]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
f2fs: avoid race for summary information
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22
23 static struct kmem_cache *nat_entry_slab;
24 static struct kmem_cache *free_nid_slab;
25
26 static void clear_node_page_dirty(struct page *page)
27 {
28         struct address_space *mapping = page->mapping;
29         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30         unsigned int long flags;
31
32         if (PageDirty(page)) {
33                 spin_lock_irqsave(&mapping->tree_lock, flags);
34                 radix_tree_tag_clear(&mapping->page_tree,
35                                 page_index(page),
36                                 PAGECACHE_TAG_DIRTY);
37                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39                 clear_page_dirty_for_io(page);
40                 dec_page_count(sbi, F2FS_DIRTY_NODES);
41         }
42         ClearPageUptodate(page);
43 }
44
45 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46 {
47         pgoff_t index = current_nat_addr(sbi, nid);
48         return get_meta_page(sbi, index);
49 }
50
51 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52 {
53         struct page *src_page;
54         struct page *dst_page;
55         pgoff_t src_off;
56         pgoff_t dst_off;
57         void *src_addr;
58         void *dst_addr;
59         struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61         src_off = current_nat_addr(sbi, nid);
62         dst_off = next_nat_addr(sbi, src_off);
63
64         /* get current nat block page with lock */
65         src_page = get_meta_page(sbi, src_off);
66
67         /* Dirty src_page means that it is already the new target NAT page. */
68         if (PageDirty(src_page))
69                 return src_page;
70
71         dst_page = grab_meta_page(sbi, dst_off);
72
73         src_addr = page_address(src_page);
74         dst_addr = page_address(dst_page);
75         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76         set_page_dirty(dst_page);
77         f2fs_put_page(src_page, 1);
78
79         set_to_next_nat(nm_i, nid);
80
81         return dst_page;
82 }
83
84 /*
85  * Readahead NAT pages
86  */
87 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88 {
89         struct address_space *mapping = sbi->meta_inode->i_mapping;
90         struct f2fs_nm_info *nm_i = NM_I(sbi);
91         struct page *page;
92         pgoff_t index;
93         int i;
94
95         for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96                 if (nid >= nm_i->max_nid)
97                         nid = 0;
98                 index = current_nat_addr(sbi, nid);
99
100                 page = grab_cache_page(mapping, index);
101                 if (!page)
102                         continue;
103                 if (PageUptodate(page)) {
104                         f2fs_put_page(page, 1);
105                         continue;
106                 }
107                 if (f2fs_readpage(sbi, page, index, READ))
108                         continue;
109
110                 f2fs_put_page(page, 0);
111         }
112 }
113
114 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
115 {
116         return radix_tree_lookup(&nm_i->nat_root, n);
117 }
118
119 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
120                 nid_t start, unsigned int nr, struct nat_entry **ep)
121 {
122         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
123 }
124
125 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
126 {
127         list_del(&e->list);
128         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
129         nm_i->nat_cnt--;
130         kmem_cache_free(nat_entry_slab, e);
131 }
132
133 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         struct f2fs_nm_info *nm_i = NM_I(sbi);
136         struct nat_entry *e;
137         int is_cp = 1;
138
139         read_lock(&nm_i->nat_tree_lock);
140         e = __lookup_nat_cache(nm_i, nid);
141         if (e && !e->checkpointed)
142                 is_cp = 0;
143         read_unlock(&nm_i->nat_tree_lock);
144         return is_cp;
145 }
146
147 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
148 {
149         struct nat_entry *new;
150
151         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
152         if (!new)
153                 return NULL;
154         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
155                 kmem_cache_free(nat_entry_slab, new);
156                 return NULL;
157         }
158         memset(new, 0, sizeof(struct nat_entry));
159         nat_set_nid(new, nid);
160         list_add_tail(&new->list, &nm_i->nat_entries);
161         nm_i->nat_cnt++;
162         return new;
163 }
164
165 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
166                                                 struct f2fs_nat_entry *ne)
167 {
168         struct nat_entry *e;
169 retry:
170         write_lock(&nm_i->nat_tree_lock);
171         e = __lookup_nat_cache(nm_i, nid);
172         if (!e) {
173                 e = grab_nat_entry(nm_i, nid);
174                 if (!e) {
175                         write_unlock(&nm_i->nat_tree_lock);
176                         goto retry;
177                 }
178                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
179                 nat_set_ino(e, le32_to_cpu(ne->ino));
180                 nat_set_version(e, ne->version);
181                 e->checkpointed = true;
182         }
183         write_unlock(&nm_i->nat_tree_lock);
184 }
185
186 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
187                         block_t new_blkaddr)
188 {
189         struct f2fs_nm_info *nm_i = NM_I(sbi);
190         struct nat_entry *e;
191 retry:
192         write_lock(&nm_i->nat_tree_lock);
193         e = __lookup_nat_cache(nm_i, ni->nid);
194         if (!e) {
195                 e = grab_nat_entry(nm_i, ni->nid);
196                 if (!e) {
197                         write_unlock(&nm_i->nat_tree_lock);
198                         goto retry;
199                 }
200                 e->ni = *ni;
201                 e->checkpointed = true;
202                 BUG_ON(ni->blk_addr == NEW_ADDR);
203         } else if (new_blkaddr == NEW_ADDR) {
204                 /*
205                  * when nid is reallocated,
206                  * previous nat entry can be remained in nat cache.
207                  * So, reinitialize it with new information.
208                  */
209                 e->ni = *ni;
210                 BUG_ON(ni->blk_addr != NULL_ADDR);
211         }
212
213         if (new_blkaddr == NEW_ADDR)
214                 e->checkpointed = false;
215
216         /* sanity check */
217         BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
218         BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
219                         new_blkaddr == NULL_ADDR);
220         BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
221                         new_blkaddr == NEW_ADDR);
222         BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
223                         nat_get_blkaddr(e) != NULL_ADDR &&
224                         new_blkaddr == NEW_ADDR);
225
226         /* increament version no as node is removed */
227         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
228                 unsigned char version = nat_get_version(e);
229                 nat_set_version(e, inc_node_version(version));
230         }
231
232         /* change address */
233         nat_set_blkaddr(e, new_blkaddr);
234         __set_nat_cache_dirty(nm_i, e);
235         write_unlock(&nm_i->nat_tree_lock);
236 }
237
238 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
239 {
240         struct f2fs_nm_info *nm_i = NM_I(sbi);
241
242         if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
243                 return 0;
244
245         write_lock(&nm_i->nat_tree_lock);
246         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
247                 struct nat_entry *ne;
248                 ne = list_first_entry(&nm_i->nat_entries,
249                                         struct nat_entry, list);
250                 __del_from_nat_cache(nm_i, ne);
251                 nr_shrink--;
252         }
253         write_unlock(&nm_i->nat_tree_lock);
254         return nr_shrink;
255 }
256
257 /*
258  * This function returns always success
259  */
260 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
261 {
262         struct f2fs_nm_info *nm_i = NM_I(sbi);
263         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
264         struct f2fs_summary_block *sum = curseg->sum_blk;
265         nid_t start_nid = START_NID(nid);
266         struct f2fs_nat_block *nat_blk;
267         struct page *page = NULL;
268         struct f2fs_nat_entry ne;
269         struct nat_entry *e;
270         int i;
271
272         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
273         ni->nid = nid;
274
275         /* Check nat cache */
276         read_lock(&nm_i->nat_tree_lock);
277         e = __lookup_nat_cache(nm_i, nid);
278         if (e) {
279                 ni->ino = nat_get_ino(e);
280                 ni->blk_addr = nat_get_blkaddr(e);
281                 ni->version = nat_get_version(e);
282         }
283         read_unlock(&nm_i->nat_tree_lock);
284         if (e)
285                 return;
286
287         /* Check current segment summary */
288         mutex_lock(&curseg->curseg_mutex);
289         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
290         if (i >= 0) {
291                 ne = nat_in_journal(sum, i);
292                 node_info_from_raw_nat(ni, &ne);
293         }
294         mutex_unlock(&curseg->curseg_mutex);
295         if (i >= 0)
296                 goto cache;
297
298         /* Fill node_info from nat page */
299         page = get_current_nat_page(sbi, start_nid);
300         nat_blk = (struct f2fs_nat_block *)page_address(page);
301         ne = nat_blk->entries[nid - start_nid];
302         node_info_from_raw_nat(ni, &ne);
303         f2fs_put_page(page, 1);
304 cache:
305         /* cache nat entry */
306         cache_nat_entry(NM_I(sbi), nid, &ne);
307 }
308
309 /*
310  * The maximum depth is four.
311  * Offset[0] will have raw inode offset.
312  */
313 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
314 {
315         const long direct_index = ADDRS_PER_INODE;
316         const long direct_blks = ADDRS_PER_BLOCK;
317         const long dptrs_per_blk = NIDS_PER_BLOCK;
318         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
319         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
320         int n = 0;
321         int level = 0;
322
323         noffset[0] = 0;
324
325         if (block < direct_index) {
326                 offset[n] = block;
327                 goto got;
328         }
329         block -= direct_index;
330         if (block < direct_blks) {
331                 offset[n++] = NODE_DIR1_BLOCK;
332                 noffset[n] = 1;
333                 offset[n] = block;
334                 level = 1;
335                 goto got;
336         }
337         block -= direct_blks;
338         if (block < direct_blks) {
339                 offset[n++] = NODE_DIR2_BLOCK;
340                 noffset[n] = 2;
341                 offset[n] = block;
342                 level = 1;
343                 goto got;
344         }
345         block -= direct_blks;
346         if (block < indirect_blks) {
347                 offset[n++] = NODE_IND1_BLOCK;
348                 noffset[n] = 3;
349                 offset[n++] = block / direct_blks;
350                 noffset[n] = 4 + offset[n - 1];
351                 offset[n] = block % direct_blks;
352                 level = 2;
353                 goto got;
354         }
355         block -= indirect_blks;
356         if (block < indirect_blks) {
357                 offset[n++] = NODE_IND2_BLOCK;
358                 noffset[n] = 4 + dptrs_per_blk;
359                 offset[n++] = block / direct_blks;
360                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
361                 offset[n] = block % direct_blks;
362                 level = 2;
363                 goto got;
364         }
365         block -= indirect_blks;
366         if (block < dindirect_blks) {
367                 offset[n++] = NODE_DIND_BLOCK;
368                 noffset[n] = 5 + (dptrs_per_blk * 2);
369                 offset[n++] = block / indirect_blks;
370                 noffset[n] = 6 + (dptrs_per_blk * 2) +
371                               offset[n - 1] * (dptrs_per_blk + 1);
372                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
373                 noffset[n] = 7 + (dptrs_per_blk * 2) +
374                               offset[n - 2] * (dptrs_per_blk + 1) +
375                               offset[n - 1];
376                 offset[n] = block % direct_blks;
377                 level = 3;
378                 goto got;
379         } else {
380                 BUG();
381         }
382 got:
383         return level;
384 }
385
386 /*
387  * Caller should call f2fs_put_dnode(dn).
388  */
389 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
390 {
391         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
392         struct page *npage[4];
393         struct page *parent;
394         int offset[4];
395         unsigned int noffset[4];
396         nid_t nids[4];
397         int level, i;
398         int err = 0;
399
400         level = get_node_path(index, offset, noffset);
401
402         nids[0] = dn->inode->i_ino;
403         npage[0] = get_node_page(sbi, nids[0]);
404         if (IS_ERR(npage[0]))
405                 return PTR_ERR(npage[0]);
406
407         parent = npage[0];
408         if (level != 0)
409                 nids[1] = get_nid(parent, offset[0], true);
410         dn->inode_page = npage[0];
411         dn->inode_page_locked = true;
412
413         /* get indirect or direct nodes */
414         for (i = 1; i <= level; i++) {
415                 bool done = false;
416
417                 if (!nids[i] && mode == ALLOC_NODE) {
418                         mutex_lock_op(sbi, NODE_NEW);
419
420                         /* alloc new node */
421                         if (!alloc_nid(sbi, &(nids[i]))) {
422                                 mutex_unlock_op(sbi, NODE_NEW);
423                                 err = -ENOSPC;
424                                 goto release_pages;
425                         }
426
427                         dn->nid = nids[i];
428                         npage[i] = new_node_page(dn, noffset[i]);
429                         if (IS_ERR(npage[i])) {
430                                 alloc_nid_failed(sbi, nids[i]);
431                                 mutex_unlock_op(sbi, NODE_NEW);
432                                 err = PTR_ERR(npage[i]);
433                                 goto release_pages;
434                         }
435
436                         set_nid(parent, offset[i - 1], nids[i], i == 1);
437                         alloc_nid_done(sbi, nids[i]);
438                         mutex_unlock_op(sbi, NODE_NEW);
439                         done = true;
440                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
441                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
442                         if (IS_ERR(npage[i])) {
443                                 err = PTR_ERR(npage[i]);
444                                 goto release_pages;
445                         }
446                         done = true;
447                 }
448                 if (i == 1) {
449                         dn->inode_page_locked = false;
450                         unlock_page(parent);
451                 } else {
452                         f2fs_put_page(parent, 1);
453                 }
454
455                 if (!done) {
456                         npage[i] = get_node_page(sbi, nids[i]);
457                         if (IS_ERR(npage[i])) {
458                                 err = PTR_ERR(npage[i]);
459                                 f2fs_put_page(npage[0], 0);
460                                 goto release_out;
461                         }
462                 }
463                 if (i < level) {
464                         parent = npage[i];
465                         nids[i + 1] = get_nid(parent, offset[i], false);
466                 }
467         }
468         dn->nid = nids[level];
469         dn->ofs_in_node = offset[level];
470         dn->node_page = npage[level];
471         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
472         return 0;
473
474 release_pages:
475         f2fs_put_page(parent, 1);
476         if (i > 1)
477                 f2fs_put_page(npage[0], 0);
478 release_out:
479         dn->inode_page = NULL;
480         dn->node_page = NULL;
481         return err;
482 }
483
484 static void truncate_node(struct dnode_of_data *dn)
485 {
486         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
487         struct node_info ni;
488
489         get_node_info(sbi, dn->nid, &ni);
490         if (dn->inode->i_blocks == 0) {
491                 BUG_ON(ni.blk_addr != NULL_ADDR);
492                 goto invalidate;
493         }
494         BUG_ON(ni.blk_addr == NULL_ADDR);
495
496         /* Deallocate node address */
497         invalidate_blocks(sbi, ni.blk_addr);
498         dec_valid_node_count(sbi, dn->inode, 1);
499         set_node_addr(sbi, &ni, NULL_ADDR);
500
501         if (dn->nid == dn->inode->i_ino) {
502                 remove_orphan_inode(sbi, dn->nid);
503                 dec_valid_inode_count(sbi);
504         } else {
505                 sync_inode_page(dn);
506         }
507 invalidate:
508         clear_node_page_dirty(dn->node_page);
509         F2FS_SET_SB_DIRT(sbi);
510
511         f2fs_put_page(dn->node_page, 1);
512         dn->node_page = NULL;
513 }
514
515 static int truncate_dnode(struct dnode_of_data *dn)
516 {
517         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
518         struct page *page;
519
520         if (dn->nid == 0)
521                 return 1;
522
523         /* get direct node */
524         page = get_node_page(sbi, dn->nid);
525         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
526                 return 1;
527         else if (IS_ERR(page))
528                 return PTR_ERR(page);
529
530         /* Make dnode_of_data for parameter */
531         dn->node_page = page;
532         dn->ofs_in_node = 0;
533         truncate_data_blocks(dn);
534         truncate_node(dn);
535         return 1;
536 }
537
538 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
539                                                 int ofs, int depth)
540 {
541         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
542         struct dnode_of_data rdn = *dn;
543         struct page *page;
544         struct f2fs_node *rn;
545         nid_t child_nid;
546         unsigned int child_nofs;
547         int freed = 0;
548         int i, ret;
549
550         if (dn->nid == 0)
551                 return NIDS_PER_BLOCK + 1;
552
553         page = get_node_page(sbi, dn->nid);
554         if (IS_ERR(page))
555                 return PTR_ERR(page);
556
557         rn = (struct f2fs_node *)page_address(page);
558         if (depth < 3) {
559                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
560                         child_nid = le32_to_cpu(rn->in.nid[i]);
561                         if (child_nid == 0)
562                                 continue;
563                         rdn.nid = child_nid;
564                         ret = truncate_dnode(&rdn);
565                         if (ret < 0)
566                                 goto out_err;
567                         set_nid(page, i, 0, false);
568                 }
569         } else {
570                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
571                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
572                         child_nid = le32_to_cpu(rn->in.nid[i]);
573                         if (child_nid == 0) {
574                                 child_nofs += NIDS_PER_BLOCK + 1;
575                                 continue;
576                         }
577                         rdn.nid = child_nid;
578                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
579                         if (ret == (NIDS_PER_BLOCK + 1)) {
580                                 set_nid(page, i, 0, false);
581                                 child_nofs += ret;
582                         } else if (ret < 0 && ret != -ENOENT) {
583                                 goto out_err;
584                         }
585                 }
586                 freed = child_nofs;
587         }
588
589         if (!ofs) {
590                 /* remove current indirect node */
591                 dn->node_page = page;
592                 truncate_node(dn);
593                 freed++;
594         } else {
595                 f2fs_put_page(page, 1);
596         }
597         return freed;
598
599 out_err:
600         f2fs_put_page(page, 1);
601         return ret;
602 }
603
604 static int truncate_partial_nodes(struct dnode_of_data *dn,
605                         struct f2fs_inode *ri, int *offset, int depth)
606 {
607         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
608         struct page *pages[2];
609         nid_t nid[3];
610         nid_t child_nid;
611         int err = 0;
612         int i;
613         int idx = depth - 2;
614
615         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
616         if (!nid[0])
617                 return 0;
618
619         /* get indirect nodes in the path */
620         for (i = 0; i < depth - 1; i++) {
621                 /* refernece count'll be increased */
622                 pages[i] = get_node_page(sbi, nid[i]);
623                 if (IS_ERR(pages[i])) {
624                         depth = i + 1;
625                         err = PTR_ERR(pages[i]);
626                         goto fail;
627                 }
628                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
629         }
630
631         /* free direct nodes linked to a partial indirect node */
632         for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
633                 child_nid = get_nid(pages[idx], i, false);
634                 if (!child_nid)
635                         continue;
636                 dn->nid = child_nid;
637                 err = truncate_dnode(dn);
638                 if (err < 0)
639                         goto fail;
640                 set_nid(pages[idx], i, 0, false);
641         }
642
643         if (offset[depth - 1] == 0) {
644                 dn->node_page = pages[idx];
645                 dn->nid = nid[idx];
646                 truncate_node(dn);
647         } else {
648                 f2fs_put_page(pages[idx], 1);
649         }
650         offset[idx]++;
651         offset[depth - 1] = 0;
652 fail:
653         for (i = depth - 3; i >= 0; i--)
654                 f2fs_put_page(pages[i], 1);
655         return err;
656 }
657
658 /*
659  * All the block addresses of data and nodes should be nullified.
660  */
661 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
662 {
663         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
664         int err = 0, cont = 1;
665         int level, offset[4], noffset[4];
666         unsigned int nofs = 0;
667         struct f2fs_node *rn;
668         struct dnode_of_data dn;
669         struct page *page;
670
671         level = get_node_path(from, offset, noffset);
672
673         page = get_node_page(sbi, inode->i_ino);
674         if (IS_ERR(page))
675                 return PTR_ERR(page);
676
677         set_new_dnode(&dn, inode, page, NULL, 0);
678         unlock_page(page);
679
680         rn = page_address(page);
681         switch (level) {
682         case 0:
683         case 1:
684                 nofs = noffset[1];
685                 break;
686         case 2:
687                 nofs = noffset[1];
688                 if (!offset[level - 1])
689                         goto skip_partial;
690                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
691                 if (err < 0 && err != -ENOENT)
692                         goto fail;
693                 nofs += 1 + NIDS_PER_BLOCK;
694                 break;
695         case 3:
696                 nofs = 5 + 2 * NIDS_PER_BLOCK;
697                 if (!offset[level - 1])
698                         goto skip_partial;
699                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
700                 if (err < 0 && err != -ENOENT)
701                         goto fail;
702                 break;
703         default:
704                 BUG();
705         }
706
707 skip_partial:
708         while (cont) {
709                 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
710                 switch (offset[0]) {
711                 case NODE_DIR1_BLOCK:
712                 case NODE_DIR2_BLOCK:
713                         err = truncate_dnode(&dn);
714                         break;
715
716                 case NODE_IND1_BLOCK:
717                 case NODE_IND2_BLOCK:
718                         err = truncate_nodes(&dn, nofs, offset[1], 2);
719                         break;
720
721                 case NODE_DIND_BLOCK:
722                         err = truncate_nodes(&dn, nofs, offset[1], 3);
723                         cont = 0;
724                         break;
725
726                 default:
727                         BUG();
728                 }
729                 if (err < 0 && err != -ENOENT)
730                         goto fail;
731                 if (offset[1] == 0 &&
732                                 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
733                         lock_page(page);
734                         wait_on_page_writeback(page);
735                         rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
736                         set_page_dirty(page);
737                         unlock_page(page);
738                 }
739                 offset[1] = 0;
740                 offset[0]++;
741                 nofs += err;
742         }
743 fail:
744         f2fs_put_page(page, 0);
745         return err > 0 ? 0 : err;
746 }
747
748 int remove_inode_page(struct inode *inode)
749 {
750         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
751         struct page *page;
752         nid_t ino = inode->i_ino;
753         struct dnode_of_data dn;
754
755         mutex_lock_op(sbi, NODE_TRUNC);
756         page = get_node_page(sbi, ino);
757         if (IS_ERR(page)) {
758                 mutex_unlock_op(sbi, NODE_TRUNC);
759                 return PTR_ERR(page);
760         }
761
762         if (F2FS_I(inode)->i_xattr_nid) {
763                 nid_t nid = F2FS_I(inode)->i_xattr_nid;
764                 struct page *npage = get_node_page(sbi, nid);
765
766                 if (IS_ERR(npage)) {
767                         mutex_unlock_op(sbi, NODE_TRUNC);
768                         return PTR_ERR(npage);
769                 }
770
771                 F2FS_I(inode)->i_xattr_nid = 0;
772                 set_new_dnode(&dn, inode, page, npage, nid);
773                 dn.inode_page_locked = 1;
774                 truncate_node(&dn);
775         }
776
777         /* 0 is possible, after f2fs_new_inode() is failed */
778         BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
779         set_new_dnode(&dn, inode, page, page, ino);
780         truncate_node(&dn);
781
782         mutex_unlock_op(sbi, NODE_TRUNC);
783         return 0;
784 }
785
786 int new_inode_page(struct inode *inode, const struct qstr *name)
787 {
788         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
789         struct page *page;
790         struct dnode_of_data dn;
791
792         /* allocate inode page for new inode */
793         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
794         mutex_lock_op(sbi, NODE_NEW);
795         page = new_node_page(&dn, 0);
796         init_dent_inode(name, page);
797         mutex_unlock_op(sbi, NODE_NEW);
798         if (IS_ERR(page))
799                 return PTR_ERR(page);
800         f2fs_put_page(page, 1);
801         return 0;
802 }
803
804 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
805 {
806         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
807         struct address_space *mapping = sbi->node_inode->i_mapping;
808         struct node_info old_ni, new_ni;
809         struct page *page;
810         int err;
811
812         if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
813                 return ERR_PTR(-EPERM);
814
815         page = grab_cache_page(mapping, dn->nid);
816         if (!page)
817                 return ERR_PTR(-ENOMEM);
818
819         get_node_info(sbi, dn->nid, &old_ni);
820
821         SetPageUptodate(page);
822         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
823
824         /* Reinitialize old_ni with new node page */
825         BUG_ON(old_ni.blk_addr != NULL_ADDR);
826         new_ni = old_ni;
827         new_ni.ino = dn->inode->i_ino;
828
829         if (!inc_valid_node_count(sbi, dn->inode, 1)) {
830                 err = -ENOSPC;
831                 goto fail;
832         }
833         set_node_addr(sbi, &new_ni, NEW_ADDR);
834         set_cold_node(dn->inode, page);
835
836         dn->node_page = page;
837         sync_inode_page(dn);
838         set_page_dirty(page);
839         if (ofs == 0)
840                 inc_valid_inode_count(sbi);
841
842         return page;
843
844 fail:
845         clear_node_page_dirty(page);
846         f2fs_put_page(page, 1);
847         return ERR_PTR(err);
848 }
849
850 /*
851  * Caller should do after getting the following values.
852  * 0: f2fs_put_page(page, 0)
853  * LOCKED_PAGE: f2fs_put_page(page, 1)
854  * error: nothing
855  */
856 static int read_node_page(struct page *page, int type)
857 {
858         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
859         struct node_info ni;
860
861         get_node_info(sbi, page->index, &ni);
862
863         if (ni.blk_addr == NULL_ADDR) {
864                 f2fs_put_page(page, 1);
865                 return -ENOENT;
866         }
867
868         if (PageUptodate(page))
869                 return LOCKED_PAGE;
870
871         return f2fs_readpage(sbi, page, ni.blk_addr, type);
872 }
873
874 /*
875  * Readahead a node page
876  */
877 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
878 {
879         struct address_space *mapping = sbi->node_inode->i_mapping;
880         struct page *apage;
881         int err;
882
883         apage = find_get_page(mapping, nid);
884         if (apage && PageUptodate(apage)) {
885                 f2fs_put_page(apage, 0);
886                 return;
887         }
888         f2fs_put_page(apage, 0);
889
890         apage = grab_cache_page(mapping, nid);
891         if (!apage)
892                 return;
893
894         err = read_node_page(apage, READA);
895         if (err == 0)
896                 f2fs_put_page(apage, 0);
897         else if (err == LOCKED_PAGE)
898                 f2fs_put_page(apage, 1);
899         return;
900 }
901
902 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
903 {
904         struct address_space *mapping = sbi->node_inode->i_mapping;
905         struct page *page;
906         int err;
907
908         page = grab_cache_page(mapping, nid);
909         if (!page)
910                 return ERR_PTR(-ENOMEM);
911
912         err = read_node_page(page, READ_SYNC);
913         if (err < 0)
914                 return ERR_PTR(err);
915         else if (err == LOCKED_PAGE)
916                 goto got_it;
917
918         lock_page(page);
919         if (!PageUptodate(page)) {
920                 f2fs_put_page(page, 1);
921                 return ERR_PTR(-EIO);
922         }
923 got_it:
924         BUG_ON(nid != nid_of_node(page));
925         mark_page_accessed(page);
926         return page;
927 }
928
929 /*
930  * Return a locked page for the desired node page.
931  * And, readahead MAX_RA_NODE number of node pages.
932  */
933 struct page *get_node_page_ra(struct page *parent, int start)
934 {
935         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
936         struct address_space *mapping = sbi->node_inode->i_mapping;
937         struct page *page;
938         int err, i, end;
939         nid_t nid;
940
941         /* First, try getting the desired direct node. */
942         nid = get_nid(parent, start, false);
943         if (!nid)
944                 return ERR_PTR(-ENOENT);
945
946         page = grab_cache_page(mapping, nid);
947         if (!page)
948                 return ERR_PTR(-ENOMEM);
949
950         err = read_node_page(page, READ_SYNC);
951         if (err < 0)
952                 return ERR_PTR(err);
953         else if (err == LOCKED_PAGE)
954                 goto page_hit;
955
956         /* Then, try readahead for siblings of the desired node */
957         end = start + MAX_RA_NODE;
958         end = min(end, NIDS_PER_BLOCK);
959         for (i = start + 1; i < end; i++) {
960                 nid = get_nid(parent, i, false);
961                 if (!nid)
962                         continue;
963                 ra_node_page(sbi, nid);
964         }
965
966         lock_page(page);
967
968 page_hit:
969         if (!PageUptodate(page)) {
970                 f2fs_put_page(page, 1);
971                 return ERR_PTR(-EIO);
972         }
973         mark_page_accessed(page);
974         return page;
975 }
976
977 void sync_inode_page(struct dnode_of_data *dn)
978 {
979         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
980                 update_inode(dn->inode, dn->node_page);
981         } else if (dn->inode_page) {
982                 if (!dn->inode_page_locked)
983                         lock_page(dn->inode_page);
984                 update_inode(dn->inode, dn->inode_page);
985                 if (!dn->inode_page_locked)
986                         unlock_page(dn->inode_page);
987         } else {
988                 f2fs_write_inode(dn->inode, NULL);
989         }
990 }
991
992 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
993                                         struct writeback_control *wbc)
994 {
995         struct address_space *mapping = sbi->node_inode->i_mapping;
996         pgoff_t index, end;
997         struct pagevec pvec;
998         int step = ino ? 2 : 0;
999         int nwritten = 0, wrote = 0;
1000
1001         pagevec_init(&pvec, 0);
1002
1003 next_step:
1004         index = 0;
1005         end = LONG_MAX;
1006
1007         while (index <= end) {
1008                 int i, nr_pages;
1009                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1010                                 PAGECACHE_TAG_DIRTY,
1011                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1012                 if (nr_pages == 0)
1013                         break;
1014
1015                 for (i = 0; i < nr_pages; i++) {
1016                         struct page *page = pvec.pages[i];
1017
1018                         /*
1019                          * flushing sequence with step:
1020                          * 0. indirect nodes
1021                          * 1. dentry dnodes
1022                          * 2. file dnodes
1023                          */
1024                         if (step == 0 && IS_DNODE(page))
1025                                 continue;
1026                         if (step == 1 && (!IS_DNODE(page) ||
1027                                                 is_cold_node(page)))
1028                                 continue;
1029                         if (step == 2 && (!IS_DNODE(page) ||
1030                                                 !is_cold_node(page)))
1031                                 continue;
1032
1033                         /*
1034                          * If an fsync mode,
1035                          * we should not skip writing node pages.
1036                          */
1037                         if (ino && ino_of_node(page) == ino)
1038                                 lock_page(page);
1039                         else if (!trylock_page(page))
1040                                 continue;
1041
1042                         if (unlikely(page->mapping != mapping)) {
1043 continue_unlock:
1044                                 unlock_page(page);
1045                                 continue;
1046                         }
1047                         if (ino && ino_of_node(page) != ino)
1048                                 goto continue_unlock;
1049
1050                         if (!PageDirty(page)) {
1051                                 /* someone wrote it for us */
1052                                 goto continue_unlock;
1053                         }
1054
1055                         if (!clear_page_dirty_for_io(page))
1056                                 goto continue_unlock;
1057
1058                         /* called by fsync() */
1059                         if (ino && IS_DNODE(page)) {
1060                                 int mark = !is_checkpointed_node(sbi, ino);
1061                                 set_fsync_mark(page, 1);
1062                                 if (IS_INODE(page))
1063                                         set_dentry_mark(page, mark);
1064                                 nwritten++;
1065                         } else {
1066                                 set_fsync_mark(page, 0);
1067                                 set_dentry_mark(page, 0);
1068                         }
1069                         mapping->a_ops->writepage(page, wbc);
1070                         wrote++;
1071
1072                         if (--wbc->nr_to_write == 0)
1073                                 break;
1074                 }
1075                 pagevec_release(&pvec);
1076                 cond_resched();
1077
1078                 if (wbc->nr_to_write == 0) {
1079                         step = 2;
1080                         break;
1081                 }
1082         }
1083
1084         if (step < 2) {
1085                 step++;
1086                 goto next_step;
1087         }
1088
1089         if (wrote)
1090                 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1091
1092         return nwritten;
1093 }
1094
1095 static int f2fs_write_node_page(struct page *page,
1096                                 struct writeback_control *wbc)
1097 {
1098         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1099         nid_t nid;
1100         block_t new_addr;
1101         struct node_info ni;
1102
1103         wait_on_page_writeback(page);
1104
1105         mutex_lock_op(sbi, NODE_WRITE);
1106
1107         /* get old block addr of this node page */
1108         nid = nid_of_node(page);
1109         BUG_ON(page->index != nid);
1110
1111         get_node_info(sbi, nid, &ni);
1112
1113         /* This page is already truncated */
1114         if (ni.blk_addr == NULL_ADDR)
1115                 goto out;
1116
1117         if (wbc->for_reclaim) {
1118                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1119                 wbc->pages_skipped++;
1120                 set_page_dirty(page);
1121                 mutex_unlock_op(sbi, NODE_WRITE);
1122                 return AOP_WRITEPAGE_ACTIVATE;
1123         }
1124
1125         set_page_writeback(page);
1126
1127         /* insert node offset */
1128         write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1129         set_node_addr(sbi, &ni, new_addr);
1130 out:
1131         dec_page_count(sbi, F2FS_DIRTY_NODES);
1132         mutex_unlock_op(sbi, NODE_WRITE);
1133         unlock_page(page);
1134         return 0;
1135 }
1136
1137 /*
1138  * It is very important to gather dirty pages and write at once, so that we can
1139  * submit a big bio without interfering other data writes.
1140  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1141  */
1142 #define COLLECT_DIRTY_NODES     512
1143 static int f2fs_write_node_pages(struct address_space *mapping,
1144                             struct writeback_control *wbc)
1145 {
1146         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1147         struct block_device *bdev = sbi->sb->s_bdev;
1148         long nr_to_write = wbc->nr_to_write;
1149
1150         /* First check balancing cached NAT entries */
1151         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1152                 f2fs_sync_fs(sbi->sb, true);
1153                 return 0;
1154         }
1155
1156         /* collect a number of dirty node pages and write together */
1157         if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1158                 return 0;
1159
1160         /* if mounting is failed, skip writing node pages */
1161         wbc->nr_to_write = bio_get_nr_vecs(bdev);
1162         sync_node_pages(sbi, 0, wbc);
1163         wbc->nr_to_write = nr_to_write -
1164                 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1165         return 0;
1166 }
1167
1168 static int f2fs_set_node_page_dirty(struct page *page)
1169 {
1170         struct address_space *mapping = page->mapping;
1171         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1172
1173         SetPageUptodate(page);
1174         if (!PageDirty(page)) {
1175                 __set_page_dirty_nobuffers(page);
1176                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1177                 SetPagePrivate(page);
1178                 return 1;
1179         }
1180         return 0;
1181 }
1182
1183 static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1184 {
1185         struct inode *inode = page->mapping->host;
1186         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1187         if (PageDirty(page))
1188                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1189         ClearPagePrivate(page);
1190 }
1191
1192 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1193 {
1194         ClearPagePrivate(page);
1195         return 1;
1196 }
1197
1198 /*
1199  * Structure of the f2fs node operations
1200  */
1201 const struct address_space_operations f2fs_node_aops = {
1202         .writepage      = f2fs_write_node_page,
1203         .writepages     = f2fs_write_node_pages,
1204         .set_page_dirty = f2fs_set_node_page_dirty,
1205         .invalidatepage = f2fs_invalidate_node_page,
1206         .releasepage    = f2fs_release_node_page,
1207 };
1208
1209 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1210 {
1211         struct list_head *this;
1212         struct free_nid *i;
1213         list_for_each(this, head) {
1214                 i = list_entry(this, struct free_nid, list);
1215                 if (i->nid == n)
1216                         return i;
1217         }
1218         return NULL;
1219 }
1220
1221 static void __del_from_free_nid_list(struct free_nid *i)
1222 {
1223         list_del(&i->list);
1224         kmem_cache_free(free_nid_slab, i);
1225 }
1226
1227 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1228 {
1229         struct free_nid *i;
1230
1231         if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1232                 return 0;
1233 retry:
1234         i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1235         if (!i) {
1236                 cond_resched();
1237                 goto retry;
1238         }
1239         i->nid = nid;
1240         i->state = NID_NEW;
1241
1242         spin_lock(&nm_i->free_nid_list_lock);
1243         if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1244                 spin_unlock(&nm_i->free_nid_list_lock);
1245                 kmem_cache_free(free_nid_slab, i);
1246                 return 0;
1247         }
1248         list_add_tail(&i->list, &nm_i->free_nid_list);
1249         nm_i->fcnt++;
1250         spin_unlock(&nm_i->free_nid_list_lock);
1251         return 1;
1252 }
1253
1254 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1255 {
1256         struct free_nid *i;
1257         spin_lock(&nm_i->free_nid_list_lock);
1258         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1259         if (i && i->state == NID_NEW) {
1260                 __del_from_free_nid_list(i);
1261                 nm_i->fcnt--;
1262         }
1263         spin_unlock(&nm_i->free_nid_list_lock);
1264 }
1265
1266 static int scan_nat_page(struct f2fs_nm_info *nm_i,
1267                         struct page *nat_page, nid_t start_nid)
1268 {
1269         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1270         block_t blk_addr;
1271         int fcnt = 0;
1272         int i;
1273
1274         /* 0 nid should not be used */
1275         if (start_nid == 0)
1276                 ++start_nid;
1277
1278         i = start_nid % NAT_ENTRY_PER_BLOCK;
1279
1280         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1281                 if (start_nid >= nm_i->max_nid)
1282                         break;
1283                 blk_addr  = le32_to_cpu(nat_blk->entries[i].block_addr);
1284                 BUG_ON(blk_addr == NEW_ADDR);
1285                 if (blk_addr == NULL_ADDR)
1286                         fcnt += add_free_nid(nm_i, start_nid);
1287         }
1288         return fcnt;
1289 }
1290
1291 static void build_free_nids(struct f2fs_sb_info *sbi)
1292 {
1293         struct free_nid *fnid, *next_fnid;
1294         struct f2fs_nm_info *nm_i = NM_I(sbi);
1295         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1296         struct f2fs_summary_block *sum = curseg->sum_blk;
1297         nid_t nid = 0;
1298         bool is_cycled = false;
1299         int fcnt = 0;
1300         int i;
1301
1302         nid = nm_i->next_scan_nid;
1303         nm_i->init_scan_nid = nid;
1304
1305         ra_nat_pages(sbi, nid);
1306
1307         while (1) {
1308                 struct page *page = get_current_nat_page(sbi, nid);
1309
1310                 fcnt += scan_nat_page(nm_i, page, nid);
1311                 f2fs_put_page(page, 1);
1312
1313                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1314
1315                 if (nid >= nm_i->max_nid) {
1316                         nid = 0;
1317                         is_cycled = true;
1318                 }
1319                 if (fcnt > MAX_FREE_NIDS)
1320                         break;
1321                 if (is_cycled && nm_i->init_scan_nid <= nid)
1322                         break;
1323         }
1324
1325         /* go to the next nat page in order to reuse free nids first */
1326         nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK;
1327
1328         /* find free nids from current sum_pages */
1329         mutex_lock(&curseg->curseg_mutex);
1330         for (i = 0; i < nats_in_cursum(sum); i++) {
1331                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1332                 nid = le32_to_cpu(nid_in_journal(sum, i));
1333                 if (addr == NULL_ADDR)
1334                         add_free_nid(nm_i, nid);
1335                 else
1336                         remove_free_nid(nm_i, nid);
1337         }
1338         mutex_unlock(&curseg->curseg_mutex);
1339
1340         /* remove the free nids from current allocated nids */
1341         list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1342                 struct nat_entry *ne;
1343
1344                 read_lock(&nm_i->nat_tree_lock);
1345                 ne = __lookup_nat_cache(nm_i, fnid->nid);
1346                 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1347                         remove_free_nid(nm_i, fnid->nid);
1348                 read_unlock(&nm_i->nat_tree_lock);
1349         }
1350 }
1351
1352 /*
1353  * If this function returns success, caller can obtain a new nid
1354  * from second parameter of this function.
1355  * The returned nid could be used ino as well as nid when inode is created.
1356  */
1357 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1358 {
1359         struct f2fs_nm_info *nm_i = NM_I(sbi);
1360         struct free_nid *i = NULL;
1361         struct list_head *this;
1362 retry:
1363         mutex_lock(&nm_i->build_lock);
1364         if (!nm_i->fcnt) {
1365                 /* scan NAT in order to build free nid list */
1366                 build_free_nids(sbi);
1367                 if (!nm_i->fcnt) {
1368                         mutex_unlock(&nm_i->build_lock);
1369                         return false;
1370                 }
1371         }
1372         mutex_unlock(&nm_i->build_lock);
1373
1374         /*
1375          * We check fcnt again since previous check is racy as
1376          * we didn't hold free_nid_list_lock. So other thread
1377          * could consume all of free nids.
1378          */
1379         spin_lock(&nm_i->free_nid_list_lock);
1380         if (!nm_i->fcnt) {
1381                 spin_unlock(&nm_i->free_nid_list_lock);
1382                 goto retry;
1383         }
1384
1385         BUG_ON(list_empty(&nm_i->free_nid_list));
1386         list_for_each(this, &nm_i->free_nid_list) {
1387                 i = list_entry(this, struct free_nid, list);
1388                 if (i->state == NID_NEW)
1389                         break;
1390         }
1391
1392         BUG_ON(i->state != NID_NEW);
1393         *nid = i->nid;
1394         i->state = NID_ALLOC;
1395         nm_i->fcnt--;
1396         spin_unlock(&nm_i->free_nid_list_lock);
1397         return true;
1398 }
1399
1400 /*
1401  * alloc_nid() should be called prior to this function.
1402  */
1403 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1404 {
1405         struct f2fs_nm_info *nm_i = NM_I(sbi);
1406         struct free_nid *i;
1407
1408         spin_lock(&nm_i->free_nid_list_lock);
1409         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1410         if (i) {
1411                 BUG_ON(i->state != NID_ALLOC);
1412                 __del_from_free_nid_list(i);
1413         }
1414         spin_unlock(&nm_i->free_nid_list_lock);
1415 }
1416
1417 /*
1418  * alloc_nid() should be called prior to this function.
1419  */
1420 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1421 {
1422         alloc_nid_done(sbi, nid);
1423         add_free_nid(NM_I(sbi), nid);
1424 }
1425
1426 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1427                 struct f2fs_summary *sum, struct node_info *ni,
1428                 block_t new_blkaddr)
1429 {
1430         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1431         set_node_addr(sbi, ni, new_blkaddr);
1432         clear_node_page_dirty(page);
1433 }
1434
1435 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1436 {
1437         struct address_space *mapping = sbi->node_inode->i_mapping;
1438         struct f2fs_node *src, *dst;
1439         nid_t ino = ino_of_node(page);
1440         struct node_info old_ni, new_ni;
1441         struct page *ipage;
1442
1443         ipage = grab_cache_page(mapping, ino);
1444         if (!ipage)
1445                 return -ENOMEM;
1446
1447         /* Should not use this inode  from free nid list */
1448         remove_free_nid(NM_I(sbi), ino);
1449
1450         get_node_info(sbi, ino, &old_ni);
1451         SetPageUptodate(ipage);
1452         fill_node_footer(ipage, ino, ino, 0, true);
1453
1454         src = (struct f2fs_node *)page_address(page);
1455         dst = (struct f2fs_node *)page_address(ipage);
1456
1457         memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1458         dst->i.i_size = 0;
1459         dst->i.i_blocks = cpu_to_le64(1);
1460         dst->i.i_links = cpu_to_le32(1);
1461         dst->i.i_xattr_nid = 0;
1462
1463         new_ni = old_ni;
1464         new_ni.ino = ino;
1465
1466         set_node_addr(sbi, &new_ni, NEW_ADDR);
1467         inc_valid_inode_count(sbi);
1468
1469         f2fs_put_page(ipage, 1);
1470         return 0;
1471 }
1472
1473 int restore_node_summary(struct f2fs_sb_info *sbi,
1474                         unsigned int segno, struct f2fs_summary_block *sum)
1475 {
1476         struct f2fs_node *rn;
1477         struct f2fs_summary *sum_entry;
1478         struct page *page;
1479         block_t addr;
1480         int i, last_offset;
1481
1482         /* alloc temporal page for read node */
1483         page = alloc_page(GFP_NOFS | __GFP_ZERO);
1484         if (IS_ERR(page))
1485                 return PTR_ERR(page);
1486         lock_page(page);
1487
1488         /* scan the node segment */
1489         last_offset = sbi->blocks_per_seg;
1490         addr = START_BLOCK(sbi, segno);
1491         sum_entry = &sum->entries[0];
1492
1493         for (i = 0; i < last_offset; i++, sum_entry++) {
1494                 /*
1495                  * In order to read next node page,
1496                  * we must clear PageUptodate flag.
1497                  */
1498                 ClearPageUptodate(page);
1499
1500                 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1501                         goto out;
1502
1503                 lock_page(page);
1504                 rn = (struct f2fs_node *)page_address(page);
1505                 sum_entry->nid = rn->footer.nid;
1506                 sum_entry->version = 0;
1507                 sum_entry->ofs_in_node = 0;
1508                 addr++;
1509         }
1510         unlock_page(page);
1511 out:
1512         __free_pages(page, 0);
1513         return 0;
1514 }
1515
1516 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1517 {
1518         struct f2fs_nm_info *nm_i = NM_I(sbi);
1519         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1520         struct f2fs_summary_block *sum = curseg->sum_blk;
1521         int i;
1522
1523         mutex_lock(&curseg->curseg_mutex);
1524
1525         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1526                 mutex_unlock(&curseg->curseg_mutex);
1527                 return false;
1528         }
1529
1530         for (i = 0; i < nats_in_cursum(sum); i++) {
1531                 struct nat_entry *ne;
1532                 struct f2fs_nat_entry raw_ne;
1533                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1534
1535                 raw_ne = nat_in_journal(sum, i);
1536 retry:
1537                 write_lock(&nm_i->nat_tree_lock);
1538                 ne = __lookup_nat_cache(nm_i, nid);
1539                 if (ne) {
1540                         __set_nat_cache_dirty(nm_i, ne);
1541                         write_unlock(&nm_i->nat_tree_lock);
1542                         continue;
1543                 }
1544                 ne = grab_nat_entry(nm_i, nid);
1545                 if (!ne) {
1546                         write_unlock(&nm_i->nat_tree_lock);
1547                         goto retry;
1548                 }
1549                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1550                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1551                 nat_set_version(ne, raw_ne.version);
1552                 __set_nat_cache_dirty(nm_i, ne);
1553                 write_unlock(&nm_i->nat_tree_lock);
1554         }
1555         update_nats_in_cursum(sum, -i);
1556         mutex_unlock(&curseg->curseg_mutex);
1557         return true;
1558 }
1559
1560 /*
1561  * This function is called during the checkpointing process.
1562  */
1563 void flush_nat_entries(struct f2fs_sb_info *sbi)
1564 {
1565         struct f2fs_nm_info *nm_i = NM_I(sbi);
1566         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1567         struct f2fs_summary_block *sum = curseg->sum_blk;
1568         struct list_head *cur, *n;
1569         struct page *page = NULL;
1570         struct f2fs_nat_block *nat_blk = NULL;
1571         nid_t start_nid = 0, end_nid = 0;
1572         bool flushed;
1573
1574         flushed = flush_nats_in_journal(sbi);
1575
1576         if (!flushed)
1577                 mutex_lock(&curseg->curseg_mutex);
1578
1579         /* 1) flush dirty nat caches */
1580         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1581                 struct nat_entry *ne;
1582                 nid_t nid;
1583                 struct f2fs_nat_entry raw_ne;
1584                 int offset = -1;
1585                 block_t new_blkaddr;
1586
1587                 ne = list_entry(cur, struct nat_entry, list);
1588                 nid = nat_get_nid(ne);
1589
1590                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1591                         continue;
1592                 if (flushed)
1593                         goto to_nat_page;
1594
1595                 /* if there is room for nat enries in curseg->sumpage */
1596                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1597                 if (offset >= 0) {
1598                         raw_ne = nat_in_journal(sum, offset);
1599                         goto flush_now;
1600                 }
1601 to_nat_page:
1602                 if (!page || (start_nid > nid || nid > end_nid)) {
1603                         if (page) {
1604                                 f2fs_put_page(page, 1);
1605                                 page = NULL;
1606                         }
1607                         start_nid = START_NID(nid);
1608                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1609
1610                         /*
1611                          * get nat block with dirty flag, increased reference
1612                          * count, mapped and lock
1613                          */
1614                         page = get_next_nat_page(sbi, start_nid);
1615                         nat_blk = page_address(page);
1616                 }
1617
1618                 BUG_ON(!nat_blk);
1619                 raw_ne = nat_blk->entries[nid - start_nid];
1620 flush_now:
1621                 new_blkaddr = nat_get_blkaddr(ne);
1622
1623                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1624                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1625                 raw_ne.version = nat_get_version(ne);
1626
1627                 if (offset < 0) {
1628                         nat_blk->entries[nid - start_nid] = raw_ne;
1629                 } else {
1630                         nat_in_journal(sum, offset) = raw_ne;
1631                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1632                 }
1633
1634                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1635                                         !add_free_nid(NM_I(sbi), nid)) {
1636                         write_lock(&nm_i->nat_tree_lock);
1637                         __del_from_nat_cache(nm_i, ne);
1638                         write_unlock(&nm_i->nat_tree_lock);
1639                 } else {
1640                         write_lock(&nm_i->nat_tree_lock);
1641                         __clear_nat_cache_dirty(nm_i, ne);
1642                         ne->checkpointed = true;
1643                         write_unlock(&nm_i->nat_tree_lock);
1644                 }
1645         }
1646         if (!flushed)
1647                 mutex_unlock(&curseg->curseg_mutex);
1648         f2fs_put_page(page, 1);
1649
1650         /* 2) shrink nat caches if necessary */
1651         try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1652 }
1653
1654 static int init_node_manager(struct f2fs_sb_info *sbi)
1655 {
1656         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1657         struct f2fs_nm_info *nm_i = NM_I(sbi);
1658         unsigned char *version_bitmap;
1659         unsigned int nat_segs, nat_blocks;
1660
1661         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1662
1663         /* segment_count_nat includes pair segment so divide to 2. */
1664         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1665         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1666         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1667         nm_i->fcnt = 0;
1668         nm_i->nat_cnt = 0;
1669
1670         INIT_LIST_HEAD(&nm_i->free_nid_list);
1671         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1672         INIT_LIST_HEAD(&nm_i->nat_entries);
1673         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1674
1675         mutex_init(&nm_i->build_lock);
1676         spin_lock_init(&nm_i->free_nid_list_lock);
1677         rwlock_init(&nm_i->nat_tree_lock);
1678
1679         nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1680         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1681         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1682         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1683         if (!version_bitmap)
1684                 return -EFAULT;
1685
1686         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1687                                         GFP_KERNEL);
1688         if (!nm_i->nat_bitmap)
1689                 return -ENOMEM;
1690         return 0;
1691 }
1692
1693 int build_node_manager(struct f2fs_sb_info *sbi)
1694 {
1695         int err;
1696
1697         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1698         if (!sbi->nm_info)
1699                 return -ENOMEM;
1700
1701         err = init_node_manager(sbi);
1702         if (err)
1703                 return err;
1704
1705         build_free_nids(sbi);
1706         return 0;
1707 }
1708
1709 void destroy_node_manager(struct f2fs_sb_info *sbi)
1710 {
1711         struct f2fs_nm_info *nm_i = NM_I(sbi);
1712         struct free_nid *i, *next_i;
1713         struct nat_entry *natvec[NATVEC_SIZE];
1714         nid_t nid = 0;
1715         unsigned int found;
1716
1717         if (!nm_i)
1718                 return;
1719
1720         /* destroy free nid list */
1721         spin_lock(&nm_i->free_nid_list_lock);
1722         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1723                 BUG_ON(i->state == NID_ALLOC);
1724                 __del_from_free_nid_list(i);
1725                 nm_i->fcnt--;
1726         }
1727         BUG_ON(nm_i->fcnt);
1728         spin_unlock(&nm_i->free_nid_list_lock);
1729
1730         /* destroy nat cache */
1731         write_lock(&nm_i->nat_tree_lock);
1732         while ((found = __gang_lookup_nat_cache(nm_i,
1733                                         nid, NATVEC_SIZE, natvec))) {
1734                 unsigned idx;
1735                 for (idx = 0; idx < found; idx++) {
1736                         struct nat_entry *e = natvec[idx];
1737                         nid = nat_get_nid(e) + 1;
1738                         __del_from_nat_cache(nm_i, e);
1739                 }
1740         }
1741         BUG_ON(nm_i->nat_cnt);
1742         write_unlock(&nm_i->nat_tree_lock);
1743
1744         kfree(nm_i->nat_bitmap);
1745         sbi->nm_info = NULL;
1746         kfree(nm_i);
1747 }
1748
1749 int __init create_node_manager_caches(void)
1750 {
1751         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1752                         sizeof(struct nat_entry), NULL);
1753         if (!nat_entry_slab)
1754                 return -ENOMEM;
1755
1756         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1757                         sizeof(struct free_nid), NULL);
1758         if (!free_nid_slab) {
1759                 kmem_cache_destroy(nat_entry_slab);
1760                 return -ENOMEM;
1761         }
1762         return 0;
1763 }
1764
1765 void destroy_node_manager_caches(void)
1766 {
1767         kmem_cache_destroy(free_nid_slab);
1768         kmem_cache_destroy(nat_entry_slab);
1769 }