]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/gc.c
usb: chipidea: udc: remove unused value assignment
[karo-tx-linux.git] / fs / f2fs / gc.c
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28         struct f2fs_sb_info *sbi = data;
29         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30         wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31         long wait_ms;
32
33         wait_ms = gc_th->min_sleep_time;
34
35         do {
36                 if (try_to_freeze())
37                         continue;
38                 else
39                         wait_event_interruptible_timeout(*wq,
40                                                 kthread_should_stop(),
41                                                 msecs_to_jiffies(wait_ms));
42                 if (kthread_should_stop())
43                         break;
44
45                 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46                         increase_sleep_time(gc_th, &wait_ms);
47                         continue;
48                 }
49
50                 /*
51                  * [GC triggering condition]
52                  * 0. GC is not conducted currently.
53                  * 1. There are enough dirty segments.
54                  * 2. IO subsystem is idle by checking the # of writeback pages.
55                  * 3. IO subsystem is idle by checking the # of requests in
56                  *    bdev's request list.
57                  *
58                  * Note) We have to avoid triggering GCs frequently.
59                  * Because it is possible that some segments can be
60                  * invalidated soon after by user update or deletion.
61                  * So, I'd like to wait some time to collect dirty segments.
62                  */
63                 if (!mutex_trylock(&sbi->gc_mutex))
64                         continue;
65
66                 if (!is_idle(sbi)) {
67                         increase_sleep_time(gc_th, &wait_ms);
68                         mutex_unlock(&sbi->gc_mutex);
69                         continue;
70                 }
71
72                 if (has_enough_invalid_blocks(sbi))
73                         decrease_sleep_time(gc_th, &wait_ms);
74                 else
75                         increase_sleep_time(gc_th, &wait_ms);
76
77                 stat_inc_bggc_count(sbi);
78
79                 /* if return value is not zero, no victim was selected */
80                 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
81                         wait_ms = gc_th->no_gc_sleep_time;
82
83                 trace_f2fs_background_gc(sbi->sb, wait_ms,
84                                 prefree_segments(sbi), free_segments(sbi));
85
86                 /* balancing f2fs's metadata periodically */
87                 f2fs_balance_fs_bg(sbi);
88
89         } while (!kthread_should_stop());
90         return 0;
91 }
92
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95         struct f2fs_gc_kthread *gc_th;
96         dev_t dev = sbi->sb->s_bdev->bd_dev;
97         int err = 0;
98
99         gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100         if (!gc_th) {
101                 err = -ENOMEM;
102                 goto out;
103         }
104
105         gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106         gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107         gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108
109         gc_th->gc_idle = 0;
110
111         sbi->gc_thread = gc_th;
112         init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113         sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114                         "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115         if (IS_ERR(gc_th->f2fs_gc_task)) {
116                 err = PTR_ERR(gc_th->f2fs_gc_task);
117                 kfree(gc_th);
118                 sbi->gc_thread = NULL;
119         }
120 out:
121         return err;
122 }
123
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126         struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127         if (!gc_th)
128                 return;
129         kthread_stop(gc_th->f2fs_gc_task);
130         kfree(gc_th);
131         sbi->gc_thread = NULL;
132 }
133
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136         int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137
138         if (gc_th && gc_th->gc_idle) {
139                 if (gc_th->gc_idle == 1)
140                         gc_mode = GC_CB;
141                 else if (gc_th->gc_idle == 2)
142                         gc_mode = GC_GREEDY;
143         }
144         return gc_mode;
145 }
146
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148                         int type, struct victim_sel_policy *p)
149 {
150         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151
152         if (p->alloc_mode == SSR) {
153                 p->gc_mode = GC_GREEDY;
154                 p->dirty_segmap = dirty_i->dirty_segmap[type];
155                 p->max_search = dirty_i->nr_dirty[type];
156                 p->ofs_unit = 1;
157         } else {
158                 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159                 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160                 p->max_search = dirty_i->nr_dirty[DIRTY];
161                 p->ofs_unit = sbi->segs_per_sec;
162         }
163
164         if (p->max_search > sbi->max_victim_search)
165                 p->max_search = sbi->max_victim_search;
166
167         p->offset = sbi->last_victim[p->gc_mode];
168 }
169
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171                                 struct victim_sel_policy *p)
172 {
173         /* SSR allocates in a segment unit */
174         if (p->alloc_mode == SSR)
175                 return sbi->blocks_per_seg;
176         if (p->gc_mode == GC_GREEDY)
177                 return sbi->blocks_per_seg * p->ofs_unit;
178         else if (p->gc_mode == GC_CB)
179                 return UINT_MAX;
180         else /* No other gc_mode */
181                 return 0;
182 }
183
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187         unsigned int secno;
188
189         /*
190          * If the gc_type is FG_GC, we can select victim segments
191          * selected by background GC before.
192          * Those segments guarantee they have small valid blocks.
193          */
194         for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195                 if (sec_usage_check(sbi, secno))
196                         continue;
197                 clear_bit(secno, dirty_i->victim_secmap);
198                 return secno * sbi->segs_per_sec;
199         }
200         return NULL_SEGNO;
201 }
202
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205         struct sit_info *sit_i = SIT_I(sbi);
206         unsigned int secno = GET_SECNO(sbi, segno);
207         unsigned int start = secno * sbi->segs_per_sec;
208         unsigned long long mtime = 0;
209         unsigned int vblocks;
210         unsigned char age = 0;
211         unsigned char u;
212         unsigned int i;
213
214         for (i = 0; i < sbi->segs_per_sec; i++)
215                 mtime += get_seg_entry(sbi, start + i)->mtime;
216         vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217
218         mtime = div_u64(mtime, sbi->segs_per_sec);
219         vblocks = div_u64(vblocks, sbi->segs_per_sec);
220
221         u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222
223         /* Handle if the system time has changed by the user */
224         if (mtime < sit_i->min_mtime)
225                 sit_i->min_mtime = mtime;
226         if (mtime > sit_i->max_mtime)
227                 sit_i->max_mtime = mtime;
228         if (sit_i->max_mtime != sit_i->min_mtime)
229                 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230                                 sit_i->max_mtime - sit_i->min_mtime);
231
232         return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236                         unsigned int segno, struct victim_sel_policy *p)
237 {
238         if (p->alloc_mode == SSR)
239                 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240
241         /* alloc_mode == LFS */
242         if (p->gc_mode == GC_GREEDY)
243                 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244         else
245                 return get_cb_cost(sbi, segno);
246 }
247
248 /*
249  * This function is called from two paths.
250  * One is garbage collection and the other is SSR segment selection.
251  * When it is called during GC, it just gets a victim segment
252  * and it does not remove it from dirty seglist.
253  * When it is called from SSR segment selection, it finds a segment
254  * which has minimum valid blocks and removes it from dirty seglist.
255  */
256 static int get_victim_by_default(struct f2fs_sb_info *sbi,
257                 unsigned int *result, int gc_type, int type, char alloc_mode)
258 {
259         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
260         struct victim_sel_policy p;
261         unsigned int secno, max_cost;
262         unsigned int last_segment = MAIN_SEGS(sbi);
263         int nsearched = 0;
264
265         mutex_lock(&dirty_i->seglist_lock);
266
267         p.alloc_mode = alloc_mode;
268         select_policy(sbi, gc_type, type, &p);
269
270         p.min_segno = NULL_SEGNO;
271         p.min_cost = max_cost = get_max_cost(sbi, &p);
272
273         if (p.max_search == 0)
274                 goto out;
275
276         if (p.alloc_mode == LFS && gc_type == FG_GC) {
277                 p.min_segno = check_bg_victims(sbi);
278                 if (p.min_segno != NULL_SEGNO)
279                         goto got_it;
280         }
281
282         while (1) {
283                 unsigned long cost;
284                 unsigned int segno;
285
286                 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
287                 if (segno >= last_segment) {
288                         if (sbi->last_victim[p.gc_mode]) {
289                                 last_segment = sbi->last_victim[p.gc_mode];
290                                 sbi->last_victim[p.gc_mode] = 0;
291                                 p.offset = 0;
292                                 continue;
293                         }
294                         break;
295                 }
296
297                 p.offset = segno + p.ofs_unit;
298                 if (p.ofs_unit > 1)
299                         p.offset -= segno % p.ofs_unit;
300
301                 secno = GET_SECNO(sbi, segno);
302
303                 if (sec_usage_check(sbi, secno))
304                         continue;
305                 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
306                         continue;
307
308                 cost = get_gc_cost(sbi, segno, &p);
309
310                 if (p.min_cost > cost) {
311                         p.min_segno = segno;
312                         p.min_cost = cost;
313                 } else if (unlikely(cost == max_cost)) {
314                         continue;
315                 }
316
317                 if (nsearched++ >= p.max_search) {
318                         sbi->last_victim[p.gc_mode] = segno;
319                         break;
320                 }
321         }
322         if (p.min_segno != NULL_SEGNO) {
323 got_it:
324                 if (p.alloc_mode == LFS) {
325                         secno = GET_SECNO(sbi, p.min_segno);
326                         if (gc_type == FG_GC)
327                                 sbi->cur_victim_sec = secno;
328                         else
329                                 set_bit(secno, dirty_i->victim_secmap);
330                 }
331                 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
332
333                 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
334                                 sbi->cur_victim_sec,
335                                 prefree_segments(sbi), free_segments(sbi));
336         }
337 out:
338         mutex_unlock(&dirty_i->seglist_lock);
339
340         return (p.min_segno == NULL_SEGNO) ? 0 : 1;
341 }
342
343 static const struct victim_selection default_v_ops = {
344         .get_victim = get_victim_by_default,
345 };
346
347 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
348 {
349         struct inode_entry *ie;
350
351         ie = radix_tree_lookup(&gc_list->iroot, ino);
352         if (ie)
353                 return ie->inode;
354         return NULL;
355 }
356
357 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
358 {
359         struct inode_entry *new_ie;
360
361         if (inode == find_gc_inode(gc_list, inode->i_ino)) {
362                 iput(inode);
363                 return;
364         }
365         new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
366         new_ie->inode = inode;
367
368         f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
369         list_add_tail(&new_ie->list, &gc_list->ilist);
370 }
371
372 static void put_gc_inode(struct gc_inode_list *gc_list)
373 {
374         struct inode_entry *ie, *next_ie;
375         list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
376                 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
377                 iput(ie->inode);
378                 list_del(&ie->list);
379                 kmem_cache_free(inode_entry_slab, ie);
380         }
381 }
382
383 static int check_valid_map(struct f2fs_sb_info *sbi,
384                                 unsigned int segno, int offset)
385 {
386         struct sit_info *sit_i = SIT_I(sbi);
387         struct seg_entry *sentry;
388         int ret;
389
390         mutex_lock(&sit_i->sentry_lock);
391         sentry = get_seg_entry(sbi, segno);
392         ret = f2fs_test_bit(offset, sentry->cur_valid_map);
393         mutex_unlock(&sit_i->sentry_lock);
394         return ret;
395 }
396
397 /*
398  * This function compares node address got in summary with that in NAT.
399  * On validity, copy that node with cold status, otherwise (invalid node)
400  * ignore that.
401  */
402 static int gc_node_segment(struct f2fs_sb_info *sbi,
403                 struct f2fs_summary *sum, unsigned int segno, int gc_type)
404 {
405         bool initial = true;
406         struct f2fs_summary *entry;
407         block_t start_addr;
408         int off;
409
410         start_addr = START_BLOCK(sbi, segno);
411
412 next_step:
413         entry = sum;
414
415         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
416                 nid_t nid = le32_to_cpu(entry->nid);
417                 struct page *node_page;
418                 struct node_info ni;
419
420                 /* stop BG_GC if there is not enough free sections. */
421                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
422                         return 0;
423
424                 if (check_valid_map(sbi, segno, off) == 0)
425                         continue;
426
427                 if (initial) {
428                         ra_node_page(sbi, nid);
429                         continue;
430                 }
431                 node_page = get_node_page(sbi, nid);
432                 if (IS_ERR(node_page))
433                         continue;
434
435                 /* block may become invalid during get_node_page */
436                 if (check_valid_map(sbi, segno, off) == 0) {
437                         f2fs_put_page(node_page, 1);
438                         continue;
439                 }
440
441                 get_node_info(sbi, nid, &ni);
442                 if (ni.blk_addr != start_addr + off) {
443                         f2fs_put_page(node_page, 1);
444                         continue;
445                 }
446
447                 /* set page dirty and write it */
448                 if (gc_type == FG_GC) {
449                         f2fs_wait_on_page_writeback(node_page, NODE);
450                         set_page_dirty(node_page);
451                 } else {
452                         if (!PageWriteback(node_page))
453                                 set_page_dirty(node_page);
454                 }
455                 f2fs_put_page(node_page, 1);
456                 stat_inc_node_blk_count(sbi, 1, gc_type);
457         }
458
459         if (initial) {
460                 initial = false;
461                 goto next_step;
462         }
463
464         if (gc_type == FG_GC) {
465                 struct writeback_control wbc = {
466                         .sync_mode = WB_SYNC_ALL,
467                         .nr_to_write = LONG_MAX,
468                         .for_reclaim = 0,
469                 };
470                 sync_node_pages(sbi, 0, &wbc);
471
472                 /* return 1 only if FG_GC succefully reclaimed one */
473                 if (get_valid_blocks(sbi, segno, 1) == 0)
474                         return 1;
475         }
476         return 0;
477 }
478
479 /*
480  * Calculate start block index indicating the given node offset.
481  * Be careful, caller should give this node offset only indicating direct node
482  * blocks. If any node offsets, which point the other types of node blocks such
483  * as indirect or double indirect node blocks, are given, it must be a caller's
484  * bug.
485  */
486 block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
487 {
488         unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
489         unsigned int bidx;
490
491         if (node_ofs == 0)
492                 return 0;
493
494         if (node_ofs <= 2) {
495                 bidx = node_ofs - 1;
496         } else if (node_ofs <= indirect_blks) {
497                 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
498                 bidx = node_ofs - 2 - dec;
499         } else {
500                 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
501                 bidx = node_ofs - 5 - dec;
502         }
503         return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
504 }
505
506 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
507                 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
508 {
509         struct page *node_page;
510         nid_t nid;
511         unsigned int ofs_in_node;
512         block_t source_blkaddr;
513
514         nid = le32_to_cpu(sum->nid);
515         ofs_in_node = le16_to_cpu(sum->ofs_in_node);
516
517         node_page = get_node_page(sbi, nid);
518         if (IS_ERR(node_page))
519                 return false;
520
521         get_node_info(sbi, nid, dni);
522
523         if (sum->version != dni->version) {
524                 f2fs_put_page(node_page, 1);
525                 return false;
526         }
527
528         *nofs = ofs_of_node(node_page);
529         source_blkaddr = datablock_addr(node_page, ofs_in_node);
530         f2fs_put_page(node_page, 1);
531
532         if (source_blkaddr != blkaddr)
533                 return false;
534         return true;
535 }
536
537 static void move_encrypted_block(struct inode *inode, block_t bidx)
538 {
539         struct f2fs_io_info fio = {
540                 .sbi = F2FS_I_SB(inode),
541                 .type = DATA,
542                 .rw = READ_SYNC,
543                 .encrypted_page = NULL,
544         };
545         struct dnode_of_data dn;
546         struct f2fs_summary sum;
547         struct node_info ni;
548         struct page *page;
549         int err;
550
551         /* do not read out */
552         page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
553         if (!page)
554                 return;
555
556         set_new_dnode(&dn, inode, NULL, NULL, 0);
557         err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
558         if (err)
559                 goto out;
560
561         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
562                 ClearPageUptodate(page);
563                 goto put_out;
564         }
565
566         /*
567          * don't cache encrypted data into meta inode until previous dirty
568          * data were writebacked to avoid racing between GC and flush.
569          */
570         f2fs_wait_on_page_writeback(page, DATA);
571
572         get_node_info(fio.sbi, dn.nid, &ni);
573         set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
574
575         /* read page */
576         fio.page = page;
577         fio.blk_addr = dn.data_blkaddr;
578
579         fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi),
580                                         fio.blk_addr,
581                                         FGP_LOCK|FGP_CREAT,
582                                         GFP_NOFS);
583         if (!fio.encrypted_page)
584                 goto put_out;
585
586         err = f2fs_submit_page_bio(&fio);
587         if (err)
588                 goto put_page_out;
589
590         /* write page */
591         lock_page(fio.encrypted_page);
592
593         if (unlikely(!PageUptodate(fio.encrypted_page)))
594                 goto put_page_out;
595         if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi)))
596                 goto put_page_out;
597
598         set_page_dirty(fio.encrypted_page);
599         f2fs_wait_on_page_writeback(fio.encrypted_page, DATA);
600         if (clear_page_dirty_for_io(fio.encrypted_page))
601                 dec_page_count(fio.sbi, F2FS_DIRTY_META);
602
603         set_page_writeback(fio.encrypted_page);
604
605         /* allocate block address */
606         f2fs_wait_on_page_writeback(dn.node_page, NODE);
607         allocate_data_block(fio.sbi, NULL, fio.blk_addr,
608                                         &fio.blk_addr, &sum, CURSEG_COLD_DATA);
609         fio.rw = WRITE_SYNC;
610         f2fs_submit_page_mbio(&fio);
611
612         dn.data_blkaddr = fio.blk_addr;
613         set_data_blkaddr(&dn);
614         f2fs_update_extent_cache(&dn);
615         set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
616         if (page->index == 0)
617                 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
618 put_page_out:
619         f2fs_put_page(fio.encrypted_page, 1);
620 put_out:
621         f2fs_put_dnode(&dn);
622 out:
623         f2fs_put_page(page, 1);
624 }
625
626 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
627 {
628         struct page *page;
629
630         page = get_lock_data_page(inode, bidx, true);
631         if (IS_ERR(page))
632                 return;
633
634         if (gc_type == BG_GC) {
635                 if (PageWriteback(page))
636                         goto out;
637                 set_page_dirty(page);
638                 set_cold_data(page);
639         } else {
640                 struct f2fs_io_info fio = {
641                         .sbi = F2FS_I_SB(inode),
642                         .type = DATA,
643                         .rw = WRITE_SYNC,
644                         .page = page,
645                         .encrypted_page = NULL,
646                 };
647                 set_page_dirty(page);
648                 f2fs_wait_on_page_writeback(page, DATA);
649                 if (clear_page_dirty_for_io(page))
650                         inode_dec_dirty_pages(inode);
651                 set_cold_data(page);
652                 do_write_data_page(&fio);
653                 clear_cold_data(page);
654         }
655 out:
656         f2fs_put_page(page, 1);
657 }
658
659 /*
660  * This function tries to get parent node of victim data block, and identifies
661  * data block validity. If the block is valid, copy that with cold status and
662  * modify parent node.
663  * If the parent node is not valid or the data block address is different,
664  * the victim data block is ignored.
665  */
666 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
667                 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
668 {
669         struct super_block *sb = sbi->sb;
670         struct f2fs_summary *entry;
671         block_t start_addr;
672         int off;
673         int phase = 0;
674
675         start_addr = START_BLOCK(sbi, segno);
676
677 next_step:
678         entry = sum;
679
680         for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
681                 struct page *data_page;
682                 struct inode *inode;
683                 struct node_info dni; /* dnode info for the data */
684                 unsigned int ofs_in_node, nofs;
685                 block_t start_bidx;
686
687                 /* stop BG_GC if there is not enough free sections. */
688                 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
689                         return 0;
690
691                 if (check_valid_map(sbi, segno, off) == 0)
692                         continue;
693
694                 if (phase == 0) {
695                         ra_node_page(sbi, le32_to_cpu(entry->nid));
696                         continue;
697                 }
698
699                 /* Get an inode by ino with checking validity */
700                 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
701                         continue;
702
703                 if (phase == 1) {
704                         ra_node_page(sbi, dni.ino);
705                         continue;
706                 }
707
708                 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
709
710                 if (phase == 2) {
711                         inode = f2fs_iget(sb, dni.ino);
712                         if (IS_ERR(inode) || is_bad_inode(inode))
713                                 continue;
714
715                         /* if encrypted inode, let's go phase 3 */
716                         if (f2fs_encrypted_inode(inode) &&
717                                                 S_ISREG(inode->i_mode)) {
718                                 add_gc_inode(gc_list, inode);
719                                 continue;
720                         }
721
722                         start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
723                         data_page = get_read_data_page(inode,
724                                         start_bidx + ofs_in_node, READA, true);
725                         if (IS_ERR(data_page)) {
726                                 iput(inode);
727                                 continue;
728                         }
729
730                         f2fs_put_page(data_page, 0);
731                         add_gc_inode(gc_list, inode);
732                         continue;
733                 }
734
735                 /* phase 3 */
736                 inode = find_gc_inode(gc_list, dni.ino);
737                 if (inode) {
738                         start_bidx = start_bidx_of_node(nofs, F2FS_I(inode))
739                                                                 + ofs_in_node;
740                         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
741                                 move_encrypted_block(inode, start_bidx);
742                         else
743                                 move_data_page(inode, start_bidx, gc_type);
744                         stat_inc_data_blk_count(sbi, 1, gc_type);
745                 }
746         }
747
748         if (++phase < 4)
749                 goto next_step;
750
751         if (gc_type == FG_GC) {
752                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
753
754                 /* return 1 only if FG_GC succefully reclaimed one */
755                 if (get_valid_blocks(sbi, segno, 1) == 0)
756                         return 1;
757         }
758         return 0;
759 }
760
761 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
762                         int gc_type)
763 {
764         struct sit_info *sit_i = SIT_I(sbi);
765         int ret;
766
767         mutex_lock(&sit_i->sentry_lock);
768         ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
769                                               NO_CHECK_TYPE, LFS);
770         mutex_unlock(&sit_i->sentry_lock);
771         return ret;
772 }
773
774 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
775                                 struct gc_inode_list *gc_list, int gc_type)
776 {
777         struct page *sum_page;
778         struct f2fs_summary_block *sum;
779         struct blk_plug plug;
780         int nfree = 0;
781
782         /* read segment summary of victim */
783         sum_page = get_sum_page(sbi, segno);
784
785         blk_start_plug(&plug);
786
787         sum = page_address(sum_page);
788
789         /*
790          * this is to avoid deadlock:
791          * - lock_page(sum_page)         - f2fs_replace_block
792          *  - check_valid_map()            - mutex_lock(sentry_lock)
793          *   - mutex_lock(sentry_lock)     - change_curseg()
794          *                                  - lock_page(sum_page)
795          */
796         unlock_page(sum_page);
797
798         switch (GET_SUM_TYPE((&sum->footer))) {
799         case SUM_TYPE_NODE:
800                 nfree = gc_node_segment(sbi, sum->entries, segno, gc_type);
801                 break;
802         case SUM_TYPE_DATA:
803                 nfree = gc_data_segment(sbi, sum->entries, gc_list,
804                                                         segno, gc_type);
805                 break;
806         }
807         blk_finish_plug(&plug);
808
809         stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)), gc_type);
810         stat_inc_call_count(sbi->stat_info);
811
812         f2fs_put_page(sum_page, 0);
813         return nfree;
814 }
815
816 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
817 {
818         unsigned int segno, i;
819         int gc_type = sync ? FG_GC : BG_GC;
820         int sec_freed = 0;
821         int ret = -EINVAL;
822         struct cp_control cpc;
823         struct gc_inode_list gc_list = {
824                 .ilist = LIST_HEAD_INIT(gc_list.ilist),
825                 .iroot = RADIX_TREE_INIT(GFP_NOFS),
826         };
827
828         cpc.reason = __get_cp_reason(sbi);
829 gc_more:
830         segno = NULL_SEGNO;
831
832         if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
833                 goto stop;
834         if (unlikely(f2fs_cp_error(sbi))) {
835                 ret = -EIO;
836                 goto stop;
837         }
838
839         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
840                 gc_type = FG_GC;
841                 if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
842                         write_checkpoint(sbi, &cpc);
843         }
844
845         if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
846                 goto stop;
847         ret = 0;
848
849         /* readahead multi ssa blocks those have contiguous address */
850         if (sbi->segs_per_sec > 1)
851                 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
852                                                         META_SSA, true);
853
854         for (i = 0; i < sbi->segs_per_sec; i++) {
855                 /*
856                  * for FG_GC case, halt gcing left segments once failed one
857                  * of segments in selected section to avoid long latency.
858                  */
859                 if (!do_garbage_collect(sbi, segno + i, &gc_list, gc_type) &&
860                                 gc_type == FG_GC)
861                         break;
862         }
863
864         if (i == sbi->segs_per_sec && gc_type == FG_GC)
865                 sec_freed++;
866
867         if (gc_type == FG_GC)
868                 sbi->cur_victim_sec = NULL_SEGNO;
869
870         if (!sync) {
871                 if (has_not_enough_free_secs(sbi, sec_freed))
872                         goto gc_more;
873
874                 if (gc_type == FG_GC)
875                         write_checkpoint(sbi, &cpc);
876         }
877 stop:
878         mutex_unlock(&sbi->gc_mutex);
879
880         put_gc_inode(&gc_list);
881
882         if (sync)
883                 ret = sec_freed ? 0 : -EAGAIN;
884         return ret;
885 }
886
887 void build_gc_manager(struct f2fs_sb_info *sbi)
888 {
889         DIRTY_I(sbi)->v_ops = &default_v_ops;
890 }