2333 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2334 void allocate_new_segments(struct f2fs_sb_info *sbi);
2335 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2336 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2337 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2338 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2339 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2340 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2341 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2342 int rewrite_data_page(struct f2fs_io_info *fio);
2343 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2344                         block_t old_blkaddr, block_t new_blkaddr,
2345                         bool recover_curseg, bool recover_newaddr);
2346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2347                         block_t old_addr, block_t new_addr,
2348                         unsigned char version, bool recover_curseg,
2349                         bool recover_newaddr);
2350 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2351                         block_t old_blkaddr, block_t *new_blkaddr,
2352                         struct f2fs_summary *sum, int type,
2353                         struct f2fs_io_info *fio, bool add_list);
2354 void f2fs_wait_on_page_writeback(struct page *page,
2355                         enum page_type type, bool ordered);
2356 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2357                         block_t blkaddr);
2358 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2359 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2360 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2361                         unsigned int val, int alloc);
2362 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2363 int build_segment_manager(struct f2fs_sb_info *sbi);
2364 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2365 int __init create_segment_manager_caches(void);
2366 void destroy_segment_manager_caches(void);
2367
2368 /*
2369  * checkpoint.c
2370  */
2371 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2372 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2373 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2374 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2375 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2376 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2377                         int type, bool sync);
2378 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2379 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2380                         long nr_to_write);
2381 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2382 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2383 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2384 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2385 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2386 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2387 void release_orphan_inode(struct f2fs_sb_info *sbi);
2388 void add_orphan_inode(struct inode *inode);
2389 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2390 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2391 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2392 void update_dirty_page(struct inode *inode, struct page *page);
2393 void remove_dirty_inode(struct inode *inode);
2394 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2395 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2396 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2397 int __init create_checkpoint_caches(void);
2398 void destroy_checkpoint_caches(void);
2399
2400 /*
2401  * data.c
2402  */
2403 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2404 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2405                                 struct inode *inode, nid_t ino, pgoff_t idx,
2406                                 enum page_type type);
2407 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2408 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2409 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2410 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2411                         block_t blk_addr, struct bio *bio);
2412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2413 void set_data_blkaddr(struct dnode_of_data *dn);
2414 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2415 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2416 int reserve_new_block(struct dnode_of_data *dn);
2417 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2418 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2419 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2420 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2421                         int op_flags, bool for_write);
2422 struct page *find_data_page(struct inode *inode, pgoff_t index);
2423 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2424                         bool for_write);
2425 struct page *get_new_data_page(struct inode *inode,
2426                         struct page *ipage, pgoff_t index, bool new_i_size);
2427 int do_write_data_page(struct f2fs_io_info *fio);
2428 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2429                         int create, int flag);
2430 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2431                         u64 start, u64 len);
2432 void f2fs_set_page_dirty_nobuffers(struct page *page);
2433 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2434                         unsigned int length);
2435 int f2fs_release_page(struct page *page, gfp_t wait);
2436 #ifdef CONFIG_MIGRATION
2437 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2438                         struct page *page, enum migrate_mode mode);
2439 #endif
2440
2441 /*
2442  * gc.c
2443  */
2444 int start_gc_thread(struct f2fs_sb_info *sbi);
2445 void stop_gc_thread(struct f2fs_sb_info *sbi);
2446 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2447 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2448                         unsigned int segno);
2449 void build_gc_manager(struct f2fs_sb_info *sbi);
2450
2451 /*
2452  * recovery.c
2453  */
2454 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2455 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2456
2457 /*
2458  * debug.c
2459  */
2460 #ifdef CONFIG_F2FS_STAT_FS
2461 struct f2fs_stat_info {
2462         struct list_head stat_list;
2463         struct f2fs_sb_info *sbi;
2464         int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2465         int main_area_segs, main_area_sections, main_area_zones;
2466         unsigned long long hit_largest, hit_cached, hit_rbtree;
2467         unsigned long long hit_total, total_ext;
2468         int ext_tree, zombie_tree, ext_node;
2469         int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2470         int inmem_pages;
2471         unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2472         int nats, dirty_nats, sits, dirty_sits;
2473         int free_nids, avail_nids, alloc_nids;
2474         int total_count, utilization;
2475         int bg_gc, nr_wb_cp_data, nr_wb_data;
2476         int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2477         int nr_discard_cmd;
2478         unsigned int undiscard_blks;
2479         int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2480         int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2481         unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2482         unsigned int bimodal, avg_vblocks;
2483         int util_free, util_valid, util_invalid;
2484         int rsvd_segs, overp_segs;
2485         int dirty_count, node_pages, meta_pages;
2486         int prefree_count, call_count, cp_count, bg_cp_count;
2487         int tot_segs, node_segs, data_segs, free_segs, free_secs;
2488         int bg_node_segs, bg_data_segs;
2489         int tot_blks, data_blks, node_blks;
2490         int bg_data_blks, bg_node_blks;
2491         int curseg[NR_CURSEG_TYPE];
2492         int cursec[NR_CURSEG_TYPE];
2493         int curzone[NR_CURSEG_TYPE];
2494
2495         unsigned int segment_count[2];
2496         unsigned int block_count[2];
2497         unsigned int inplace_count;
2498         unsigned long long base_mem, cache_mem, page_mem;
2499 };
2500
2501 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2502 {
2503         return (struct f2fs_stat_info *)sbi->stat_info;
2504 }
2505
2506 #define stat_inc_cp_count(si)           ((si)->cp_count++)
2507 #define stat_inc_bg_cp_count(si)        ((si)->bg_cp_count++)
2508 #define stat_inc_call_count(si)         ((si)->call_count++)
2509 #define stat_inc_bggc_count(sbi)        ((sbi)->bg_gc++)
2510 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2511 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2512 #define stat_inc_total_hit(sbi)         (atomic64_inc(&(sbi)->total_hit_ext))
2513 #define stat_inc_rbtree_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_rbtree))
2514 #define stat_inc_largest_node_hit(sbi)  (atomic64_inc(&(sbi)->read_hit_largest))
2515 #define stat_inc_cached_node_hit(sbi)   (atomic64_inc(&(sbi)->read_hit_cached))
2516 #define stat_inc_inline_xattr(inode)                                    \
2517         do {                                                            \
2518                 if (f2fs_has_inline_xattr(inode))                       \
2519                         (atomic_inc(&F2FS_I_SB(inode)->inline_xattr));  \
2520         } while (0)
2521 #define stat_dec_inline_xattr(inode)                                    \
2522         do {                                                            \
2523                 if (f2fs_has_inline_xattr(inode))                       \
2524                         (atomic_dec(&F2FS_I_SB(inode)->inline_xattr));  \
2525         } while (0)
2526 #define stat_inc_inline_inode(inode)                                    \
2527         do {                                                            \
2528                 if (f2fs_has_inline_data(inode))                        \
2529                         (atomic_inc(&F2FS_I_SB(inode)->inline_inode));  \
2530         } while (0)
2531 #define stat_dec_inline_inode(inode)                                    \
2532         do {                                                            \
2533                 if (f2fs_has_inline_data(inode))                        \
2534                         (atomic_dec(&F2FS_I_SB(inode)->inline_inode));  \
2535         } while (0)
2536 #define stat_inc_inline_dir(inode)                                      \
2537         do {                                                            \
2538                 if (f2fs_has_inline_dentry(inode))                      \
2539                         (atomic_inc(&F2FS_I_SB(inode)->inline_dir));    \
2540         } while (0)
2541 #define stat_dec_inline_dir(inode)                                      \
2542         do {                                                            \
2543                 if (f2fs_has_inline_dentry(inode))                      \
2544                         (atomic_dec(&F2FS_I_SB(inode)->inline_dir));    \
2545         } while (0)
2546 #define stat_inc_seg_type(sbi, curseg)                                  \
2547                 ((sbi)->segment_count[(curseg)->alloc_type]++)
2548 #define stat_inc_block_count(sbi, curseg)                               \
2549                 ((sbi)->block_count[(curseg)->alloc_type]++)
2550 #define stat_inc_inplace_blocks(sbi)                                    \
2551                 (atomic_inc(&(sbi)->inplace_count))
2552 #define stat_inc_atomic_write(inode)                                    \
2553                 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2554 #define stat_dec_atomic_write(inode)                                    \
2555                 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2556 #define stat_update_max_atomic_write(inode)                             \
2557         do {                                                            \
2558                 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);       \
2559                 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);   \
2560                 if (cur > max)                                          \
2561                         atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2562         } while (0)
2563 #define stat_inc_volatile_write(inode)                                  \
2564                 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2565 #define stat_dec_volatile_write(inode)                                  \
2566                 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2567 #define stat_update_max_volatile_write(inode)                           \
2568         do {                                                            \
2569                 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);       \
2570                 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);   \
2571                 if (cur > max)                                          \
2572                         atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2573         } while (0)
2574 #define stat_inc_seg_count(sbi, type, gc_type)                          \
2575         do {                                                            \
2576                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2577                 si->tot_segs++;                                         \
2578                 if ((type) == SUM_TYPE_DATA) {                          \
2579                         si->data_segs++;                                \
2580                         si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2581                 } else {                                                \
2582                         si->node_segs++;                                \
2583                         si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2584                 }                                                       \
2585         } while (0)
2586
2587 #define stat_inc_tot_blk_count(si, blks)                                \
2588         ((si)->tot_blks += (blks))
2589
2590 #define stat_inc_data_blk_count(sbi, blks, gc_type)                     \
2591         do {                                                            \
2592                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2593                 stat_inc_tot_blk_count(si, blks);                       \
2594                 si->data_blks += (blks);                                \
2595                 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
2596         } while (0)
2597
2598 #define stat_inc_node_blk_count(sbi, blks, gc_type)                     \
2599         do {                                                            \
2600                 struct f2fs_stat_info *si = F2FS_STAT(sbi);             \
2601                 stat_inc_tot_blk_count(si, blks);                       \
2602                 si->node_blks += (blks);                                \
2603                 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;  \
2604         } while (0)
2605
2606 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2607 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2608 int __init f2fs_create_root_stats(void);
2609 void f2fs_destroy_root_stats(void);
2610 #else
2611 #define stat_inc_cp_count(si)                           do { } while (0)
2612 #define stat_inc_bg_cp_count(si)                        do { } while (0)
2613 #define stat_inc_call_count(si)                         do { } while (0)
2614 #define stat_inc_bggc_count(si)                         do { } while (0)
2615 #define stat_inc_dirty_inode(sbi, type)                 do { } while (0)
2616 #define stat_dec_dirty_inode(sbi, type)                 do { } while (0)
2617 #define stat_inc_total_hit(sb)                          do { } while (0)
2618 #define stat_inc_rbtree_node_hit(sb)                    do { } while (0)
2619 #define stat_inc_largest_node_hit(sbi)                  do { } while (0)
2620 #define stat_inc_cached_node_hit(sbi)                   do { } while (0)
2621 #define stat_inc_inline_xattr(inode)                    do { } while (0)
2622 #define stat_dec_inline_xattr(inode)                    do { } while (0)
2623 #define stat_inc_inline_inode(inode)                    do { } while (0)
2624 #define stat_dec_inline_inode(inode)                    do { } while (0)
2625 #define stat_inc_inline_dir(inode)                      do { } while (0)
2626 #define stat_dec_inline_dir(inode)                      do { } while (0)
2627 #define stat_inc_atomic_write(inode)                    do { } while (0)
2628 #define stat_dec_atomic_write(inode)                    do { } while (0)
2629 #define stat_update_max_atomic_write(inode)             do { } while (0)
2630 #define stat_inc_volatile_write(inode)                  do { } while (0)
2631 #define stat_dec_volatile_write(inode)                  do { } while (0)
2632 #define stat_update_max_volatile_write(inode)           do { } while (0)
2633 #define stat_inc_seg_type(sbi, curseg)                  do { } while (0)
2634 #define stat_inc_block_count(sbi, curseg)               do { } while (0)
2635 #define stat_inc_inplace_blocks(sbi)                    do { } while (0)
2636 #define stat_inc_seg_count(sbi, type, gc_type)          do { } while (0)
2637 #define stat_inc_tot_blk_count(si, blks)                do { } while (0)
2638 #define stat_inc_data_blk_count(sbi, blks, gc_type)     do { } while (0)
2639 #define stat_inc_node_blk_count(sbi, blks, gc_type)     do { } while (0)
2640
2641 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2642 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2643 static inline int __init f2fs_create_root_stats(void) { return 0; }
2644 static inline void f2fs_destroy_root_stats(void) { }
2645 #endif
2646
2647 extern const struct file_operations f2fs_dir_operations;
2648 extern const struct file_operations f2fs_file_operations;
2649 extern const struct inode_operations f2fs_file_inode_operations;
2650 extern const struct address_space_operations f2fs_dblock_aops;
2651 extern const struct address_space_operations f2fs_node_aops;
2652 extern const struct address_space_operations f2fs_meta_aops;
2653 extern const struct inode_operations f2fs_dir_inode_operations;
2654 extern const struct inode_operations f2fs_symlink_inode_operations;
2655 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2656 extern const struct inode_operations f2fs_special_inode_operations;
2657 extern struct kmem_cache *inode_entry_slab;
2658
2659 /*
2660  * inline.c
2661  */
2662 bool f2fs_may_inline_data(struct inode *inode);
2663 bool f2fs_may_inline_dentry(struct inode *inode);
2664 void read_inline_data(struct page *page, struct page *ipage);
2665 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2666 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2667 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2668 int f2fs_convert_inline_inode(struct inode *inode);
2669 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2670 bool recover_inline_data(struct inode *inode, struct page *npage);
2671 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2672                         struct fscrypt_name *fname, struct page **res_page);
2673 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2674                         struct page *ipage);
2675 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2676                         const struct qstr *orig_name,
2677                         struct inode *inode, nid_t ino, umode_t mode);
2678 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2679                         struct inode *dir, struct inode *inode);
2680 bool f2fs_empty_inline_dir(struct inode *dir);
2681 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2682                         struct fscrypt_str *fstr);
2683 int f2fs_inline_data_fiemap(struct inode *inode,
2684                         struct fiemap_extent_info *fieinfo,
2685                         __u64 start, __u64 len);
2686
2687 /*
2688  * shrinker.c
2689  */
2690 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2691                         struct shrink_control *sc);
2692 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2693                         struct shrink_control *sc);
2694 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2695 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2696
2697 /*
2698  * extent_cache.c
2699  */
2700 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2701                                 struct rb_entry *cached_re, unsigned int ofs);
2702 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2703                                 struct rb_root *root, struct rb_node **parent,
2704                                 unsigned int ofs);
2705 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2706                 struct rb_entry *cached_re, unsigned int ofs,
2707                 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2708                 struct rb_node ***insert_p, struct rb_node **insert_parent,
2709                 bool force);
2710 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2711                                                 struct rb_root *root);
2712 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2713 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2714 void f2fs_drop_extent_tree(struct inode *inode);
2715 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2716 void f2fs_destroy_extent_tree(struct inode *inode);
2717 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2718                         struct extent_info *ei);
2719 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2721                         pgoff_t fofs, block_t blkaddr, unsigned int len);
2722 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2723 int __init create_extent_cache(void);
2724 void destroy_extent_cache(void);
2725
2726 /*
2727  * sysfs.c
2728  */
2729 int __init f2fs_register_sysfs(void);
2730 void f2fs_unregister_sysfs(void);
2731 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2732 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2733
2734 /*
2735  * crypto support
2736  */
2737 static inline bool f2fs_encrypted_inode(struct inode *inode)
2738 {
2739         return file_is_encrypt(inode);
2740 }
2741
2742 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2743 {
2744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2745         file_set_encrypt(inode);
2746 #endif
2747 }
2748
2749 static inline bool f2fs_bio_encrypted(struct bio *bio)
2750 {
2751         return bio->bi_private != NULL;
2752 }
2753
2754 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2755 {
2756         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2757 }
2758
2759 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2760 {
2761         return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2762 }
2763
2764 #ifdef CONFIG_BLK_DEV_ZONED
2765 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2766                         struct block_device *bdev, block_t blkaddr)
2767 {
2768         unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2769         int i;
2770
2771         for (i = 0; i < sbi->s_ndevs; i++)
2772                 if (FDEV(i).bdev == bdev)
2773                         return FDEV(i).blkz_type[zno];
2774         return -EINVAL;
2775 }
2776 #endif
2777
2778 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2779 {
2780         struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2781
2782         return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2783 }
2784
2785 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2786 {
2787         clear_opt(sbi, ADAPTIVE);
2788         clear_opt(sbi, LFS);
2789
2790         switch (mt) {
2791         case F2FS_MOUNT_ADAPTIVE:
2792                 set_opt(sbi, ADAPTIVE);
2793                 break;
2794         case F2FS_MOUNT_LFS:
2795                 set_opt(sbi, LFS);
2796                 break;
2797         }
2798 }
2799
2800 static inline bool f2fs_may_encrypt(struct inode *inode)
2801 {
2802 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2803         umode_t mode = inode->i_mode;
2804
2805         return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2806 #else
2807         return 0;
2808 #endif
2809 }
2810
2811 #endif