]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
EDAC: Use edac_debugfs_remove_recursive() in edac_debugfs_exit()
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49                                                         PAGE_CACHE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_CACHE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55         } else if (type == DIRTY_DENTS) {
56                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57                         return false;
58                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60         } else if (type == INO_ENTRIES) {
61                 int i;
62
63                 for (i = 0; i <= UPDATE_INO; i++)
64                         mem_size += (sbi->im[i].ino_num *
65                                 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67         } else if (type == EXTENT_CACHE) {
68                 mem_size = (atomic_read(&sbi->total_ext_tree) *
69                                 sizeof(struct extent_tree) +
70                                 atomic_read(&sbi->total_ext_node) *
71                                 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73         } else {
74                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75                         return true;
76         }
77         return res;
78 }
79
80 static void clear_node_page_dirty(struct page *page)
81 {
82         struct address_space *mapping = page->mapping;
83         unsigned int long flags;
84
85         if (PageDirty(page)) {
86                 spin_lock_irqsave(&mapping->tree_lock, flags);
87                 radix_tree_tag_clear(&mapping->page_tree,
88                                 page_index(page),
89                                 PAGECACHE_TAG_DIRTY);
90                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92                 clear_page_dirty_for_io(page);
93                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94         }
95         ClearPageUptodate(page);
96 }
97
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100         pgoff_t index = current_nat_addr(sbi, nid);
101         return get_meta_page(sbi, index);
102 }
103
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106         struct page *src_page;
107         struct page *dst_page;
108         pgoff_t src_off;
109         pgoff_t dst_off;
110         void *src_addr;
111         void *dst_addr;
112         struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114         src_off = current_nat_addr(sbi, nid);
115         dst_off = next_nat_addr(sbi, src_off);
116
117         /* get current nat block page with lock */
118         src_page = get_meta_page(sbi, src_off);
119         dst_page = grab_meta_page(sbi, dst_off);
120         f2fs_bug_on(sbi, PageDirty(src_page));
121
122         src_addr = page_address(src_page);
123         dst_addr = page_address(dst_page);
124         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125         set_page_dirty(dst_page);
126         f2fs_put_page(src_page, 1);
127
128         set_to_next_nat(nm_i, nid);
129
130         return dst_page;
131 }
132
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135         return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139                 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146         list_del(&e->list);
147         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148         nm_i->nat_cnt--;
149         kmem_cache_free(nat_entry_slab, e);
150 }
151
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153                                                 struct nat_entry *ne)
154 {
155         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156         struct nat_entry_set *head;
157
158         if (get_nat_flag(ne, IS_DIRTY))
159                 return;
160
161         head = radix_tree_lookup(&nm_i->nat_set_root, set);
162         if (!head) {
163                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165                 INIT_LIST_HEAD(&head->entry_list);
166                 INIT_LIST_HEAD(&head->set_list);
167                 head->set = set;
168                 head->entry_cnt = 0;
169                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170         }
171         list_move_tail(&ne->list, &head->entry_list);
172         nm_i->dirty_nat_cnt++;
173         head->entry_cnt++;
174         set_nat_flag(ne, IS_DIRTY, true);
175 }
176
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178                                                 struct nat_entry *ne)
179 {
180         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181         struct nat_entry_set *head;
182
183         head = radix_tree_lookup(&nm_i->nat_set_root, set);
184         if (head) {
185                 list_move_tail(&ne->list, &nm_i->nat_entries);
186                 set_nat_flag(ne, IS_DIRTY, false);
187                 head->entry_cnt--;
188                 nm_i->dirty_nat_cnt--;
189         }
190 }
191
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196                                                         start, nr);
197 }
198
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201         struct f2fs_nm_info *nm_i = NM_I(sbi);
202         struct nat_entry *e;
203         bool need = false;
204
205         down_read(&nm_i->nat_tree_lock);
206         e = __lookup_nat_cache(nm_i, nid);
207         if (e) {
208                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
210                         need = true;
211         }
212         up_read(&nm_i->nat_tree_lock);
213         return need;
214 }
215
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218         struct f2fs_nm_info *nm_i = NM_I(sbi);
219         struct nat_entry *e;
220         bool is_cp = true;
221
222         down_read(&nm_i->nat_tree_lock);
223         e = __lookup_nat_cache(nm_i, nid);
224         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225                 is_cp = false;
226         up_read(&nm_i->nat_tree_lock);
227         return is_cp;
228 }
229
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232         struct f2fs_nm_info *nm_i = NM_I(sbi);
233         struct nat_entry *e;
234         bool need_update = true;
235
236         down_read(&nm_i->nat_tree_lock);
237         e = __lookup_nat_cache(nm_i, ino);
238         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239                         (get_nat_flag(e, IS_CHECKPOINTED) ||
240                          get_nat_flag(e, HAS_FSYNCED_INODE)))
241                 need_update = false;
242         up_read(&nm_i->nat_tree_lock);
243         return need_update;
244 }
245
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248         struct nat_entry *new;
249
250         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252         memset(new, 0, sizeof(struct nat_entry));
253         nat_set_nid(new, nid);
254         nat_reset_flag(new);
255         list_add_tail(&new->list, &nm_i->nat_entries);
256         nm_i->nat_cnt++;
257         return new;
258 }
259
260 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
261                                                 struct f2fs_nat_entry *ne)
262 {
263         struct nat_entry *e;
264
265         e = __lookup_nat_cache(nm_i, nid);
266         if (!e) {
267                 e = grab_nat_entry(nm_i, nid);
268                 node_info_from_raw_nat(&e->ni, ne);
269         }
270 }
271
272 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
273                         block_t new_blkaddr, bool fsync_done)
274 {
275         struct f2fs_nm_info *nm_i = NM_I(sbi);
276         struct nat_entry *e;
277
278         down_write(&nm_i->nat_tree_lock);
279         e = __lookup_nat_cache(nm_i, ni->nid);
280         if (!e) {
281                 e = grab_nat_entry(nm_i, ni->nid);
282                 copy_node_info(&e->ni, ni);
283                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
284         } else if (new_blkaddr == NEW_ADDR) {
285                 /*
286                  * when nid is reallocated,
287                  * previous nat entry can be remained in nat cache.
288                  * So, reinitialize it with new information.
289                  */
290                 copy_node_info(&e->ni, ni);
291                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
292         }
293
294         /* sanity check */
295         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
296         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
297                         new_blkaddr == NULL_ADDR);
298         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
299                         new_blkaddr == NEW_ADDR);
300         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
301                         nat_get_blkaddr(e) != NULL_ADDR &&
302                         new_blkaddr == NEW_ADDR);
303
304         /* increment version no as node is removed */
305         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
306                 unsigned char version = nat_get_version(e);
307                 nat_set_version(e, inc_node_version(version));
308
309                 /* in order to reuse the nid */
310                 if (nm_i->next_scan_nid > ni->nid)
311                         nm_i->next_scan_nid = ni->nid;
312         }
313
314         /* change address */
315         nat_set_blkaddr(e, new_blkaddr);
316         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
317                 set_nat_flag(e, IS_CHECKPOINTED, false);
318         __set_nat_cache_dirty(nm_i, e);
319
320         /* update fsync_mark if its inode nat entry is still alive */
321         if (ni->nid != ni->ino)
322                 e = __lookup_nat_cache(nm_i, ni->ino);
323         if (e) {
324                 if (fsync_done && ni->nid == ni->ino)
325                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
326                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
327         }
328         up_write(&nm_i->nat_tree_lock);
329 }
330
331 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
332 {
333         struct f2fs_nm_info *nm_i = NM_I(sbi);
334         int nr = nr_shrink;
335
336         if (!down_write_trylock(&nm_i->nat_tree_lock))
337                 return 0;
338
339         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
340                 struct nat_entry *ne;
341                 ne = list_first_entry(&nm_i->nat_entries,
342                                         struct nat_entry, list);
343                 __del_from_nat_cache(nm_i, ne);
344                 nr_shrink--;
345         }
346         up_write(&nm_i->nat_tree_lock);
347         return nr - nr_shrink;
348 }
349
350 /*
351  * This function always returns success
352  */
353 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
354 {
355         struct f2fs_nm_info *nm_i = NM_I(sbi);
356         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
357         struct f2fs_summary_block *sum = curseg->sum_blk;
358         nid_t start_nid = START_NID(nid);
359         struct f2fs_nat_block *nat_blk;
360         struct page *page = NULL;
361         struct f2fs_nat_entry ne;
362         struct nat_entry *e;
363         int i;
364
365         ni->nid = nid;
366
367         /* Check nat cache */
368         down_read(&nm_i->nat_tree_lock);
369         e = __lookup_nat_cache(nm_i, nid);
370         if (e) {
371                 ni->ino = nat_get_ino(e);
372                 ni->blk_addr = nat_get_blkaddr(e);
373                 ni->version = nat_get_version(e);
374         }
375         up_read(&nm_i->nat_tree_lock);
376         if (e)
377                 return;
378
379         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
380
381         down_write(&nm_i->nat_tree_lock);
382
383         /* Check current segment summary */
384         mutex_lock(&curseg->curseg_mutex);
385         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
386         if (i >= 0) {
387                 ne = nat_in_journal(sum, i);
388                 node_info_from_raw_nat(ni, &ne);
389         }
390         mutex_unlock(&curseg->curseg_mutex);
391         if (i >= 0)
392                 goto cache;
393
394         /* Fill node_info from nat page */
395         page = get_current_nat_page(sbi, start_nid);
396         nat_blk = (struct f2fs_nat_block *)page_address(page);
397         ne = nat_blk->entries[nid - start_nid];
398         node_info_from_raw_nat(ni, &ne);
399         f2fs_put_page(page, 1);
400 cache:
401         /* cache nat entry */
402         cache_nat_entry(NM_I(sbi), nid, &ne);
403         up_write(&nm_i->nat_tree_lock);
404 }
405
406 /*
407  * The maximum depth is four.
408  * Offset[0] will have raw inode offset.
409  */
410 static int get_node_path(struct f2fs_inode_info *fi, long block,
411                                 int offset[4], unsigned int noffset[4])
412 {
413         const long direct_index = ADDRS_PER_INODE(fi);
414         const long direct_blks = ADDRS_PER_BLOCK;
415         const long dptrs_per_blk = NIDS_PER_BLOCK;
416         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
417         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
418         int n = 0;
419         int level = 0;
420
421         noffset[0] = 0;
422
423         if (block < direct_index) {
424                 offset[n] = block;
425                 goto got;
426         }
427         block -= direct_index;
428         if (block < direct_blks) {
429                 offset[n++] = NODE_DIR1_BLOCK;
430                 noffset[n] = 1;
431                 offset[n] = block;
432                 level = 1;
433                 goto got;
434         }
435         block -= direct_blks;
436         if (block < direct_blks) {
437                 offset[n++] = NODE_DIR2_BLOCK;
438                 noffset[n] = 2;
439                 offset[n] = block;
440                 level = 1;
441                 goto got;
442         }
443         block -= direct_blks;
444         if (block < indirect_blks) {
445                 offset[n++] = NODE_IND1_BLOCK;
446                 noffset[n] = 3;
447                 offset[n++] = block / direct_blks;
448                 noffset[n] = 4 + offset[n - 1];
449                 offset[n] = block % direct_blks;
450                 level = 2;
451                 goto got;
452         }
453         block -= indirect_blks;
454         if (block < indirect_blks) {
455                 offset[n++] = NODE_IND2_BLOCK;
456                 noffset[n] = 4 + dptrs_per_blk;
457                 offset[n++] = block / direct_blks;
458                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
459                 offset[n] = block % direct_blks;
460                 level = 2;
461                 goto got;
462         }
463         block -= indirect_blks;
464         if (block < dindirect_blks) {
465                 offset[n++] = NODE_DIND_BLOCK;
466                 noffset[n] = 5 + (dptrs_per_blk * 2);
467                 offset[n++] = block / indirect_blks;
468                 noffset[n] = 6 + (dptrs_per_blk * 2) +
469                               offset[n - 1] * (dptrs_per_blk + 1);
470                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
471                 noffset[n] = 7 + (dptrs_per_blk * 2) +
472                               offset[n - 2] * (dptrs_per_blk + 1) +
473                               offset[n - 1];
474                 offset[n] = block % direct_blks;
475                 level = 3;
476                 goto got;
477         } else {
478                 BUG();
479         }
480 got:
481         return level;
482 }
483
484 /*
485  * Caller should call f2fs_put_dnode(dn).
486  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
487  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
488  * In the case of RDONLY_NODE, we don't need to care about mutex.
489  */
490 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
491 {
492         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
493         struct page *npage[4];
494         struct page *parent = NULL;
495         int offset[4];
496         unsigned int noffset[4];
497         nid_t nids[4];
498         int level, i;
499         int err = 0;
500
501         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
502
503         nids[0] = dn->inode->i_ino;
504         npage[0] = dn->inode_page;
505
506         if (!npage[0]) {
507                 npage[0] = get_node_page(sbi, nids[0]);
508                 if (IS_ERR(npage[0]))
509                         return PTR_ERR(npage[0]);
510         }
511
512         /* if inline_data is set, should not report any block indices */
513         if (f2fs_has_inline_data(dn->inode) && index) {
514                 err = -ENOENT;
515                 f2fs_put_page(npage[0], 1);
516                 goto release_out;
517         }
518
519         parent = npage[0];
520         if (level != 0)
521                 nids[1] = get_nid(parent, offset[0], true);
522         dn->inode_page = npage[0];
523         dn->inode_page_locked = true;
524
525         /* get indirect or direct nodes */
526         for (i = 1; i <= level; i++) {
527                 bool done = false;
528
529                 if (!nids[i] && mode == ALLOC_NODE) {
530                         /* alloc new node */
531                         if (!alloc_nid(sbi, &(nids[i]))) {
532                                 err = -ENOSPC;
533                                 goto release_pages;
534                         }
535
536                         dn->nid = nids[i];
537                         npage[i] = new_node_page(dn, noffset[i], NULL);
538                         if (IS_ERR(npage[i])) {
539                                 alloc_nid_failed(sbi, nids[i]);
540                                 err = PTR_ERR(npage[i]);
541                                 goto release_pages;
542                         }
543
544                         set_nid(parent, offset[i - 1], nids[i], i == 1);
545                         alloc_nid_done(sbi, nids[i]);
546                         done = true;
547                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
548                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
549                         if (IS_ERR(npage[i])) {
550                                 err = PTR_ERR(npage[i]);
551                                 goto release_pages;
552                         }
553                         done = true;
554                 }
555                 if (i == 1) {
556                         dn->inode_page_locked = false;
557                         unlock_page(parent);
558                 } else {
559                         f2fs_put_page(parent, 1);
560                 }
561
562                 if (!done) {
563                         npage[i] = get_node_page(sbi, nids[i]);
564                         if (IS_ERR(npage[i])) {
565                                 err = PTR_ERR(npage[i]);
566                                 f2fs_put_page(npage[0], 0);
567                                 goto release_out;
568                         }
569                 }
570                 if (i < level) {
571                         parent = npage[i];
572                         nids[i + 1] = get_nid(parent, offset[i], false);
573                 }
574         }
575         dn->nid = nids[level];
576         dn->ofs_in_node = offset[level];
577         dn->node_page = npage[level];
578         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
579         return 0;
580
581 release_pages:
582         f2fs_put_page(parent, 1);
583         if (i > 1)
584                 f2fs_put_page(npage[0], 0);
585 release_out:
586         dn->inode_page = NULL;
587         dn->node_page = NULL;
588         return err;
589 }
590
591 static void truncate_node(struct dnode_of_data *dn)
592 {
593         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
594         struct node_info ni;
595
596         get_node_info(sbi, dn->nid, &ni);
597         if (dn->inode->i_blocks == 0) {
598                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
599                 goto invalidate;
600         }
601         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
602
603         /* Deallocate node address */
604         invalidate_blocks(sbi, ni.blk_addr);
605         dec_valid_node_count(sbi, dn->inode);
606         set_node_addr(sbi, &ni, NULL_ADDR, false);
607
608         if (dn->nid == dn->inode->i_ino) {
609                 remove_orphan_inode(sbi, dn->nid);
610                 dec_valid_inode_count(sbi);
611         } else {
612                 sync_inode_page(dn);
613         }
614 invalidate:
615         clear_node_page_dirty(dn->node_page);
616         set_sbi_flag(sbi, SBI_IS_DIRTY);
617
618         f2fs_put_page(dn->node_page, 1);
619
620         invalidate_mapping_pages(NODE_MAPPING(sbi),
621                         dn->node_page->index, dn->node_page->index);
622
623         dn->node_page = NULL;
624         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
625 }
626
627 static int truncate_dnode(struct dnode_of_data *dn)
628 {
629         struct page *page;
630
631         if (dn->nid == 0)
632                 return 1;
633
634         /* get direct node */
635         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
636         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
637                 return 1;
638         else if (IS_ERR(page))
639                 return PTR_ERR(page);
640
641         /* Make dnode_of_data for parameter */
642         dn->node_page = page;
643         dn->ofs_in_node = 0;
644         truncate_data_blocks(dn);
645         truncate_node(dn);
646         return 1;
647 }
648
649 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
650                                                 int ofs, int depth)
651 {
652         struct dnode_of_data rdn = *dn;
653         struct page *page;
654         struct f2fs_node *rn;
655         nid_t child_nid;
656         unsigned int child_nofs;
657         int freed = 0;
658         int i, ret;
659
660         if (dn->nid == 0)
661                 return NIDS_PER_BLOCK + 1;
662
663         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
664
665         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
666         if (IS_ERR(page)) {
667                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
668                 return PTR_ERR(page);
669         }
670
671         rn = F2FS_NODE(page);
672         if (depth < 3) {
673                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
674                         child_nid = le32_to_cpu(rn->in.nid[i]);
675                         if (child_nid == 0)
676                                 continue;
677                         rdn.nid = child_nid;
678                         ret = truncate_dnode(&rdn);
679                         if (ret < 0)
680                                 goto out_err;
681                         if (set_nid(page, i, 0, false))
682                                 dn->node_changed = true;
683                 }
684         } else {
685                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
686                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
687                         child_nid = le32_to_cpu(rn->in.nid[i]);
688                         if (child_nid == 0) {
689                                 child_nofs += NIDS_PER_BLOCK + 1;
690                                 continue;
691                         }
692                         rdn.nid = child_nid;
693                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
694                         if (ret == (NIDS_PER_BLOCK + 1)) {
695                                 if (set_nid(page, i, 0, false))
696                                         dn->node_changed = true;
697                                 child_nofs += ret;
698                         } else if (ret < 0 && ret != -ENOENT) {
699                                 goto out_err;
700                         }
701                 }
702                 freed = child_nofs;
703         }
704
705         if (!ofs) {
706                 /* remove current indirect node */
707                 dn->node_page = page;
708                 truncate_node(dn);
709                 freed++;
710         } else {
711                 f2fs_put_page(page, 1);
712         }
713         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
714         return freed;
715
716 out_err:
717         f2fs_put_page(page, 1);
718         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
719         return ret;
720 }
721
722 static int truncate_partial_nodes(struct dnode_of_data *dn,
723                         struct f2fs_inode *ri, int *offset, int depth)
724 {
725         struct page *pages[2];
726         nid_t nid[3];
727         nid_t child_nid;
728         int err = 0;
729         int i;
730         int idx = depth - 2;
731
732         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
733         if (!nid[0])
734                 return 0;
735
736         /* get indirect nodes in the path */
737         for (i = 0; i < idx + 1; i++) {
738                 /* reference count'll be increased */
739                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
740                 if (IS_ERR(pages[i])) {
741                         err = PTR_ERR(pages[i]);
742                         idx = i - 1;
743                         goto fail;
744                 }
745                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
746         }
747
748         /* free direct nodes linked to a partial indirect node */
749         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
750                 child_nid = get_nid(pages[idx], i, false);
751                 if (!child_nid)
752                         continue;
753                 dn->nid = child_nid;
754                 err = truncate_dnode(dn);
755                 if (err < 0)
756                         goto fail;
757                 if (set_nid(pages[idx], i, 0, false))
758                         dn->node_changed = true;
759         }
760
761         if (offset[idx + 1] == 0) {
762                 dn->node_page = pages[idx];
763                 dn->nid = nid[idx];
764                 truncate_node(dn);
765         } else {
766                 f2fs_put_page(pages[idx], 1);
767         }
768         offset[idx]++;
769         offset[idx + 1] = 0;
770         idx--;
771 fail:
772         for (i = idx; i >= 0; i--)
773                 f2fs_put_page(pages[i], 1);
774
775         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
776
777         return err;
778 }
779
780 /*
781  * All the block addresses of data and nodes should be nullified.
782  */
783 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
784 {
785         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
786         int err = 0, cont = 1;
787         int level, offset[4], noffset[4];
788         unsigned int nofs = 0;
789         struct f2fs_inode *ri;
790         struct dnode_of_data dn;
791         struct page *page;
792
793         trace_f2fs_truncate_inode_blocks_enter(inode, from);
794
795         level = get_node_path(F2FS_I(inode), from, offset, noffset);
796 restart:
797         page = get_node_page(sbi, inode->i_ino);
798         if (IS_ERR(page)) {
799                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
800                 return PTR_ERR(page);
801         }
802
803         set_new_dnode(&dn, inode, page, NULL, 0);
804         unlock_page(page);
805
806         ri = F2FS_INODE(page);
807         switch (level) {
808         case 0:
809         case 1:
810                 nofs = noffset[1];
811                 break;
812         case 2:
813                 nofs = noffset[1];
814                 if (!offset[level - 1])
815                         goto skip_partial;
816                 err = truncate_partial_nodes(&dn, ri, offset, level);
817                 if (err < 0 && err != -ENOENT)
818                         goto fail;
819                 nofs += 1 + NIDS_PER_BLOCK;
820                 break;
821         case 3:
822                 nofs = 5 + 2 * NIDS_PER_BLOCK;
823                 if (!offset[level - 1])
824                         goto skip_partial;
825                 err = truncate_partial_nodes(&dn, ri, offset, level);
826                 if (err < 0 && err != -ENOENT)
827                         goto fail;
828                 break;
829         default:
830                 BUG();
831         }
832
833 skip_partial:
834         while (cont) {
835                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
836                 switch (offset[0]) {
837                 case NODE_DIR1_BLOCK:
838                 case NODE_DIR2_BLOCK:
839                         err = truncate_dnode(&dn);
840                         break;
841
842                 case NODE_IND1_BLOCK:
843                 case NODE_IND2_BLOCK:
844                         err = truncate_nodes(&dn, nofs, offset[1], 2);
845                         break;
846
847                 case NODE_DIND_BLOCK:
848                         err = truncate_nodes(&dn, nofs, offset[1], 3);
849                         cont = 0;
850                         break;
851
852                 default:
853                         BUG();
854                 }
855                 if (err < 0 && err != -ENOENT)
856                         goto fail;
857                 if (offset[1] == 0 &&
858                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
859                         lock_page(page);
860                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
861                                 f2fs_put_page(page, 1);
862                                 goto restart;
863                         }
864                         f2fs_wait_on_page_writeback(page, NODE);
865                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
866                         set_page_dirty(page);
867                         unlock_page(page);
868                 }
869                 offset[1] = 0;
870                 offset[0]++;
871                 nofs += err;
872         }
873 fail:
874         f2fs_put_page(page, 0);
875         trace_f2fs_truncate_inode_blocks_exit(inode, err);
876         return err > 0 ? 0 : err;
877 }
878
879 int truncate_xattr_node(struct inode *inode, struct page *page)
880 {
881         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
882         nid_t nid = F2FS_I(inode)->i_xattr_nid;
883         struct dnode_of_data dn;
884         struct page *npage;
885
886         if (!nid)
887                 return 0;
888
889         npage = get_node_page(sbi, nid);
890         if (IS_ERR(npage))
891                 return PTR_ERR(npage);
892
893         F2FS_I(inode)->i_xattr_nid = 0;
894
895         /* need to do checkpoint during fsync */
896         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
897
898         set_new_dnode(&dn, inode, page, npage, nid);
899
900         if (page)
901                 dn.inode_page_locked = true;
902         truncate_node(&dn);
903         return 0;
904 }
905
906 /*
907  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
908  * f2fs_unlock_op().
909  */
910 int remove_inode_page(struct inode *inode)
911 {
912         struct dnode_of_data dn;
913         int err;
914
915         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
916         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
917         if (err)
918                 return err;
919
920         err = truncate_xattr_node(inode, dn.inode_page);
921         if (err) {
922                 f2fs_put_dnode(&dn);
923                 return err;
924         }
925
926         /* remove potential inline_data blocks */
927         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
928                                 S_ISLNK(inode->i_mode))
929                 truncate_data_blocks_range(&dn, 1);
930
931         /* 0 is possible, after f2fs_new_inode() has failed */
932         f2fs_bug_on(F2FS_I_SB(inode),
933                         inode->i_blocks != 0 && inode->i_blocks != 1);
934
935         /* will put inode & node pages */
936         truncate_node(&dn);
937         return 0;
938 }
939
940 struct page *new_inode_page(struct inode *inode)
941 {
942         struct dnode_of_data dn;
943
944         /* allocate inode page for new inode */
945         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
946
947         /* caller should f2fs_put_page(page, 1); */
948         return new_node_page(&dn, 0, NULL);
949 }
950
951 struct page *new_node_page(struct dnode_of_data *dn,
952                                 unsigned int ofs, struct page *ipage)
953 {
954         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
955         struct node_info old_ni, new_ni;
956         struct page *page;
957         int err;
958
959         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
960                 return ERR_PTR(-EPERM);
961
962         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
963         if (!page)
964                 return ERR_PTR(-ENOMEM);
965
966         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
967                 err = -ENOSPC;
968                 goto fail;
969         }
970
971         get_node_info(sbi, dn->nid, &old_ni);
972
973         /* Reinitialize old_ni with new node page */
974         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
975         new_ni = old_ni;
976         new_ni.ino = dn->inode->i_ino;
977         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
978
979         f2fs_wait_on_page_writeback(page, NODE);
980         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
981         set_cold_node(dn->inode, page);
982         SetPageUptodate(page);
983         if (set_page_dirty(page))
984                 dn->node_changed = true;
985
986         if (f2fs_has_xattr_block(ofs))
987                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
988
989         dn->node_page = page;
990         if (ipage)
991                 update_inode(dn->inode, ipage);
992         else
993                 sync_inode_page(dn);
994         if (ofs == 0)
995                 inc_valid_inode_count(sbi);
996
997         return page;
998
999 fail:
1000         clear_node_page_dirty(page);
1001         f2fs_put_page(page, 1);
1002         return ERR_PTR(err);
1003 }
1004
1005 /*
1006  * Caller should do after getting the following values.
1007  * 0: f2fs_put_page(page, 0)
1008  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1009  */
1010 static int read_node_page(struct page *page, int rw)
1011 {
1012         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1013         struct node_info ni;
1014         struct f2fs_io_info fio = {
1015                 .sbi = sbi,
1016                 .type = NODE,
1017                 .rw = rw,
1018                 .page = page,
1019                 .encrypted_page = NULL,
1020         };
1021
1022         get_node_info(sbi, page->index, &ni);
1023
1024         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1025                 ClearPageUptodate(page);
1026                 return -ENOENT;
1027         }
1028
1029         if (PageUptodate(page))
1030                 return LOCKED_PAGE;
1031
1032         fio.blk_addr = ni.blk_addr;
1033         return f2fs_submit_page_bio(&fio);
1034 }
1035
1036 /*
1037  * Readahead a node page
1038  */
1039 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1040 {
1041         struct page *apage;
1042         int err;
1043
1044         if (!nid)
1045                 return;
1046         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1047
1048         apage = find_get_page(NODE_MAPPING(sbi), nid);
1049         if (apage && PageUptodate(apage)) {
1050                 f2fs_put_page(apage, 0);
1051                 return;
1052         }
1053         f2fs_put_page(apage, 0);
1054
1055         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1056         if (!apage)
1057                 return;
1058
1059         err = read_node_page(apage, READA);
1060         f2fs_put_page(apage, err ? 1 : 0);
1061 }
1062
1063 /*
1064  * readahead MAX_RA_NODE number of node pages.
1065  */
1066 void ra_node_pages(struct page *parent, int start)
1067 {
1068         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1069         struct blk_plug plug;
1070         int i, end;
1071         nid_t nid;
1072
1073         blk_start_plug(&plug);
1074
1075         /* Then, try readahead for siblings of the desired node */
1076         end = start + MAX_RA_NODE;
1077         end = min(end, NIDS_PER_BLOCK);
1078         for (i = start; i < end; i++) {
1079                 nid = get_nid(parent, i, false);
1080                 ra_node_page(sbi, nid);
1081         }
1082
1083         blk_finish_plug(&plug);
1084 }
1085
1086 struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1087                                         struct page *parent, int start)
1088 {
1089         struct page *page;
1090         int err;
1091
1092         if (!nid)
1093                 return ERR_PTR(-ENOENT);
1094         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1095 repeat:
1096         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1097         if (!page)
1098                 return ERR_PTR(-ENOMEM);
1099
1100         err = read_node_page(page, READ_SYNC);
1101         if (err < 0) {
1102                 f2fs_put_page(page, 1);
1103                 return ERR_PTR(err);
1104         } else if (err == LOCKED_PAGE) {
1105                 goto page_hit;
1106         }
1107
1108         if (parent)
1109                 ra_node_pages(parent, start + 1);
1110
1111         lock_page(page);
1112
1113         if (unlikely(!PageUptodate(page))) {
1114                 f2fs_put_page(page, 1);
1115                 return ERR_PTR(-EIO);
1116         }
1117         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1118                 f2fs_put_page(page, 1);
1119                 goto repeat;
1120         }
1121 page_hit:
1122         f2fs_bug_on(sbi, nid != nid_of_node(page));
1123         return page;
1124 }
1125
1126 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1127 {
1128         return __get_node_page(sbi, nid, NULL, 0);
1129 }
1130
1131 struct page *get_node_page_ra(struct page *parent, int start)
1132 {
1133         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1134         nid_t nid = get_nid(parent, start, false);
1135
1136         return __get_node_page(sbi, nid, parent, start);
1137 }
1138
1139 void sync_inode_page(struct dnode_of_data *dn)
1140 {
1141         int ret = 0;
1142
1143         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1144                 ret = update_inode(dn->inode, dn->node_page);
1145         } else if (dn->inode_page) {
1146                 if (!dn->inode_page_locked)
1147                         lock_page(dn->inode_page);
1148                 ret = update_inode(dn->inode, dn->inode_page);
1149                 if (!dn->inode_page_locked)
1150                         unlock_page(dn->inode_page);
1151         } else {
1152                 ret = update_inode_page(dn->inode);
1153         }
1154         dn->node_changed = ret ? true: false;
1155 }
1156
1157 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1158                                         struct writeback_control *wbc)
1159 {
1160         pgoff_t index, end;
1161         struct pagevec pvec;
1162         int step = ino ? 2 : 0;
1163         int nwritten = 0, wrote = 0;
1164
1165         pagevec_init(&pvec, 0);
1166
1167 next_step:
1168         index = 0;
1169         end = LONG_MAX;
1170
1171         while (index <= end) {
1172                 int i, nr_pages;
1173                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1174                                 PAGECACHE_TAG_DIRTY,
1175                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1176                 if (nr_pages == 0)
1177                         break;
1178
1179                 for (i = 0; i < nr_pages; i++) {
1180                         struct page *page = pvec.pages[i];
1181
1182                         if (unlikely(f2fs_cp_error(sbi))) {
1183                                 pagevec_release(&pvec);
1184                                 return -EIO;
1185                         }
1186
1187                         /*
1188                          * flushing sequence with step:
1189                          * 0. indirect nodes
1190                          * 1. dentry dnodes
1191                          * 2. file dnodes
1192                          */
1193                         if (step == 0 && IS_DNODE(page))
1194                                 continue;
1195                         if (step == 1 && (!IS_DNODE(page) ||
1196                                                 is_cold_node(page)))
1197                                 continue;
1198                         if (step == 2 && (!IS_DNODE(page) ||
1199                                                 !is_cold_node(page)))
1200                                 continue;
1201
1202                         /*
1203                          * If an fsync mode,
1204                          * we should not skip writing node pages.
1205                          */
1206                         if (ino && ino_of_node(page) == ino)
1207                                 lock_page(page);
1208                         else if (!trylock_page(page))
1209                                 continue;
1210
1211                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1212 continue_unlock:
1213                                 unlock_page(page);
1214                                 continue;
1215                         }
1216                         if (ino && ino_of_node(page) != ino)
1217                                 goto continue_unlock;
1218
1219                         if (!PageDirty(page)) {
1220                                 /* someone wrote it for us */
1221                                 goto continue_unlock;
1222                         }
1223
1224                         if (!clear_page_dirty_for_io(page))
1225                                 goto continue_unlock;
1226
1227                         /* called by fsync() */
1228                         if (ino && IS_DNODE(page)) {
1229                                 set_fsync_mark(page, 1);
1230                                 if (IS_INODE(page))
1231                                         set_dentry_mark(page,
1232                                                 need_dentry_mark(sbi, ino));
1233                                 nwritten++;
1234                         } else {
1235                                 set_fsync_mark(page, 0);
1236                                 set_dentry_mark(page, 0);
1237                         }
1238
1239                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1240                                 unlock_page(page);
1241                         else
1242                                 wrote++;
1243
1244                         if (--wbc->nr_to_write == 0)
1245                                 break;
1246                 }
1247                 pagevec_release(&pvec);
1248                 cond_resched();
1249
1250                 if (wbc->nr_to_write == 0) {
1251                         step = 2;
1252                         break;
1253                 }
1254         }
1255
1256         if (step < 2) {
1257                 step++;
1258                 goto next_step;
1259         }
1260
1261         if (wrote)
1262                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1263         return nwritten;
1264 }
1265
1266 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1267 {
1268         pgoff_t index = 0, end = LONG_MAX;
1269         struct pagevec pvec;
1270         int ret2 = 0, ret = 0;
1271
1272         pagevec_init(&pvec, 0);
1273
1274         while (index <= end) {
1275                 int i, nr_pages;
1276                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1277                                 PAGECACHE_TAG_WRITEBACK,
1278                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1279                 if (nr_pages == 0)
1280                         break;
1281
1282                 for (i = 0; i < nr_pages; i++) {
1283                         struct page *page = pvec.pages[i];
1284
1285                         /* until radix tree lookup accepts end_index */
1286                         if (unlikely(page->index > end))
1287                                 continue;
1288
1289                         if (ino && ino_of_node(page) == ino) {
1290                                 f2fs_wait_on_page_writeback(page, NODE);
1291                                 if (TestClearPageError(page))
1292                                         ret = -EIO;
1293                         }
1294                 }
1295                 pagevec_release(&pvec);
1296                 cond_resched();
1297         }
1298
1299         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1300                 ret2 = -ENOSPC;
1301         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1302                 ret2 = -EIO;
1303         if (!ret)
1304                 ret = ret2;
1305         return ret;
1306 }
1307
1308 static int f2fs_write_node_page(struct page *page,
1309                                 struct writeback_control *wbc)
1310 {
1311         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1312         nid_t nid;
1313         struct node_info ni;
1314         struct f2fs_io_info fio = {
1315                 .sbi = sbi,
1316                 .type = NODE,
1317                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1318                 .page = page,
1319                 .encrypted_page = NULL,
1320         };
1321
1322         trace_f2fs_writepage(page, NODE);
1323
1324         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1325                 goto redirty_out;
1326         if (unlikely(f2fs_cp_error(sbi)))
1327                 goto redirty_out;
1328
1329         f2fs_wait_on_page_writeback(page, NODE);
1330
1331         /* get old block addr of this node page */
1332         nid = nid_of_node(page);
1333         f2fs_bug_on(sbi, page->index != nid);
1334
1335         if (wbc->for_reclaim) {
1336                 if (!down_read_trylock(&sbi->node_write))
1337                         goto redirty_out;
1338         } else {
1339                 down_read(&sbi->node_write);
1340         }
1341
1342         get_node_info(sbi, nid, &ni);
1343
1344         /* This page is already truncated */
1345         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1346                 ClearPageUptodate(page);
1347                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1348                 up_read(&sbi->node_write);
1349                 unlock_page(page);
1350                 return 0;
1351         }
1352
1353         set_page_writeback(page);
1354         fio.blk_addr = ni.blk_addr;
1355         write_node_page(nid, &fio);
1356         set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1357         dec_page_count(sbi, F2FS_DIRTY_NODES);
1358         up_read(&sbi->node_write);
1359         unlock_page(page);
1360
1361         if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
1362                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1363
1364         return 0;
1365
1366 redirty_out:
1367         redirty_page_for_writepage(wbc, page);
1368         return AOP_WRITEPAGE_ACTIVATE;
1369 }
1370
1371 static int f2fs_write_node_pages(struct address_space *mapping,
1372                             struct writeback_control *wbc)
1373 {
1374         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1375         long diff;
1376
1377         trace_f2fs_writepages(mapping->host, wbc, NODE);
1378
1379         /* balancing f2fs's metadata in background */
1380         f2fs_balance_fs_bg(sbi);
1381
1382         /* collect a number of dirty node pages and write together */
1383         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1384                 goto skip_write;
1385
1386         diff = nr_pages_to_write(sbi, NODE, wbc);
1387         wbc->sync_mode = WB_SYNC_NONE;
1388         sync_node_pages(sbi, 0, wbc);
1389         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1390         return 0;
1391
1392 skip_write:
1393         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1394         return 0;
1395 }
1396
1397 static int f2fs_set_node_page_dirty(struct page *page)
1398 {
1399         trace_f2fs_set_page_dirty(page, NODE);
1400
1401         SetPageUptodate(page);
1402         if (!PageDirty(page)) {
1403                 __set_page_dirty_nobuffers(page);
1404                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1405                 SetPagePrivate(page);
1406                 f2fs_trace_pid(page);
1407                 return 1;
1408         }
1409         return 0;
1410 }
1411
1412 /*
1413  * Structure of the f2fs node operations
1414  */
1415 const struct address_space_operations f2fs_node_aops = {
1416         .writepage      = f2fs_write_node_page,
1417         .writepages     = f2fs_write_node_pages,
1418         .set_page_dirty = f2fs_set_node_page_dirty,
1419         .invalidatepage = f2fs_invalidate_page,
1420         .releasepage    = f2fs_release_page,
1421 };
1422
1423 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1424                                                 nid_t n)
1425 {
1426         return radix_tree_lookup(&nm_i->free_nid_root, n);
1427 }
1428
1429 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1430                                                 struct free_nid *i)
1431 {
1432         list_del(&i->list);
1433         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1434 }
1435
1436 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1437 {
1438         struct f2fs_nm_info *nm_i = NM_I(sbi);
1439         struct free_nid *i;
1440         struct nat_entry *ne;
1441         bool allocated = false;
1442
1443         if (!available_free_memory(sbi, FREE_NIDS))
1444                 return -1;
1445
1446         /* 0 nid should not be used */
1447         if (unlikely(nid == 0))
1448                 return 0;
1449
1450         if (build) {
1451                 /* do not add allocated nids */
1452                 ne = __lookup_nat_cache(nm_i, nid);
1453                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1454                                 nat_get_blkaddr(ne) != NULL_ADDR))
1455                         allocated = true;
1456                 if (allocated)
1457                         return 0;
1458         }
1459
1460         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1461         i->nid = nid;
1462         i->state = NID_NEW;
1463
1464         if (radix_tree_preload(GFP_NOFS)) {
1465                 kmem_cache_free(free_nid_slab, i);
1466                 return 0;
1467         }
1468
1469         spin_lock(&nm_i->free_nid_list_lock);
1470         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1471                 spin_unlock(&nm_i->free_nid_list_lock);
1472                 radix_tree_preload_end();
1473                 kmem_cache_free(free_nid_slab, i);
1474                 return 0;
1475         }
1476         list_add_tail(&i->list, &nm_i->free_nid_list);
1477         nm_i->fcnt++;
1478         spin_unlock(&nm_i->free_nid_list_lock);
1479         radix_tree_preload_end();
1480         return 1;
1481 }
1482
1483 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1484 {
1485         struct free_nid *i;
1486         bool need_free = false;
1487
1488         spin_lock(&nm_i->free_nid_list_lock);
1489         i = __lookup_free_nid_list(nm_i, nid);
1490         if (i && i->state == NID_NEW) {
1491                 __del_from_free_nid_list(nm_i, i);
1492                 nm_i->fcnt--;
1493                 need_free = true;
1494         }
1495         spin_unlock(&nm_i->free_nid_list_lock);
1496
1497         if (need_free)
1498                 kmem_cache_free(free_nid_slab, i);
1499 }
1500
1501 static void scan_nat_page(struct f2fs_sb_info *sbi,
1502                         struct page *nat_page, nid_t start_nid)
1503 {
1504         struct f2fs_nm_info *nm_i = NM_I(sbi);
1505         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1506         block_t blk_addr;
1507         int i;
1508
1509         i = start_nid % NAT_ENTRY_PER_BLOCK;
1510
1511         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1512
1513                 if (unlikely(start_nid >= nm_i->max_nid))
1514                         break;
1515
1516                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1517                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1518                 if (blk_addr == NULL_ADDR) {
1519                         if (add_free_nid(sbi, start_nid, true) < 0)
1520                                 break;
1521                 }
1522         }
1523 }
1524
1525 static void build_free_nids(struct f2fs_sb_info *sbi)
1526 {
1527         struct f2fs_nm_info *nm_i = NM_I(sbi);
1528         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1529         struct f2fs_summary_block *sum = curseg->sum_blk;
1530         int i = 0;
1531         nid_t nid = nm_i->next_scan_nid;
1532
1533         /* Enough entries */
1534         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1535                 return;
1536
1537         /* readahead nat pages to be scanned */
1538         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1539                                                         META_NAT, true);
1540
1541         down_read(&nm_i->nat_tree_lock);
1542
1543         while (1) {
1544                 struct page *page = get_current_nat_page(sbi, nid);
1545
1546                 scan_nat_page(sbi, page, nid);
1547                 f2fs_put_page(page, 1);
1548
1549                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1550                 if (unlikely(nid >= nm_i->max_nid))
1551                         nid = 0;
1552
1553                 if (++i >= FREE_NID_PAGES)
1554                         break;
1555         }
1556
1557         /* go to the next free nat pages to find free nids abundantly */
1558         nm_i->next_scan_nid = nid;
1559
1560         /* find free nids from current sum_pages */
1561         mutex_lock(&curseg->curseg_mutex);
1562         for (i = 0; i < nats_in_cursum(sum); i++) {
1563                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1564                 nid = le32_to_cpu(nid_in_journal(sum, i));
1565                 if (addr == NULL_ADDR)
1566                         add_free_nid(sbi, nid, true);
1567                 else
1568                         remove_free_nid(nm_i, nid);
1569         }
1570         mutex_unlock(&curseg->curseg_mutex);
1571         up_read(&nm_i->nat_tree_lock);
1572
1573         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1574                                         nm_i->ra_nid_pages, META_NAT, false);
1575 }
1576
1577 /*
1578  * If this function returns success, caller can obtain a new nid
1579  * from second parameter of this function.
1580  * The returned nid could be used ino as well as nid when inode is created.
1581  */
1582 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1583 {
1584         struct f2fs_nm_info *nm_i = NM_I(sbi);
1585         struct free_nid *i = NULL;
1586 retry:
1587         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1588                 return false;
1589
1590         spin_lock(&nm_i->free_nid_list_lock);
1591
1592         /* We should not use stale free nids created by build_free_nids */
1593         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1594                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1595                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1596                         if (i->state == NID_NEW)
1597                                 break;
1598
1599                 f2fs_bug_on(sbi, i->state != NID_NEW);
1600                 *nid = i->nid;
1601                 i->state = NID_ALLOC;
1602                 nm_i->fcnt--;
1603                 spin_unlock(&nm_i->free_nid_list_lock);
1604                 return true;
1605         }
1606         spin_unlock(&nm_i->free_nid_list_lock);
1607
1608         /* Let's scan nat pages and its caches to get free nids */
1609         mutex_lock(&nm_i->build_lock);
1610         build_free_nids(sbi);
1611         mutex_unlock(&nm_i->build_lock);
1612         goto retry;
1613 }
1614
1615 /*
1616  * alloc_nid() should be called prior to this function.
1617  */
1618 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1619 {
1620         struct f2fs_nm_info *nm_i = NM_I(sbi);
1621         struct free_nid *i;
1622
1623         spin_lock(&nm_i->free_nid_list_lock);
1624         i = __lookup_free_nid_list(nm_i, nid);
1625         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1626         __del_from_free_nid_list(nm_i, i);
1627         spin_unlock(&nm_i->free_nid_list_lock);
1628
1629         kmem_cache_free(free_nid_slab, i);
1630 }
1631
1632 /*
1633  * alloc_nid() should be called prior to this function.
1634  */
1635 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1636 {
1637         struct f2fs_nm_info *nm_i = NM_I(sbi);
1638         struct free_nid *i;
1639         bool need_free = false;
1640
1641         if (!nid)
1642                 return;
1643
1644         spin_lock(&nm_i->free_nid_list_lock);
1645         i = __lookup_free_nid_list(nm_i, nid);
1646         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1647         if (!available_free_memory(sbi, FREE_NIDS)) {
1648                 __del_from_free_nid_list(nm_i, i);
1649                 need_free = true;
1650         } else {
1651                 i->state = NID_NEW;
1652                 nm_i->fcnt++;
1653         }
1654         spin_unlock(&nm_i->free_nid_list_lock);
1655
1656         if (need_free)
1657                 kmem_cache_free(free_nid_slab, i);
1658 }
1659
1660 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1661 {
1662         struct f2fs_nm_info *nm_i = NM_I(sbi);
1663         struct free_nid *i, *next;
1664         int nr = nr_shrink;
1665
1666         if (!mutex_trylock(&nm_i->build_lock))
1667                 return 0;
1668
1669         spin_lock(&nm_i->free_nid_list_lock);
1670         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1671                 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1672                         break;
1673                 if (i->state == NID_ALLOC)
1674                         continue;
1675                 __del_from_free_nid_list(nm_i, i);
1676                 kmem_cache_free(free_nid_slab, i);
1677                 nm_i->fcnt--;
1678                 nr_shrink--;
1679         }
1680         spin_unlock(&nm_i->free_nid_list_lock);
1681         mutex_unlock(&nm_i->build_lock);
1682
1683         return nr - nr_shrink;
1684 }
1685
1686 void recover_inline_xattr(struct inode *inode, struct page *page)
1687 {
1688         void *src_addr, *dst_addr;
1689         size_t inline_size;
1690         struct page *ipage;
1691         struct f2fs_inode *ri;
1692
1693         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1694         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1695
1696         ri = F2FS_INODE(page);
1697         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1698                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1699                 goto update_inode;
1700         }
1701
1702         dst_addr = inline_xattr_addr(ipage);
1703         src_addr = inline_xattr_addr(page);
1704         inline_size = inline_xattr_size(inode);
1705
1706         f2fs_wait_on_page_writeback(ipage, NODE);
1707         memcpy(dst_addr, src_addr, inline_size);
1708 update_inode:
1709         update_inode(inode, ipage);
1710         f2fs_put_page(ipage, 1);
1711 }
1712
1713 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1714 {
1715         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1716         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1717         nid_t new_xnid = nid_of_node(page);
1718         struct node_info ni;
1719
1720         /* 1: invalidate the previous xattr nid */
1721         if (!prev_xnid)
1722                 goto recover_xnid;
1723
1724         /* Deallocate node address */
1725         get_node_info(sbi, prev_xnid, &ni);
1726         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1727         invalidate_blocks(sbi, ni.blk_addr);
1728         dec_valid_node_count(sbi, inode);
1729         set_node_addr(sbi, &ni, NULL_ADDR, false);
1730
1731 recover_xnid:
1732         /* 2: allocate new xattr nid */
1733         if (unlikely(!inc_valid_node_count(sbi, inode)))
1734                 f2fs_bug_on(sbi, 1);
1735
1736         remove_free_nid(NM_I(sbi), new_xnid);
1737         get_node_info(sbi, new_xnid, &ni);
1738         ni.ino = inode->i_ino;
1739         set_node_addr(sbi, &ni, NEW_ADDR, false);
1740         F2FS_I(inode)->i_xattr_nid = new_xnid;
1741
1742         /* 3: update xattr blkaddr */
1743         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1744         set_node_addr(sbi, &ni, blkaddr, false);
1745
1746         update_inode_page(inode);
1747 }
1748
1749 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1750 {
1751         struct f2fs_inode *src, *dst;
1752         nid_t ino = ino_of_node(page);
1753         struct node_info old_ni, new_ni;
1754         struct page *ipage;
1755
1756         get_node_info(sbi, ino, &old_ni);
1757
1758         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1759                 return -EINVAL;
1760
1761         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1762         if (!ipage)
1763                 return -ENOMEM;
1764
1765         /* Should not use this inode from free nid list */
1766         remove_free_nid(NM_I(sbi), ino);
1767
1768         SetPageUptodate(ipage);
1769         fill_node_footer(ipage, ino, ino, 0, true);
1770
1771         src = F2FS_INODE(page);
1772         dst = F2FS_INODE(ipage);
1773
1774         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1775         dst->i_size = 0;
1776         dst->i_blocks = cpu_to_le64(1);
1777         dst->i_links = cpu_to_le32(1);
1778         dst->i_xattr_nid = 0;
1779         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1780
1781         new_ni = old_ni;
1782         new_ni.ino = ino;
1783
1784         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1785                 WARN_ON(1);
1786         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1787         inc_valid_inode_count(sbi);
1788         set_page_dirty(ipage);
1789         f2fs_put_page(ipage, 1);
1790         return 0;
1791 }
1792
1793 int restore_node_summary(struct f2fs_sb_info *sbi,
1794                         unsigned int segno, struct f2fs_summary_block *sum)
1795 {
1796         struct f2fs_node *rn;
1797         struct f2fs_summary *sum_entry;
1798         block_t addr;
1799         int bio_blocks = MAX_BIO_BLOCKS(sbi);
1800         int i, idx, last_offset, nrpages;
1801
1802         /* scan the node segment */
1803         last_offset = sbi->blocks_per_seg;
1804         addr = START_BLOCK(sbi, segno);
1805         sum_entry = &sum->entries[0];
1806
1807         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1808                 nrpages = min(last_offset - i, bio_blocks);
1809
1810                 /* readahead node pages */
1811                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1812
1813                 for (idx = addr; idx < addr + nrpages; idx++) {
1814                         struct page *page = get_tmp_page(sbi, idx);
1815
1816                         rn = F2FS_NODE(page);
1817                         sum_entry->nid = rn->footer.nid;
1818                         sum_entry->version = 0;
1819                         sum_entry->ofs_in_node = 0;
1820                         sum_entry++;
1821                         f2fs_put_page(page, 1);
1822                 }
1823
1824                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1825                                                         addr + nrpages);
1826         }
1827         return 0;
1828 }
1829
1830 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1831 {
1832         struct f2fs_nm_info *nm_i = NM_I(sbi);
1833         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1834         struct f2fs_summary_block *sum = curseg->sum_blk;
1835         int i;
1836
1837         mutex_lock(&curseg->curseg_mutex);
1838         for (i = 0; i < nats_in_cursum(sum); i++) {
1839                 struct nat_entry *ne;
1840                 struct f2fs_nat_entry raw_ne;
1841                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1842
1843                 raw_ne = nat_in_journal(sum, i);
1844
1845                 ne = __lookup_nat_cache(nm_i, nid);
1846                 if (!ne) {
1847                         ne = grab_nat_entry(nm_i, nid);
1848                         node_info_from_raw_nat(&ne->ni, &raw_ne);
1849                 }
1850                 __set_nat_cache_dirty(nm_i, ne);
1851         }
1852         update_nats_in_cursum(sum, -i);
1853         mutex_unlock(&curseg->curseg_mutex);
1854 }
1855
1856 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1857                                                 struct list_head *head, int max)
1858 {
1859         struct nat_entry_set *cur;
1860
1861         if (nes->entry_cnt >= max)
1862                 goto add_out;
1863
1864         list_for_each_entry(cur, head, set_list) {
1865                 if (cur->entry_cnt >= nes->entry_cnt) {
1866                         list_add(&nes->set_list, cur->set_list.prev);
1867                         return;
1868                 }
1869         }
1870 add_out:
1871         list_add_tail(&nes->set_list, head);
1872 }
1873
1874 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1875                                         struct nat_entry_set *set)
1876 {
1877         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1878         struct f2fs_summary_block *sum = curseg->sum_blk;
1879         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1880         bool to_journal = true;
1881         struct f2fs_nat_block *nat_blk;
1882         struct nat_entry *ne, *cur;
1883         struct page *page = NULL;
1884
1885         /*
1886          * there are two steps to flush nat entries:
1887          * #1, flush nat entries to journal in current hot data summary block.
1888          * #2, flush nat entries to nat page.
1889          */
1890         if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1891                 to_journal = false;
1892
1893         if (to_journal) {
1894                 mutex_lock(&curseg->curseg_mutex);
1895         } else {
1896                 page = get_next_nat_page(sbi, start_nid);
1897                 nat_blk = page_address(page);
1898                 f2fs_bug_on(sbi, !nat_blk);
1899         }
1900
1901         /* flush dirty nats in nat entry set */
1902         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1903                 struct f2fs_nat_entry *raw_ne;
1904                 nid_t nid = nat_get_nid(ne);
1905                 int offset;
1906
1907                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1908                         continue;
1909
1910                 if (to_journal) {
1911                         offset = lookup_journal_in_cursum(sum,
1912                                                         NAT_JOURNAL, nid, 1);
1913                         f2fs_bug_on(sbi, offset < 0);
1914                         raw_ne = &nat_in_journal(sum, offset);
1915                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1916                 } else {
1917                         raw_ne = &nat_blk->entries[nid - start_nid];
1918                 }
1919                 raw_nat_from_node_info(raw_ne, &ne->ni);
1920                 nat_reset_flag(ne);
1921                 __clear_nat_cache_dirty(NM_I(sbi), ne);
1922                 if (nat_get_blkaddr(ne) == NULL_ADDR)
1923                         add_free_nid(sbi, nid, false);
1924         }
1925
1926         if (to_journal)
1927                 mutex_unlock(&curseg->curseg_mutex);
1928         else
1929                 f2fs_put_page(page, 1);
1930
1931         f2fs_bug_on(sbi, set->entry_cnt);
1932
1933         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1934         kmem_cache_free(nat_entry_set_slab, set);
1935 }
1936
1937 /*
1938  * This function is called during the checkpointing process.
1939  */
1940 void flush_nat_entries(struct f2fs_sb_info *sbi)
1941 {
1942         struct f2fs_nm_info *nm_i = NM_I(sbi);
1943         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1944         struct f2fs_summary_block *sum = curseg->sum_blk;
1945         struct nat_entry_set *setvec[SETVEC_SIZE];
1946         struct nat_entry_set *set, *tmp;
1947         unsigned int found;
1948         nid_t set_idx = 0;
1949         LIST_HEAD(sets);
1950
1951         if (!nm_i->dirty_nat_cnt)
1952                 return;
1953
1954         down_write(&nm_i->nat_tree_lock);
1955
1956         /*
1957          * if there are no enough space in journal to store dirty nat
1958          * entries, remove all entries from journal and merge them
1959          * into nat entry set.
1960          */
1961         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1962                 remove_nats_in_journal(sbi);
1963
1964         while ((found = __gang_lookup_nat_set(nm_i,
1965                                         set_idx, SETVEC_SIZE, setvec))) {
1966                 unsigned idx;
1967                 set_idx = setvec[found - 1]->set + 1;
1968                 for (idx = 0; idx < found; idx++)
1969                         __adjust_nat_entry_set(setvec[idx], &sets,
1970                                                         MAX_NAT_JENTRIES(sum));
1971         }
1972
1973         /* flush dirty nats in nat entry set */
1974         list_for_each_entry_safe(set, tmp, &sets, set_list)
1975                 __flush_nat_entry_set(sbi, set);
1976
1977         up_write(&nm_i->nat_tree_lock);
1978
1979         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1980 }
1981
1982 static int init_node_manager(struct f2fs_sb_info *sbi)
1983 {
1984         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1985         struct f2fs_nm_info *nm_i = NM_I(sbi);
1986         unsigned char *version_bitmap;
1987         unsigned int nat_segs, nat_blocks;
1988
1989         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1990
1991         /* segment_count_nat includes pair segment so divide to 2. */
1992         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1993         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1994
1995         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1996
1997         /* not used nids: 0, node, meta, (and root counted as valid node) */
1998         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1999         nm_i->fcnt = 0;
2000         nm_i->nat_cnt = 0;
2001         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2002         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2003
2004         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2005         INIT_LIST_HEAD(&nm_i->free_nid_list);
2006         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2007         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2008         INIT_LIST_HEAD(&nm_i->nat_entries);
2009
2010         mutex_init(&nm_i->build_lock);
2011         spin_lock_init(&nm_i->free_nid_list_lock);
2012         init_rwsem(&nm_i->nat_tree_lock);
2013
2014         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2015         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2016         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2017         if (!version_bitmap)
2018                 return -EFAULT;
2019
2020         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2021                                         GFP_KERNEL);
2022         if (!nm_i->nat_bitmap)
2023                 return -ENOMEM;
2024         return 0;
2025 }
2026
2027 int build_node_manager(struct f2fs_sb_info *sbi)
2028 {
2029         int err;
2030
2031         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2032         if (!sbi->nm_info)
2033                 return -ENOMEM;
2034
2035         err = init_node_manager(sbi);
2036         if (err)
2037                 return err;
2038
2039         build_free_nids(sbi);
2040         return 0;
2041 }
2042
2043 void destroy_node_manager(struct f2fs_sb_info *sbi)
2044 {
2045         struct f2fs_nm_info *nm_i = NM_I(sbi);
2046         struct free_nid *i, *next_i;
2047         struct nat_entry *natvec[NATVEC_SIZE];
2048         struct nat_entry_set *setvec[SETVEC_SIZE];
2049         nid_t nid = 0;
2050         unsigned int found;
2051
2052         if (!nm_i)
2053                 return;
2054
2055         /* destroy free nid list */
2056         spin_lock(&nm_i->free_nid_list_lock);
2057         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2058                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2059                 __del_from_free_nid_list(nm_i, i);
2060                 nm_i->fcnt--;
2061                 spin_unlock(&nm_i->free_nid_list_lock);
2062                 kmem_cache_free(free_nid_slab, i);
2063                 spin_lock(&nm_i->free_nid_list_lock);
2064         }
2065         f2fs_bug_on(sbi, nm_i->fcnt);
2066         spin_unlock(&nm_i->free_nid_list_lock);
2067
2068         /* destroy nat cache */
2069         down_write(&nm_i->nat_tree_lock);
2070         while ((found = __gang_lookup_nat_cache(nm_i,
2071                                         nid, NATVEC_SIZE, natvec))) {
2072                 unsigned idx;
2073
2074                 nid = nat_get_nid(natvec[found - 1]) + 1;
2075                 for (idx = 0; idx < found; idx++)
2076                         __del_from_nat_cache(nm_i, natvec[idx]);
2077         }
2078         f2fs_bug_on(sbi, nm_i->nat_cnt);
2079
2080         /* destroy nat set cache */
2081         nid = 0;
2082         while ((found = __gang_lookup_nat_set(nm_i,
2083                                         nid, SETVEC_SIZE, setvec))) {
2084                 unsigned idx;
2085
2086                 nid = setvec[found - 1]->set + 1;
2087                 for (idx = 0; idx < found; idx++) {
2088                         /* entry_cnt is not zero, when cp_error was occurred */
2089                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2090                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2091                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2092                 }
2093         }
2094         up_write(&nm_i->nat_tree_lock);
2095
2096         kfree(nm_i->nat_bitmap);
2097         sbi->nm_info = NULL;
2098         kfree(nm_i);
2099 }
2100
2101 int __init create_node_manager_caches(void)
2102 {
2103         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2104                         sizeof(struct nat_entry));
2105         if (!nat_entry_slab)
2106                 goto fail;
2107
2108         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2109                         sizeof(struct free_nid));
2110         if (!free_nid_slab)
2111                 goto destroy_nat_entry;
2112
2113         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2114                         sizeof(struct nat_entry_set));
2115         if (!nat_entry_set_slab)
2116                 goto destroy_free_nid;
2117         return 0;
2118
2119 destroy_free_nid:
2120         kmem_cache_destroy(free_nid_slab);
2121 destroy_nat_entry:
2122         kmem_cache_destroy(nat_entry_slab);
2123 fail:
2124         return -ENOMEM;
2125 }
2126
2127 void destroy_node_manager_caches(void)
2128 {
2129         kmem_cache_destroy(nat_entry_set_slab);
2130         kmem_cache_destroy(free_nid_slab);
2131         kmem_cache_destroy(nat_entry_slab);
2132 }