]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/gc.c
Merge remote-tracking branch 'jc_docs/docs-next'
[karo-tx-linux.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28         struct f2fs_sb_info *sbi = data;
29         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31         long wait_ms;
32
33         wait_ms = gc_th->min_sleep_time;
34
35         do {
36                 if (try_to_freeze())
37                         continue;
38                 else
39                         wait_event_interruptible_timeout(*wq,
40                                                 kthread_should_stop(),
41                                                 msecs_to_jiffies(wait_ms));
42                 if (kthread_should_stop())
43                         break;
44
45                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46                         increase_sleep_time(gc_th, &wait_ms);
47                         continue;
48                 }
49
50                 /*
51                  * [GC triggering condition]
52                  * 0. GC is not conducted currently.
53                  * 1. There are enough dirty segments.
54                  * 2. IO subsystem is idle by checking the # of writeback pages.
55                  * 3. IO subsystem is idle by checking the # of requests in
56                  *    bdev's request list.
57                  *
58                  * Note) We have to avoid triggering GCs frequently.
59                  * Because it is possible that some segments can be
60                  * invalidated soon after by user update or deletion.
61                  * So, I'd like to wait some time to collect dirty segments.
62                  */
63                 if (!mutex_trylock(&sbi->gc_mutex))
64                         continue;
65
66                 if (!is_idle(sbi)) {
67                         increase_sleep_time(gc_th, &wait_ms);
68                         mutex_unlock(&sbi->gc_mutex);
69                         continue;
70                 }
71
72                 if (has_enough_invalid_blocks(sbi))
73                         decrease_sleep_time(gc_th, &wait_ms);
74                 else
75                         increase_sleep_time(gc_th, &wait_ms);
76
77                 stat_inc_bggc_count(sbi);
78
79                 /* if return value is not zero, no victim was selected */
80                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
81                         wait_ms = gc_th->no_gc_sleep_time;
82
83                 trace_f2fs_background_gc(sbi->sb, wait_ms,
84                                 prefree_segments(sbi), free_segments(sbi));
85
86                 /* balancing f2fs's metadata periodically */
87                 f2fs_balance_fs_bg(sbi);
88
89         } while (!kthread_should_stop());
90         return 0;
91 }
92
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95         struct f2fs_gc_kthread *gc_th;
96         dev_t dev = sbi->sb->s_bdev->bd_dev;
97         int err = 0;
98
99         gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100         if (!gc_th) {
101                 err = -ENOMEM;
102                 goto out;
103         }
104
105         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108
109         gc_th->gc_idle = 0;
110
111         sbi->gc_thread = gc_th;
112         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115         if (IS_ERR(gc_th->f2fs_gc_task)) {
116                 err = PTR_ERR(gc_th->f2fs_gc_task);
117                 kfree(gc_th);
118                 sbi->gc_thread = NULL;
119         }
120 out:
121         return err;
122 }
123
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127         if (!gc_th)
128                 return;
129         kthread_stop(gc_th->f2fs_gc_task);
130         kfree(gc_th);
131         sbi->gc_thread = NULL;
132 }
133
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137
138         if (gc_th && gc_th->gc_idle) {
139                 if (gc_th->gc_idle == 1)
140                         gc_mode = GC_CB;
141                 else if (gc_th->gc_idle == 2)
142                         gc_mode = GC_GREEDY;
143         }
144         return gc_mode;
145 }
146
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148                         int type, struct victim_sel_policy *p)
149 {
150         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151
152         if (p->alloc_mode == SSR) {
153                 p->gc_mode = GC_GREEDY;
154                 p->dirty_segmap = dirty_i->dirty_segmap[type];
155                 p->max_search = dirty_i->nr_dirty[type];
156                 p->ofs_unit = 1;
157         } else {
158                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160                 p->max_search = dirty_i->nr_dirty[DIRTY];
161                 p->ofs_unit = sbi->segs_per_sec;
162         }
163
164         if (p->max_search > sbi->max_victim_search)
165                 p->max_search = sbi->max_victim_search;
166
167         p->offset = sbi->last_victim[p->gc_mode];
168 }
169
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171                                 struct victim_sel_policy *p)
172 {
173         /* SSR allocates in a segment unit */
174         if (p->alloc_mode == SSR)
175                 return sbi->blocks_per_seg;
176         if (p->gc_mode == GC_GREEDY)
177                 return sbi->blocks_per_seg * p->ofs_unit;
178         else if (p->gc_mode == GC_CB)
179                 return UINT_MAX;
180         else /* No other gc_mode */
181                 return 0;
182 }
183
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187         unsigned int secno;
188
189         /*
190          * If the gc_type is FG_GC, we can select victim segments
191          * selected by background GC before.
192          * Those segments guarantee they have small valid blocks.
193          */
194         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195                 if (sec_usage_check(sbi, secno))
196                         continue;
197                 clear_bit(secno, dirty_i->victim_secmap);
198                 return secno * sbi->segs_per_sec;
199         }
200         return NULL_SEGNO;
201 }
202
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205         struct sit_info *sit_i = SIT_I(sbi);
206         unsigned int secno = GET_SECNO(sbi, segno);
207         unsigned int start = secno * sbi->segs_per_sec;
208         unsigned long long mtime = 0;
209         unsigned int vblocks;
210         unsigned char age = 0;
211         unsigned char u;
212         unsigned int i;
213
214         for (i = 0; i < sbi->segs_per_sec; i++)
215                 mtime += get_seg_entry(sbi, start + i)->mtime;
216         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217
218         mtime = div_u64(mtime, sbi->segs_per_sec);
219         vblocks = div_u64(vblocks, sbi->segs_per_sec);
220
221         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222
223         /* Handle if the system time has changed by the user */
224         if (mtime < sit_i->min_mtime)
225                 sit_i->min_mtime = mtime;
226         if (mtime > sit_i->max_mtime)
227                 sit_i->max_mtime = mtime;
228         if (sit_i->max_mtime != sit_i->min_mtime)
229                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230                                 sit_i->max_mtime - sit_i->min_mtime);
231
232         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236                         unsigned int segno, struct victim_sel_policy *p)
237 {
238         if (p->alloc_mode == SSR)
239                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240
241         /* alloc_mode == LFS */
242         if (p->gc_mode == GC_GREEDY)
243                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244         else
245                 return get_cb_cost(sbi, segno);
246 }
247
248 static unsigned int count_bits(const unsigned long *addr,
249                                 unsigned int offset, unsigned int len)
250 {
251         unsigned int end = offset + len, sum = 0;
252
253         while (offset < end) {
254                 if (test_bit(offset++, addr))
255                         ++sum;
256         }
257         return sum;
258 }
259
260 /*
261  * This function is called from two paths.
262  * One is garbage collection and the other is SSR segment selection.
263  * When it is called during GC, it just gets a victim segment
264  * and it does not remove it from dirty seglist.
265  * When it is called from SSR segment selection, it finds a segment
266  * which has minimum valid blocks and removes it from dirty seglist.
267  */
268 static int get_victim_by_default(struct f2fs_sb_info *sbi,
269                 unsigned int *result, int gc_type, int type, char alloc_mode)
270 {
271         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
272         struct victim_sel_policy p;
273         unsigned int secno, max_cost;
274         unsigned int last_segment = MAIN_SEGS(sbi);
275         unsigned int nsearched = 0;
276
277         mutex_lock(&dirty_i->seglist_lock);
278
279         p.alloc_mode = alloc_mode;
280         select_policy(sbi, gc_type, type, &p);
281
282         p.min_segno = NULL_SEGNO;
283         p.min_cost = max_cost = get_max_cost(sbi, &p);
284
285         if (p.max_search == 0)
286                 goto out;
287
288         if (p.alloc_mode == LFS && gc_type == FG_GC) {
289                 p.min_segno = check_bg_victims(sbi);
290                 if (p.min_segno != NULL_SEGNO)
291                         goto got_it;
292         }
293
294         while (1) {
295                 unsigned long cost;
296                 unsigned int segno;
297
298                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
299                 if (segno >= last_segment) {
300                         if (sbi->last_victim[p.gc_mode]) {
301                                 last_segment = sbi->last_victim[p.gc_mode];
302                                 sbi->last_victim[p.gc_mode] = 0;
303                                 p.offset = 0;
304                                 continue;
305                         }
306                         break;
307                 }
308
309                 p.offset = segno + p.ofs_unit;
310                 if (p.ofs_unit > 1) {
311                         p.offset -= segno % p.ofs_unit;
312                         nsearched += count_bits(p.dirty_segmap,
313                                                 p.offset - p.ofs_unit,
314                                                 p.ofs_unit);
315                 } else {
316                         nsearched++;
317                 }
318
319
320                 secno = GET_SECNO(sbi, segno);
321
322                 if (sec_usage_check(sbi, secno))
323                         goto next;
324                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
325                         goto next;
326
327                 cost = get_gc_cost(sbi, segno, &p);
328
329                 if (p.min_cost > cost) {
330                         p.min_segno = segno;
331                         p.min_cost = cost;
332                 }
333 next:
334                 if (nsearched >= p.max_search) {
335                         sbi->last_victim[p.gc_mode] = segno;
336                         break;
337                 }
338         }
339         if (p.min_segno != NULL_SEGNO) {
340 got_it:
341                 if (p.alloc_mode == LFS) {
342                         secno = GET_SECNO(sbi, p.min_segno);
343                         if (gc_type == FG_GC)
344                                 sbi->cur_victim_sec = secno;
345                         else
346                                 set_bit(secno, dirty_i->victim_secmap);
347                 }
348                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
349
350                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
351                                 sbi->cur_victim_sec,
352                                 prefree_segments(sbi), free_segments(sbi));
353         }
354 out:
355         mutex_unlock(&dirty_i->seglist_lock);
356
357         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
358 }
359
360 static const struct victim_selection default_v_ops = {
361         .get_victim = get_victim_by_default,
362 };
363
364 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
365 {
366         struct inode_entry *ie;
367
368         ie = radix_tree_lookup(&gc_list->iroot, ino);
369         if (ie)
370                 return ie->inode;
371         return NULL;
372 }
373
374 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
375 {
376         struct inode_entry *new_ie;
377
378         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
379                 iput(inode);
380                 return;
381         }
382         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
383         new_ie->inode = inode;
384
385         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
386         list_add_tail(&new_ie->list, &gc_list->ilist);
387 }
388
389 static void put_gc_inode(struct gc_inode_list *gc_list)
390 {
391         struct inode_entry *ie, *next_ie;
392         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
393                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
394                 iput(ie->inode);
395                 list_del(&ie->list);
396                 kmem_cache_free(inode_entry_slab, ie);
397         }
398 }
399
400 static int check_valid_map(struct f2fs_sb_info *sbi,
401                                 unsigned int segno, int offset)
402 {
403         struct sit_info *sit_i = SIT_I(sbi);
404         struct seg_entry *sentry;
405         int ret;
406
407         mutex_lock(&sit_i->sentry_lock);
408         sentry = get_seg_entry(sbi, segno);
409         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
410         mutex_unlock(&sit_i->sentry_lock);
411         return ret;
412 }
413
414 /*
415  * This function compares node address got in summary with that in NAT.
416  * On validity, copy that node with cold status, otherwise (invalid node)
417  * ignore that.
418  */
419 static void gc_node_segment(struct f2fs_sb_info *sbi,
420                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
421 {
422         bool initial = true;
423         struct f2fs_summary *entry;
424         block_t start_addr;
425         int off;
426
427         start_addr = START_BLOCK(sbi, segno);
428
429 next_step:
430         entry = sum;
431
432         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
433                 nid_t nid = le32_to_cpu(entry->nid);
434                 struct page *node_page;
435                 struct node_info ni;
436
437                 /* stop BG_GC if there is not enough free sections. */
438                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
439                         return;
440
441                 if (check_valid_map(sbi, segno, off) == 0)
442                         continue;
443
444                 if (initial) {
445                         ra_node_page(sbi, nid);
446                         continue;
447                 }
448                 node_page = get_node_page(sbi, nid);
449                 if (IS_ERR(node_page))
450                         continue;
451
452                 /* block may become invalid during get_node_page */
453                 if (check_valid_map(sbi, segno, off) == 0) {
454                         f2fs_put_page(node_page, 1);
455                         continue;
456                 }
457
458                 get_node_info(sbi, nid, &ni);
459                 if (ni.blk_addr != start_addr + off) {
460                         f2fs_put_page(node_page, 1);
461                         continue;
462                 }
463
464                 /* set page dirty and write it */
465                 if (gc_type == FG_GC) {
466                         f2fs_wait_on_page_writeback(node_page, NODE, true);
467                         set_page_dirty(node_page);
468                 } else {
469                         if (!PageWriteback(node_page))
470                                 set_page_dirty(node_page);
471                 }
472                 f2fs_put_page(node_page, 1);
473                 stat_inc_node_blk_count(sbi, 1, gc_type);
474         }
475
476         if (initial) {
477                 initial = false;
478                 goto next_step;
479         }
480 }
481
482 /*
483  * Calculate start block index indicating the given node offset.
484  * Be careful, caller should give this node offset only indicating direct node
485  * blocks. If any node offsets, which point the other types of node blocks such
486  * as indirect or double indirect node blocks, are given, it must be a caller's
487  * bug.
488  */
489 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
490 {
491         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
492         unsigned int bidx;
493
494         if (node_ofs == 0)
495                 return 0;
496
497         if (node_ofs <= 2) {
498                 bidx = node_ofs - 1;
499         } else if (node_ofs <= indirect_blks) {
500                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
501                 bidx = node_ofs - 2 - dec;
502         } else {
503                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
504                 bidx = node_ofs - 5 - dec;
505         }
506         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
507 }
508
509 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
510                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
511 {
512         struct page *node_page;
513         nid_t nid;
514         unsigned int ofs_in_node;
515         block_t source_blkaddr;
516
517         nid = le32_to_cpu(sum->nid);
518         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
519
520         node_page = get_node_page(sbi, nid);
521         if (IS_ERR(node_page))
522                 return false;
523
524         get_node_info(sbi, nid, dni);
525
526         if (sum->version != dni->version) {
527                 f2fs_put_page(node_page, 1);
528                 return false;
529         }
530
531         *nofs = ofs_of_node(node_page);
532         source_blkaddr = datablock_addr(node_page, ofs_in_node);
533         f2fs_put_page(node_page, 1);
534
535         if (source_blkaddr != blkaddr)
536                 return false;
537         return true;
538 }
539
540 static void move_encrypted_block(struct inode *inode, block_t bidx)
541 {
542         struct f2fs_io_info fio = {
543                 .sbi = F2FS_I_SB(inode),
544                 .type = DATA,
545                 .rw = READ_SYNC,
546                 .encrypted_page = NULL,
547         };
548         struct dnode_of_data dn;
549         struct f2fs_summary sum;
550         struct node_info ni;
551         struct page *page;
552         int err;
553
554         /* do not read out */
555         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
556         if (!page)
557                 return;
558
559         set_new_dnode(&dn, inode, NULL, NULL, 0);
560         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
561         if (err)
562                 goto out;
563
564         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
565                 ClearPageUptodate(page);
566                 goto put_out;
567         }
568
569         /*
570          * don't cache encrypted data into meta inode until previous dirty
571          * data were writebacked to avoid racing between GC and flush.
572          */
573         f2fs_wait_on_page_writeback(page, DATA, true);
574
575         get_node_info(fio.sbi, dn.nid, &ni);
576         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
577
578         /* read page */
579         fio.page = page;
580         fio.blk_addr = dn.data_blkaddr;
581
582         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi),
583                                         fio.blk_addr,
584                                         FGP_LOCK|FGP_CREAT,
585                                         GFP_NOFS);
586         if (!fio.encrypted_page)
587                 goto put_out;
588
589         err = f2fs_submit_page_bio(&fio);
590         if (err)
591                 goto put_page_out;
592
593         /* write page */
594         lock_page(fio.encrypted_page);
595
596         if (unlikely(!PageUptodate(fio.encrypted_page)))
597                 goto put_page_out;
598         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi)))
599                 goto put_page_out;
600
601         set_page_dirty(fio.encrypted_page);
602         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
603         if (clear_page_dirty_for_io(fio.encrypted_page))
604                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
605
606         set_page_writeback(fio.encrypted_page);
607
608         /* allocate block address */
609         f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
610         allocate_data_block(fio.sbi, NULL, fio.blk_addr,
611                                         &fio.blk_addr, &sum, CURSEG_COLD_DATA);
612         fio.rw = WRITE_SYNC;
613         f2fs_submit_page_mbio(&fio);
614
615         dn.data_blkaddr = fio.blk_addr;
616         set_data_blkaddr(&dn);
617         f2fs_update_extent_cache(&dn);
618         set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
619         if (page->index == 0)
620                 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
621 put_page_out:
622         f2fs_put_page(fio.encrypted_page, 1);
623 put_out:
624         f2fs_put_dnode(&dn);
625 out:
626         f2fs_put_page(page, 1);
627 }
628
629 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
630 {
631         struct page *page;
632
633         page = get_lock_data_page(inode, bidx, true);
634         if (IS_ERR(page))
635                 return;
636
637         if (gc_type == BG_GC) {
638                 if (PageWriteback(page))
639                         goto out;
640                 set_page_dirty(page);
641                 set_cold_data(page);
642         } else {
643                 struct f2fs_io_info fio = {
644                         .sbi = F2FS_I_SB(inode),
645                         .type = DATA,
646                         .rw = WRITE_SYNC,
647                         .page = page,
648                         .encrypted_page = NULL,
649                 };
650                 set_page_dirty(page);
651                 f2fs_wait_on_page_writeback(page, DATA, true);
652                 if (clear_page_dirty_for_io(page))
653                         inode_dec_dirty_pages(inode);
654                 set_cold_data(page);
655                 do_write_data_page(&fio);
656                 clear_cold_data(page);
657         }
658 out:
659         f2fs_put_page(page, 1);
660 }
661
662 /*
663  * This function tries to get parent node of victim data block, and identifies
664  * data block validity. If the block is valid, copy that with cold status and
665  * modify parent node.
666  * If the parent node is not valid or the data block address is different,
667  * the victim data block is ignored.
668  */
669 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
670                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
671 {
672         struct super_block *sb = sbi->sb;
673         struct f2fs_summary *entry;
674         block_t start_addr;
675         int off;
676         int phase = 0;
677
678         start_addr = START_BLOCK(sbi, segno);
679
680 next_step:
681         entry = sum;
682
683         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
684                 struct page *data_page;
685                 struct inode *inode;
686                 struct node_info dni; /* dnode info for the data */
687                 unsigned int ofs_in_node, nofs;
688                 block_t start_bidx;
689
690                 /* stop BG_GC if there is not enough free sections. */
691                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
692                         return;
693
694                 if (check_valid_map(sbi, segno, off) == 0)
695                         continue;
696
697                 if (phase == 0) {
698                         ra_node_page(sbi, le32_to_cpu(entry->nid));
699                         continue;
700                 }
701
702                 /* Get an inode by ino with checking validity */
703                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
704                         continue;
705
706                 if (phase == 1) {
707                         ra_node_page(sbi, dni.ino);
708                         continue;
709                 }
710
711                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
712
713                 if (phase == 2) {
714                         inode = f2fs_iget(sb, dni.ino);
715                         if (IS_ERR(inode) || is_bad_inode(inode))
716                                 continue;
717
718                         /* if encrypted inode, let's go phase 3 */
719                         if (f2fs_encrypted_inode(inode) &&
720                                                 S_ISREG(inode->i_mode)) {
721                                 add_gc_inode(gc_list, inode);
722                                 continue;
723                         }
724
725                         start_bidx = start_bidx_of_node(nofs, inode);
726                         data_page = get_read_data_page(inode,
727                                         start_bidx + ofs_in_node, READA, true);
728                         if (IS_ERR(data_page)) {
729                                 iput(inode);
730                                 continue;
731                         }
732
733                         f2fs_put_page(data_page, 0);
734                         add_gc_inode(gc_list, inode);
735                         continue;
736                 }
737
738                 /* phase 3 */
739                 inode = find_gc_inode(gc_list, dni.ino);
740                 if (inode) {
741                         start_bidx = start_bidx_of_node(nofs, inode)
742                                                                 + ofs_in_node;
743                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
744                                 move_encrypted_block(inode, start_bidx);
745                         else
746                                 move_data_page(inode, start_bidx, gc_type);
747                         stat_inc_data_blk_count(sbi, 1, gc_type);
748                 }
749         }
750
751         if (++phase < 4)
752                 goto next_step;
753 }
754
755 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
756                         int gc_type)
757 {
758         struct sit_info *sit_i = SIT_I(sbi);
759         int ret;
760
761         mutex_lock(&sit_i->sentry_lock);
762         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
763                                               NO_CHECK_TYPE, LFS);
764         mutex_unlock(&sit_i->sentry_lock);
765         return ret;
766 }
767
768 static int do_garbage_collect(struct f2fs_sb_info *sbi,
769                                 unsigned int start_segno,
770                                 struct gc_inode_list *gc_list, int gc_type)
771 {
772         struct page *sum_page;
773         struct f2fs_summary_block *sum;
774         struct blk_plug plug;
775         unsigned int segno = start_segno;
776         unsigned int end_segno = start_segno + sbi->segs_per_sec;
777         int seg_freed = 0;
778         unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
779                                                 SUM_TYPE_DATA : SUM_TYPE_NODE;
780
781         /* readahead multi ssa blocks those have contiguous address */
782         if (sbi->segs_per_sec > 1)
783                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
784                                         sbi->segs_per_sec, META_SSA, true);
785
786         /* reference all summary page */
787         while (segno < end_segno) {
788                 sum_page = get_sum_page(sbi, segno++);
789                 unlock_page(sum_page);
790         }
791
792         blk_start_plug(&plug);
793
794         for (segno = start_segno; segno < end_segno; segno++) {
795                 /* find segment summary of victim */
796                 sum_page = find_get_page(META_MAPPING(sbi),
797                                         GET_SUM_BLOCK(sbi, segno));
798                 f2fs_bug_on(sbi, !PageUptodate(sum_page));
799                 f2fs_put_page(sum_page, 0);
800
801                 sum = page_address(sum_page);
802                 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
803
804                 /*
805                  * this is to avoid deadlock:
806                  * - lock_page(sum_page)         - f2fs_replace_block
807                  *  - check_valid_map()            - mutex_lock(sentry_lock)
808                  *   - mutex_lock(sentry_lock)     - change_curseg()
809                  *                                  - lock_page(sum_page)
810                  */
811
812                 if (type == SUM_TYPE_NODE)
813                         gc_node_segment(sbi, sum->entries, segno, gc_type);
814                 else
815                         gc_data_segment(sbi, sum->entries, gc_list, segno,
816                                                                 gc_type);
817
818                 stat_inc_seg_count(sbi, type, gc_type);
819                 stat_inc_call_count(sbi->stat_info);
820
821                 f2fs_put_page(sum_page, 0);
822         }
823
824         if (gc_type == FG_GC) {
825                 if (type == SUM_TYPE_NODE) {
826                         struct writeback_control wbc = {
827                                 .sync_mode = WB_SYNC_ALL,
828                                 .nr_to_write = LONG_MAX,
829                                 .for_reclaim = 0,
830                         };
831                         sync_node_pages(sbi, 0, &wbc);
832                 } else {
833                         f2fs_submit_merged_bio(sbi, DATA, WRITE);
834                 }
835         }
836
837         blk_finish_plug(&plug);
838
839         if (gc_type == FG_GC) {
840                 while (start_segno < end_segno)
841                         if (get_valid_blocks(sbi, start_segno++, 1) == 0)
842                                 seg_freed++;
843         }
844         return seg_freed;
845 }
846
847 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
848 {
849         unsigned int segno;
850         int gc_type = sync ? FG_GC : BG_GC;
851         int sec_freed = 0, seg_freed;
852         int ret = -EINVAL;
853         struct cp_control cpc;
854         struct gc_inode_list gc_list = {
855                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
856                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
857         };
858
859         cpc.reason = __get_cp_reason(sbi);
860 gc_more:
861         segno = NULL_SEGNO;
862
863         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
864                 goto stop;
865         if (unlikely(f2fs_cp_error(sbi))) {
866                 ret = -EIO;
867                 goto stop;
868         }
869
870         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
871                 gc_type = FG_GC;
872                 /*
873                  * If there is no victim and no prefree segment but still not
874                  * enough free sections, we should flush dent/node blocks and do
875                  * garbage collections.
876                  */
877                 if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
878                         write_checkpoint(sbi, &cpc);
879                 else if (has_not_enough_free_secs(sbi, 0))
880                         write_checkpoint(sbi, &cpc);
881         }
882
883         if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
884                 goto stop;
885         ret = 0;
886
887         seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
888
889         if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
890                 sec_freed++;
891
892         if (gc_type == FG_GC)
893                 sbi->cur_victim_sec = NULL_SEGNO;
894
895         if (!sync) {
896                 if (has_not_enough_free_secs(sbi, sec_freed))
897                         goto gc_more;
898
899                 if (gc_type == FG_GC)
900                         write_checkpoint(sbi, &cpc);
901         }
902 stop:
903         mutex_unlock(&sbi->gc_mutex);
904
905         put_gc_inode(&gc_list);
906
907         if (sync)
908                 ret = sec_freed ? 0 : -EAGAIN;
909         return ret;
910 }
911
912 void build_gc_manager(struct f2fs_sb_info *sbi)
913 {
914         DIRTY_I(sbi)->v_ops = &default_v_ops;
915 }