]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
f2fs: reorder nat cache lock in cache_nat_entry
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49                                                         PAGE_CACHE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_CACHE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55         } else if (type == DIRTY_DENTS) {
56                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57                         return false;
58                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60         } else if (type == INO_ENTRIES) {
61                 int i;
62
63                 for (i = 0; i <= UPDATE_INO; i++)
64                         mem_size += (sbi->im[i].ino_num *
65                                 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67         } else if (type == EXTENT_CACHE) {
68                 mem_size = (atomic_read(&sbi->total_ext_tree) *
69                                 sizeof(struct extent_tree) +
70                                 atomic_read(&sbi->total_ext_node) *
71                                 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73         } else {
74                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75                         return true;
76         }
77         return res;
78 }
79
80 static void clear_node_page_dirty(struct page *page)
81 {
82         struct address_space *mapping = page->mapping;
83         unsigned int long flags;
84
85         if (PageDirty(page)) {
86                 spin_lock_irqsave(&mapping->tree_lock, flags);
87                 radix_tree_tag_clear(&mapping->page_tree,
88                                 page_index(page),
89                                 PAGECACHE_TAG_DIRTY);
90                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91
92                 clear_page_dirty_for_io(page);
93                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94         }
95         ClearPageUptodate(page);
96 }
97
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100         pgoff_t index = current_nat_addr(sbi, nid);
101         return get_meta_page(sbi, index);
102 }
103
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106         struct page *src_page;
107         struct page *dst_page;
108         pgoff_t src_off;
109         pgoff_t dst_off;
110         void *src_addr;
111         void *dst_addr;
112         struct f2fs_nm_info *nm_i = NM_I(sbi);
113
114         src_off = current_nat_addr(sbi, nid);
115         dst_off = next_nat_addr(sbi, src_off);
116
117         /* get current nat block page with lock */
118         src_page = get_meta_page(sbi, src_off);
119         dst_page = grab_meta_page(sbi, dst_off);
120         f2fs_bug_on(sbi, PageDirty(src_page));
121
122         src_addr = page_address(src_page);
123         dst_addr = page_address(dst_page);
124         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125         set_page_dirty(dst_page);
126         f2fs_put_page(src_page, 1);
127
128         set_to_next_nat(nm_i, nid);
129
130         return dst_page;
131 }
132
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135         return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139                 nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146         list_del(&e->list);
147         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148         nm_i->nat_cnt--;
149         kmem_cache_free(nat_entry_slab, e);
150 }
151
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153                                                 struct nat_entry *ne)
154 {
155         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156         struct nat_entry_set *head;
157
158         if (get_nat_flag(ne, IS_DIRTY))
159                 return;
160
161         head = radix_tree_lookup(&nm_i->nat_set_root, set);
162         if (!head) {
163                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165                 INIT_LIST_HEAD(&head->entry_list);
166                 INIT_LIST_HEAD(&head->set_list);
167                 head->set = set;
168                 head->entry_cnt = 0;
169                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170         }
171         list_move_tail(&ne->list, &head->entry_list);
172         nm_i->dirty_nat_cnt++;
173         head->entry_cnt++;
174         set_nat_flag(ne, IS_DIRTY, true);
175 }
176
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178                                                 struct nat_entry *ne)
179 {
180         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181         struct nat_entry_set *head;
182
183         head = radix_tree_lookup(&nm_i->nat_set_root, set);
184         if (head) {
185                 list_move_tail(&ne->list, &nm_i->nat_entries);
186                 set_nat_flag(ne, IS_DIRTY, false);
187                 head->entry_cnt--;
188                 nm_i->dirty_nat_cnt--;
189         }
190 }
191
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196                                                         start, nr);
197 }
198
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201         struct f2fs_nm_info *nm_i = NM_I(sbi);
202         struct nat_entry *e;
203         bool need = false;
204
205         down_read(&nm_i->nat_tree_lock);
206         e = __lookup_nat_cache(nm_i, nid);
207         if (e) {
208                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
210                         need = true;
211         }
212         up_read(&nm_i->nat_tree_lock);
213         return need;
214 }
215
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218         struct f2fs_nm_info *nm_i = NM_I(sbi);
219         struct nat_entry *e;
220         bool is_cp = true;
221
222         down_read(&nm_i->nat_tree_lock);
223         e = __lookup_nat_cache(nm_i, nid);
224         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225                 is_cp = false;
226         up_read(&nm_i->nat_tree_lock);
227         return is_cp;
228 }
229
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232         struct f2fs_nm_info *nm_i = NM_I(sbi);
233         struct nat_entry *e;
234         bool need_update = true;
235
236         down_read(&nm_i->nat_tree_lock);
237         e = __lookup_nat_cache(nm_i, ino);
238         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239                         (get_nat_flag(e, IS_CHECKPOINTED) ||
240                          get_nat_flag(e, HAS_FSYNCED_INODE)))
241                 need_update = false;
242         up_read(&nm_i->nat_tree_lock);
243         return need_update;
244 }
245
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248         struct nat_entry *new;
249
250         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252         memset(new, 0, sizeof(struct nat_entry));
253         nat_set_nid(new, nid);
254         nat_reset_flag(new);
255         list_add_tail(&new->list, &nm_i->nat_entries);
256         nm_i->nat_cnt++;
257         return new;
258 }
259
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261                                                 struct f2fs_nat_entry *ne)
262 {
263         struct f2fs_nm_info *nm_i = NM_I(sbi);
264         struct nat_entry *e;
265
266         e = __lookup_nat_cache(nm_i, nid);
267         if (!e) {
268                 e = grab_nat_entry(nm_i, nid);
269                 node_info_from_raw_nat(&e->ni, ne);
270         } else {
271                 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272                                 nat_get_blkaddr(e) != ne->block_addr ||
273                                 nat_get_version(e) != ne->version);
274         }
275 }
276
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278                         block_t new_blkaddr, bool fsync_done)
279 {
280         struct f2fs_nm_info *nm_i = NM_I(sbi);
281         struct nat_entry *e;
282
283         down_write(&nm_i->nat_tree_lock);
284         e = __lookup_nat_cache(nm_i, ni->nid);
285         if (!e) {
286                 e = grab_nat_entry(nm_i, ni->nid);
287                 copy_node_info(&e->ni, ni);
288                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289         } else if (new_blkaddr == NEW_ADDR) {
290                 /*
291                  * when nid is reallocated,
292                  * previous nat entry can be remained in nat cache.
293                  * So, reinitialize it with new information.
294                  */
295                 copy_node_info(&e->ni, ni);
296                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297         }
298
299         /* sanity check */
300         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302                         new_blkaddr == NULL_ADDR);
303         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304                         new_blkaddr == NEW_ADDR);
305         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306                         nat_get_blkaddr(e) != NULL_ADDR &&
307                         new_blkaddr == NEW_ADDR);
308
309         /* increment version no as node is removed */
310         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311                 unsigned char version = nat_get_version(e);
312                 nat_set_version(e, inc_node_version(version));
313
314                 /* in order to reuse the nid */
315                 if (nm_i->next_scan_nid > ni->nid)
316                         nm_i->next_scan_nid = ni->nid;
317         }
318
319         /* change address */
320         nat_set_blkaddr(e, new_blkaddr);
321         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322                 set_nat_flag(e, IS_CHECKPOINTED, false);
323         __set_nat_cache_dirty(nm_i, e);
324
325         /* update fsync_mark if its inode nat entry is still alive */
326         if (ni->nid != ni->ino)
327                 e = __lookup_nat_cache(nm_i, ni->ino);
328         if (e) {
329                 if (fsync_done && ni->nid == ni->ino)
330                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
331                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332         }
333         up_write(&nm_i->nat_tree_lock);
334 }
335
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338         struct f2fs_nm_info *nm_i = NM_I(sbi);
339         int nr = nr_shrink;
340
341         if (!down_write_trylock(&nm_i->nat_tree_lock))
342                 return 0;
343
344         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345                 struct nat_entry *ne;
346                 ne = list_first_entry(&nm_i->nat_entries,
347                                         struct nat_entry, list);
348                 __del_from_nat_cache(nm_i, ne);
349                 nr_shrink--;
350         }
351         up_write(&nm_i->nat_tree_lock);
352         return nr - nr_shrink;
353 }
354
355 /*
356  * This function always returns success
357  */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360         struct f2fs_nm_info *nm_i = NM_I(sbi);
361         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362         struct f2fs_journal *journal = curseg->journal;
363         nid_t start_nid = START_NID(nid);
364         struct f2fs_nat_block *nat_blk;
365         struct page *page = NULL;
366         struct f2fs_nat_entry ne;
367         struct nat_entry *e;
368         int i;
369
370         ni->nid = nid;
371
372         /* Check nat cache */
373         down_read(&nm_i->nat_tree_lock);
374         e = __lookup_nat_cache(nm_i, nid);
375         if (e) {
376                 ni->ino = nat_get_ino(e);
377                 ni->blk_addr = nat_get_blkaddr(e);
378                 ni->version = nat_get_version(e);
379                 up_read(&nm_i->nat_tree_lock);
380                 return;
381         }
382
383         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384
385         /* Check current segment summary */
386         down_read(&curseg->journal_rwsem);
387         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388         if (i >= 0) {
389                 ne = nat_in_journal(journal, i);
390                 node_info_from_raw_nat(ni, &ne);
391         }
392         up_read(&curseg->journal_rwsem);
393         if (i >= 0)
394                 goto cache;
395
396         /* Fill node_info from nat page */
397         page = get_current_nat_page(sbi, start_nid);
398         nat_blk = (struct f2fs_nat_block *)page_address(page);
399         ne = nat_blk->entries[nid - start_nid];
400         node_info_from_raw_nat(ni, &ne);
401         f2fs_put_page(page, 1);
402 cache:
403         up_read(&nm_i->nat_tree_lock);
404         /* cache nat entry */
405         down_write(&nm_i->nat_tree_lock);
406         cache_nat_entry(sbi, nid, &ne);
407         up_write(&nm_i->nat_tree_lock);
408 }
409
410 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
411 {
412         const long direct_index = ADDRS_PER_INODE(dn->inode);
413         const long direct_blks = ADDRS_PER_BLOCK;
414         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
415         unsigned int skipped_unit = ADDRS_PER_BLOCK;
416         int cur_level = dn->cur_level;
417         int max_level = dn->max_level;
418         pgoff_t base = 0;
419
420         if (!dn->max_level)
421                 return pgofs + 1;
422
423         while (max_level-- > cur_level)
424                 skipped_unit *= NIDS_PER_BLOCK;
425
426         switch (dn->max_level) {
427         case 3:
428                 base += 2 * indirect_blks;
429         case 2:
430                 base += 2 * direct_blks;
431         case 1:
432                 base += direct_index;
433                 break;
434         default:
435                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
436         }
437
438         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
439 }
440
441 /*
442  * The maximum depth is four.
443  * Offset[0] will have raw inode offset.
444  */
445 static int get_node_path(struct inode *inode, long block,
446                                 int offset[4], unsigned int noffset[4])
447 {
448         const long direct_index = ADDRS_PER_INODE(inode);
449         const long direct_blks = ADDRS_PER_BLOCK;
450         const long dptrs_per_blk = NIDS_PER_BLOCK;
451         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
452         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
453         int n = 0;
454         int level = 0;
455
456         noffset[0] = 0;
457
458         if (block < direct_index) {
459                 offset[n] = block;
460                 goto got;
461         }
462         block -= direct_index;
463         if (block < direct_blks) {
464                 offset[n++] = NODE_DIR1_BLOCK;
465                 noffset[n] = 1;
466                 offset[n] = block;
467                 level = 1;
468                 goto got;
469         }
470         block -= direct_blks;
471         if (block < direct_blks) {
472                 offset[n++] = NODE_DIR2_BLOCK;
473                 noffset[n] = 2;
474                 offset[n] = block;
475                 level = 1;
476                 goto got;
477         }
478         block -= direct_blks;
479         if (block < indirect_blks) {
480                 offset[n++] = NODE_IND1_BLOCK;
481                 noffset[n] = 3;
482                 offset[n++] = block / direct_blks;
483                 noffset[n] = 4 + offset[n - 1];
484                 offset[n] = block % direct_blks;
485                 level = 2;
486                 goto got;
487         }
488         block -= indirect_blks;
489         if (block < indirect_blks) {
490                 offset[n++] = NODE_IND2_BLOCK;
491                 noffset[n] = 4 + dptrs_per_blk;
492                 offset[n++] = block / direct_blks;
493                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
494                 offset[n] = block % direct_blks;
495                 level = 2;
496                 goto got;
497         }
498         block -= indirect_blks;
499         if (block < dindirect_blks) {
500                 offset[n++] = NODE_DIND_BLOCK;
501                 noffset[n] = 5 + (dptrs_per_blk * 2);
502                 offset[n++] = block / indirect_blks;
503                 noffset[n] = 6 + (dptrs_per_blk * 2) +
504                               offset[n - 1] * (dptrs_per_blk + 1);
505                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
506                 noffset[n] = 7 + (dptrs_per_blk * 2) +
507                               offset[n - 2] * (dptrs_per_blk + 1) +
508                               offset[n - 1];
509                 offset[n] = block % direct_blks;
510                 level = 3;
511                 goto got;
512         } else {
513                 BUG();
514         }
515 got:
516         return level;
517 }
518
519 /*
520  * Caller should call f2fs_put_dnode(dn).
521  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
522  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
523  * In the case of RDONLY_NODE, we don't need to care about mutex.
524  */
525 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
526 {
527         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
528         struct page *npage[4];
529         struct page *parent = NULL;
530         int offset[4];
531         unsigned int noffset[4];
532         nid_t nids[4];
533         int level, i = 0;
534         int err = 0;
535
536         level = get_node_path(dn->inode, index, offset, noffset);
537
538         nids[0] = dn->inode->i_ino;
539         npage[0] = dn->inode_page;
540
541         if (!npage[0]) {
542                 npage[0] = get_node_page(sbi, nids[0]);
543                 if (IS_ERR(npage[0]))
544                         return PTR_ERR(npage[0]);
545         }
546
547         /* if inline_data is set, should not report any block indices */
548         if (f2fs_has_inline_data(dn->inode) && index) {
549                 err = -ENOENT;
550                 f2fs_put_page(npage[0], 1);
551                 goto release_out;
552         }
553
554         parent = npage[0];
555         if (level != 0)
556                 nids[1] = get_nid(parent, offset[0], true);
557         dn->inode_page = npage[0];
558         dn->inode_page_locked = true;
559
560         /* get indirect or direct nodes */
561         for (i = 1; i <= level; i++) {
562                 bool done = false;
563
564                 if (!nids[i] && mode == ALLOC_NODE) {
565                         /* alloc new node */
566                         if (!alloc_nid(sbi, &(nids[i]))) {
567                                 err = -ENOSPC;
568                                 goto release_pages;
569                         }
570
571                         dn->nid = nids[i];
572                         npage[i] = new_node_page(dn, noffset[i], NULL);
573                         if (IS_ERR(npage[i])) {
574                                 alloc_nid_failed(sbi, nids[i]);
575                                 err = PTR_ERR(npage[i]);
576                                 goto release_pages;
577                         }
578
579                         set_nid(parent, offset[i - 1], nids[i], i == 1);
580                         alloc_nid_done(sbi, nids[i]);
581                         done = true;
582                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
583                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
584                         if (IS_ERR(npage[i])) {
585                                 err = PTR_ERR(npage[i]);
586                                 goto release_pages;
587                         }
588                         done = true;
589                 }
590                 if (i == 1) {
591                         dn->inode_page_locked = false;
592                         unlock_page(parent);
593                 } else {
594                         f2fs_put_page(parent, 1);
595                 }
596
597                 if (!done) {
598                         npage[i] = get_node_page(sbi, nids[i]);
599                         if (IS_ERR(npage[i])) {
600                                 err = PTR_ERR(npage[i]);
601                                 f2fs_put_page(npage[0], 0);
602                                 goto release_out;
603                         }
604                 }
605                 if (i < level) {
606                         parent = npage[i];
607                         nids[i + 1] = get_nid(parent, offset[i], false);
608                 }
609         }
610         dn->nid = nids[level];
611         dn->ofs_in_node = offset[level];
612         dn->node_page = npage[level];
613         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
614         return 0;
615
616 release_pages:
617         f2fs_put_page(parent, 1);
618         if (i > 1)
619                 f2fs_put_page(npage[0], 0);
620 release_out:
621         dn->inode_page = NULL;
622         dn->node_page = NULL;
623         if (err == -ENOENT) {
624                 dn->cur_level = i;
625                 dn->max_level = level;
626         }
627         return err;
628 }
629
630 static void truncate_node(struct dnode_of_data *dn)
631 {
632         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
633         struct node_info ni;
634
635         get_node_info(sbi, dn->nid, &ni);
636         if (dn->inode->i_blocks == 0) {
637                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
638                 goto invalidate;
639         }
640         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
641
642         /* Deallocate node address */
643         invalidate_blocks(sbi, ni.blk_addr);
644         dec_valid_node_count(sbi, dn->inode);
645         set_node_addr(sbi, &ni, NULL_ADDR, false);
646
647         if (dn->nid == dn->inode->i_ino) {
648                 remove_orphan_inode(sbi, dn->nid);
649                 dec_valid_inode_count(sbi);
650         } else {
651                 sync_inode_page(dn);
652         }
653 invalidate:
654         clear_node_page_dirty(dn->node_page);
655         set_sbi_flag(sbi, SBI_IS_DIRTY);
656
657         f2fs_put_page(dn->node_page, 1);
658
659         invalidate_mapping_pages(NODE_MAPPING(sbi),
660                         dn->node_page->index, dn->node_page->index);
661
662         dn->node_page = NULL;
663         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
664 }
665
666 static int truncate_dnode(struct dnode_of_data *dn)
667 {
668         struct page *page;
669
670         if (dn->nid == 0)
671                 return 1;
672
673         /* get direct node */
674         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
675         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
676                 return 1;
677         else if (IS_ERR(page))
678                 return PTR_ERR(page);
679
680         /* Make dnode_of_data for parameter */
681         dn->node_page = page;
682         dn->ofs_in_node = 0;
683         truncate_data_blocks(dn);
684         truncate_node(dn);
685         return 1;
686 }
687
688 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
689                                                 int ofs, int depth)
690 {
691         struct dnode_of_data rdn = *dn;
692         struct page *page;
693         struct f2fs_node *rn;
694         nid_t child_nid;
695         unsigned int child_nofs;
696         int freed = 0;
697         int i, ret;
698
699         if (dn->nid == 0)
700                 return NIDS_PER_BLOCK + 1;
701
702         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
703
704         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
705         if (IS_ERR(page)) {
706                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
707                 return PTR_ERR(page);
708         }
709
710         rn = F2FS_NODE(page);
711         if (depth < 3) {
712                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
713                         child_nid = le32_to_cpu(rn->in.nid[i]);
714                         if (child_nid == 0)
715                                 continue;
716                         rdn.nid = child_nid;
717                         ret = truncate_dnode(&rdn);
718                         if (ret < 0)
719                                 goto out_err;
720                         if (set_nid(page, i, 0, false))
721                                 dn->node_changed = true;
722                 }
723         } else {
724                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
725                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
726                         child_nid = le32_to_cpu(rn->in.nid[i]);
727                         if (child_nid == 0) {
728                                 child_nofs += NIDS_PER_BLOCK + 1;
729                                 continue;
730                         }
731                         rdn.nid = child_nid;
732                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
733                         if (ret == (NIDS_PER_BLOCK + 1)) {
734                                 if (set_nid(page, i, 0, false))
735                                         dn->node_changed = true;
736                                 child_nofs += ret;
737                         } else if (ret < 0 && ret != -ENOENT) {
738                                 goto out_err;
739                         }
740                 }
741                 freed = child_nofs;
742         }
743
744         if (!ofs) {
745                 /* remove current indirect node */
746                 dn->node_page = page;
747                 truncate_node(dn);
748                 freed++;
749         } else {
750                 f2fs_put_page(page, 1);
751         }
752         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
753         return freed;
754
755 out_err:
756         f2fs_put_page(page, 1);
757         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
758         return ret;
759 }
760
761 static int truncate_partial_nodes(struct dnode_of_data *dn,
762                         struct f2fs_inode *ri, int *offset, int depth)
763 {
764         struct page *pages[2];
765         nid_t nid[3];
766         nid_t child_nid;
767         int err = 0;
768         int i;
769         int idx = depth - 2;
770
771         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
772         if (!nid[0])
773                 return 0;
774
775         /* get indirect nodes in the path */
776         for (i = 0; i < idx + 1; i++) {
777                 /* reference count'll be increased */
778                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
779                 if (IS_ERR(pages[i])) {
780                         err = PTR_ERR(pages[i]);
781                         idx = i - 1;
782                         goto fail;
783                 }
784                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
785         }
786
787         /* free direct nodes linked to a partial indirect node */
788         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
789                 child_nid = get_nid(pages[idx], i, false);
790                 if (!child_nid)
791                         continue;
792                 dn->nid = child_nid;
793                 err = truncate_dnode(dn);
794                 if (err < 0)
795                         goto fail;
796                 if (set_nid(pages[idx], i, 0, false))
797                         dn->node_changed = true;
798         }
799
800         if (offset[idx + 1] == 0) {
801                 dn->node_page = pages[idx];
802                 dn->nid = nid[idx];
803                 truncate_node(dn);
804         } else {
805                 f2fs_put_page(pages[idx], 1);
806         }
807         offset[idx]++;
808         offset[idx + 1] = 0;
809         idx--;
810 fail:
811         for (i = idx; i >= 0; i--)
812                 f2fs_put_page(pages[i], 1);
813
814         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
815
816         return err;
817 }
818
819 /*
820  * All the block addresses of data and nodes should be nullified.
821  */
822 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
823 {
824         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
825         int err = 0, cont = 1;
826         int level, offset[4], noffset[4];
827         unsigned int nofs = 0;
828         struct f2fs_inode *ri;
829         struct dnode_of_data dn;
830         struct page *page;
831
832         trace_f2fs_truncate_inode_blocks_enter(inode, from);
833
834         level = get_node_path(inode, from, offset, noffset);
835 restart:
836         page = get_node_page(sbi, inode->i_ino);
837         if (IS_ERR(page)) {
838                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
839                 return PTR_ERR(page);
840         }
841
842         set_new_dnode(&dn, inode, page, NULL, 0);
843         unlock_page(page);
844
845         ri = F2FS_INODE(page);
846         switch (level) {
847         case 0:
848         case 1:
849                 nofs = noffset[1];
850                 break;
851         case 2:
852                 nofs = noffset[1];
853                 if (!offset[level - 1])
854                         goto skip_partial;
855                 err = truncate_partial_nodes(&dn, ri, offset, level);
856                 if (err < 0 && err != -ENOENT)
857                         goto fail;
858                 nofs += 1 + NIDS_PER_BLOCK;
859                 break;
860         case 3:
861                 nofs = 5 + 2 * NIDS_PER_BLOCK;
862                 if (!offset[level - 1])
863                         goto skip_partial;
864                 err = truncate_partial_nodes(&dn, ri, offset, level);
865                 if (err < 0 && err != -ENOENT)
866                         goto fail;
867                 break;
868         default:
869                 BUG();
870         }
871
872 skip_partial:
873         while (cont) {
874                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
875                 switch (offset[0]) {
876                 case NODE_DIR1_BLOCK:
877                 case NODE_DIR2_BLOCK:
878                         err = truncate_dnode(&dn);
879                         break;
880
881                 case NODE_IND1_BLOCK:
882                 case NODE_IND2_BLOCK:
883                         err = truncate_nodes(&dn, nofs, offset[1], 2);
884                         break;
885
886                 case NODE_DIND_BLOCK:
887                         err = truncate_nodes(&dn, nofs, offset[1], 3);
888                         cont = 0;
889                         break;
890
891                 default:
892                         BUG();
893                 }
894                 if (err < 0 && err != -ENOENT)
895                         goto fail;
896                 if (offset[1] == 0 &&
897                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
898                         lock_page(page);
899                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
900                                 f2fs_put_page(page, 1);
901                                 goto restart;
902                         }
903                         f2fs_wait_on_page_writeback(page, NODE, true);
904                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
905                         set_page_dirty(page);
906                         unlock_page(page);
907                 }
908                 offset[1] = 0;
909                 offset[0]++;
910                 nofs += err;
911         }
912 fail:
913         f2fs_put_page(page, 0);
914         trace_f2fs_truncate_inode_blocks_exit(inode, err);
915         return err > 0 ? 0 : err;
916 }
917
918 int truncate_xattr_node(struct inode *inode, struct page *page)
919 {
920         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921         nid_t nid = F2FS_I(inode)->i_xattr_nid;
922         struct dnode_of_data dn;
923         struct page *npage;
924
925         if (!nid)
926                 return 0;
927
928         npage = get_node_page(sbi, nid);
929         if (IS_ERR(npage))
930                 return PTR_ERR(npage);
931
932         F2FS_I(inode)->i_xattr_nid = 0;
933
934         /* need to do checkpoint during fsync */
935         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
936
937         set_new_dnode(&dn, inode, page, npage, nid);
938
939         if (page)
940                 dn.inode_page_locked = true;
941         truncate_node(&dn);
942         return 0;
943 }
944
945 /*
946  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
947  * f2fs_unlock_op().
948  */
949 int remove_inode_page(struct inode *inode)
950 {
951         struct dnode_of_data dn;
952         int err;
953
954         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
955         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
956         if (err)
957                 return err;
958
959         err = truncate_xattr_node(inode, dn.inode_page);
960         if (err) {
961                 f2fs_put_dnode(&dn);
962                 return err;
963         }
964
965         /* remove potential inline_data blocks */
966         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
967                                 S_ISLNK(inode->i_mode))
968                 truncate_data_blocks_range(&dn, 1);
969
970         /* 0 is possible, after f2fs_new_inode() has failed */
971         f2fs_bug_on(F2FS_I_SB(inode),
972                         inode->i_blocks != 0 && inode->i_blocks != 1);
973
974         /* will put inode & node pages */
975         truncate_node(&dn);
976         return 0;
977 }
978
979 struct page *new_inode_page(struct inode *inode)
980 {
981         struct dnode_of_data dn;
982
983         /* allocate inode page for new inode */
984         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
985
986         /* caller should f2fs_put_page(page, 1); */
987         return new_node_page(&dn, 0, NULL);
988 }
989
990 struct page *new_node_page(struct dnode_of_data *dn,
991                                 unsigned int ofs, struct page *ipage)
992 {
993         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
994         struct node_info old_ni, new_ni;
995         struct page *page;
996         int err;
997
998         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
999                 return ERR_PTR(-EPERM);
1000
1001         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002         if (!page)
1003                 return ERR_PTR(-ENOMEM);
1004
1005         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006                 err = -ENOSPC;
1007                 goto fail;
1008         }
1009
1010         get_node_info(sbi, dn->nid, &old_ni);
1011
1012         /* Reinitialize old_ni with new node page */
1013         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014         new_ni = old_ni;
1015         new_ni.ino = dn->inode->i_ino;
1016         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018         f2fs_wait_on_page_writeback(page, NODE, true);
1019         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020         set_cold_node(dn->inode, page);
1021         SetPageUptodate(page);
1022         if (set_page_dirty(page))
1023                 dn->node_changed = true;
1024
1025         if (f2fs_has_xattr_block(ofs))
1026                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028         dn->node_page = page;
1029         if (ipage)
1030                 update_inode(dn->inode, ipage);
1031         else
1032                 sync_inode_page(dn);
1033         if (ofs == 0)
1034                 inc_valid_inode_count(sbi);
1035
1036         return page;
1037
1038 fail:
1039         clear_node_page_dirty(page);
1040         f2fs_put_page(page, 1);
1041         return ERR_PTR(err);
1042 }
1043
1044 /*
1045  * Caller should do after getting the following values.
1046  * 0: f2fs_put_page(page, 0)
1047  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048  */
1049 static int read_node_page(struct page *page, int rw)
1050 {
1051         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052         struct node_info ni;
1053         struct f2fs_io_info fio = {
1054                 .sbi = sbi,
1055                 .type = NODE,
1056                 .rw = rw,
1057                 .page = page,
1058                 .encrypted_page = NULL,
1059         };
1060
1061         get_node_info(sbi, page->index, &ni);
1062
1063         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064                 ClearPageUptodate(page);
1065                 return -ENOENT;
1066         }
1067
1068         if (PageUptodate(page))
1069                 return LOCKED_PAGE;
1070
1071         fio.blk_addr = ni.blk_addr;
1072         return f2fs_submit_page_bio(&fio);
1073 }
1074
1075 /*
1076  * Readahead a node page
1077  */
1078 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079 {
1080         struct page *apage;
1081         int err;
1082
1083         if (!nid)
1084                 return;
1085         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087         apage = find_get_page(NODE_MAPPING(sbi), nid);
1088         if (apage && PageUptodate(apage)) {
1089                 f2fs_put_page(apage, 0);
1090                 return;
1091         }
1092         f2fs_put_page(apage, 0);
1093
1094         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1095         if (!apage)
1096                 return;
1097
1098         err = read_node_page(apage, READA);
1099         f2fs_put_page(apage, err ? 1 : 0);
1100 }
1101
1102 /*
1103  * readahead MAX_RA_NODE number of node pages.
1104  */
1105 void ra_node_pages(struct page *parent, int start)
1106 {
1107         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1108         struct blk_plug plug;
1109         int i, end;
1110         nid_t nid;
1111
1112         blk_start_plug(&plug);
1113
1114         /* Then, try readahead for siblings of the desired node */
1115         end = start + MAX_RA_NODE;
1116         end = min(end, NIDS_PER_BLOCK);
1117         for (i = start; i < end; i++) {
1118                 nid = get_nid(parent, i, false);
1119                 ra_node_page(sbi, nid);
1120         }
1121
1122         blk_finish_plug(&plug);
1123 }
1124
1125 struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1126                                         struct page *parent, int start)
1127 {
1128         struct page *page;
1129         int err;
1130
1131         if (!nid)
1132                 return ERR_PTR(-ENOENT);
1133         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1134 repeat:
1135         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1136         if (!page)
1137                 return ERR_PTR(-ENOMEM);
1138
1139         err = read_node_page(page, READ_SYNC);
1140         if (err < 0) {
1141                 f2fs_put_page(page, 1);
1142                 return ERR_PTR(err);
1143         } else if (err == LOCKED_PAGE) {
1144                 goto page_hit;
1145         }
1146
1147         if (parent)
1148                 ra_node_pages(parent, start + 1);
1149
1150         lock_page(page);
1151
1152         if (unlikely(!PageUptodate(page))) {
1153                 f2fs_put_page(page, 1);
1154                 return ERR_PTR(-EIO);
1155         }
1156         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1157                 f2fs_put_page(page, 1);
1158                 goto repeat;
1159         }
1160 page_hit:
1161         f2fs_bug_on(sbi, nid != nid_of_node(page));
1162         return page;
1163 }
1164
1165 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1166 {
1167         return __get_node_page(sbi, nid, NULL, 0);
1168 }
1169
1170 struct page *get_node_page_ra(struct page *parent, int start)
1171 {
1172         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1173         nid_t nid = get_nid(parent, start, false);
1174
1175         return __get_node_page(sbi, nid, parent, start);
1176 }
1177
1178 void sync_inode_page(struct dnode_of_data *dn)
1179 {
1180         int ret = 0;
1181
1182         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1183                 ret = update_inode(dn->inode, dn->node_page);
1184         } else if (dn->inode_page) {
1185                 if (!dn->inode_page_locked)
1186                         lock_page(dn->inode_page);
1187                 ret = update_inode(dn->inode, dn->inode_page);
1188                 if (!dn->inode_page_locked)
1189                         unlock_page(dn->inode_page);
1190         } else {
1191                 ret = update_inode_page(dn->inode);
1192         }
1193         dn->node_changed = ret ? true: false;
1194 }
1195
1196 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1197 {
1198         struct inode *inode;
1199         struct page *page;
1200
1201         /* should flush inline_data before evict_inode */
1202         inode = ilookup(sbi->sb, ino);
1203         if (!inode)
1204                 return;
1205
1206         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1207         if (!page)
1208                 goto iput_out;
1209
1210         if (!PageUptodate(page))
1211                 goto page_out;
1212
1213         if (!PageDirty(page))
1214                 goto page_out;
1215
1216         if (!clear_page_dirty_for_io(page))
1217                 goto page_out;
1218
1219         if (!f2fs_write_inline_data(inode, page))
1220                 inode_dec_dirty_pages(inode);
1221         else
1222                 set_page_dirty(page);
1223 page_out:
1224         f2fs_put_page(page, 1);
1225 iput_out:
1226         iput(inode);
1227 }
1228
1229 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1230                                         struct writeback_control *wbc)
1231 {
1232         pgoff_t index, end;
1233         struct pagevec pvec;
1234         int step = ino ? 2 : 0;
1235         int nwritten = 0, wrote = 0;
1236
1237         pagevec_init(&pvec, 0);
1238
1239 next_step:
1240         index = 0;
1241         end = LONG_MAX;
1242
1243         while (index <= end) {
1244                 int i, nr_pages;
1245                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1246                                 PAGECACHE_TAG_DIRTY,
1247                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1248                 if (nr_pages == 0)
1249                         break;
1250
1251                 for (i = 0; i < nr_pages; i++) {
1252                         struct page *page = pvec.pages[i];
1253
1254                         if (unlikely(f2fs_cp_error(sbi))) {
1255                                 pagevec_release(&pvec);
1256                                 return -EIO;
1257                         }
1258
1259                         /*
1260                          * flushing sequence with step:
1261                          * 0. indirect nodes
1262                          * 1. dentry dnodes
1263                          * 2. file dnodes
1264                          */
1265                         if (step == 0 && IS_DNODE(page))
1266                                 continue;
1267                         if (step == 1 && (!IS_DNODE(page) ||
1268                                                 is_cold_node(page)))
1269                                 continue;
1270                         if (step == 2 && (!IS_DNODE(page) ||
1271                                                 !is_cold_node(page)))
1272                                 continue;
1273
1274                         /*
1275                          * If an fsync mode,
1276                          * we should not skip writing node pages.
1277                          */
1278                         if (ino && ino_of_node(page) == ino)
1279                                 lock_page(page);
1280                         else if (!trylock_page(page))
1281                                 continue;
1282
1283                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1284 continue_unlock:
1285                                 unlock_page(page);
1286                                 continue;
1287                         }
1288                         if (ino && ino_of_node(page) != ino)
1289                                 goto continue_unlock;
1290
1291                         if (!PageDirty(page)) {
1292                                 /* someone wrote it for us */
1293                                 goto continue_unlock;
1294                         }
1295
1296                         /* flush inline_data */
1297                         if (!ino && is_inline_node(page)) {
1298                                 clear_inline_node(page);
1299                                 unlock_page(page);
1300                                 flush_inline_data(sbi, ino_of_node(page));
1301                                 continue;
1302                         }
1303
1304                         f2fs_wait_on_page_writeback(page, NODE, true);
1305
1306                         BUG_ON(PageWriteback(page));
1307                         if (!clear_page_dirty_for_io(page))
1308                                 goto continue_unlock;
1309
1310                         /* called by fsync() */
1311                         if (ino && IS_DNODE(page)) {
1312                                 set_fsync_mark(page, 1);
1313                                 if (IS_INODE(page))
1314                                         set_dentry_mark(page,
1315                                                 need_dentry_mark(sbi, ino));
1316                                 nwritten++;
1317                         } else {
1318                                 set_fsync_mark(page, 0);
1319                                 set_dentry_mark(page, 0);
1320                         }
1321
1322                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1323                                 unlock_page(page);
1324                         else
1325                                 wrote++;
1326
1327                         if (--wbc->nr_to_write == 0)
1328                                 break;
1329                 }
1330                 pagevec_release(&pvec);
1331                 cond_resched();
1332
1333                 if (wbc->nr_to_write == 0) {
1334                         step = 2;
1335                         break;
1336                 }
1337         }
1338
1339         if (step < 2) {
1340                 step++;
1341                 goto next_step;
1342         }
1343
1344         if (wrote) {
1345                 if (ino)
1346                         f2fs_submit_merged_bio_cond(sbi, NULL, NULL,
1347                                                         ino, NODE, WRITE);
1348                 else
1349                         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1350         }
1351         return nwritten;
1352 }
1353
1354 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1355 {
1356         pgoff_t index = 0, end = LONG_MAX;
1357         struct pagevec pvec;
1358         int ret2 = 0, ret = 0;
1359
1360         pagevec_init(&pvec, 0);
1361
1362         while (index <= end) {
1363                 int i, nr_pages;
1364                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1365                                 PAGECACHE_TAG_WRITEBACK,
1366                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1367                 if (nr_pages == 0)
1368                         break;
1369
1370                 for (i = 0; i < nr_pages; i++) {
1371                         struct page *page = pvec.pages[i];
1372
1373                         /* until radix tree lookup accepts end_index */
1374                         if (unlikely(page->index > end))
1375                                 continue;
1376
1377                         if (ino && ino_of_node(page) == ino) {
1378                                 f2fs_wait_on_page_writeback(page, NODE, true);
1379                                 if (TestClearPageError(page))
1380                                         ret = -EIO;
1381                         }
1382                 }
1383                 pagevec_release(&pvec);
1384                 cond_resched();
1385         }
1386
1387         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1388                 ret2 = -ENOSPC;
1389         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1390                 ret2 = -EIO;
1391         if (!ret)
1392                 ret = ret2;
1393         return ret;
1394 }
1395
1396 static int f2fs_write_node_page(struct page *page,
1397                                 struct writeback_control *wbc)
1398 {
1399         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1400         nid_t nid;
1401         struct node_info ni;
1402         struct f2fs_io_info fio = {
1403                 .sbi = sbi,
1404                 .type = NODE,
1405                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1406                 .page = page,
1407                 .encrypted_page = NULL,
1408         };
1409
1410         trace_f2fs_writepage(page, NODE);
1411
1412         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1413                 goto redirty_out;
1414         if (unlikely(f2fs_cp_error(sbi)))
1415                 goto redirty_out;
1416
1417         /* get old block addr of this node page */
1418         nid = nid_of_node(page);
1419         f2fs_bug_on(sbi, page->index != nid);
1420
1421         if (wbc->for_reclaim) {
1422                 if (!down_read_trylock(&sbi->node_write))
1423                         goto redirty_out;
1424         } else {
1425                 down_read(&sbi->node_write);
1426         }
1427
1428         get_node_info(sbi, nid, &ni);
1429
1430         /* This page is already truncated */
1431         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1432                 ClearPageUptodate(page);
1433                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1434                 up_read(&sbi->node_write);
1435                 unlock_page(page);
1436                 return 0;
1437         }
1438
1439         set_page_writeback(page);
1440         fio.blk_addr = ni.blk_addr;
1441         write_node_page(nid, &fio);
1442         set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1443         dec_page_count(sbi, F2FS_DIRTY_NODES);
1444         up_read(&sbi->node_write);
1445
1446         if (wbc->for_reclaim)
1447                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1448
1449         unlock_page(page);
1450
1451         if (unlikely(f2fs_cp_error(sbi)))
1452                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1453
1454         return 0;
1455
1456 redirty_out:
1457         redirty_page_for_writepage(wbc, page);
1458         return AOP_WRITEPAGE_ACTIVATE;
1459 }
1460
1461 static int f2fs_write_node_pages(struct address_space *mapping,
1462                             struct writeback_control *wbc)
1463 {
1464         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1465         long diff;
1466
1467         /* balancing f2fs's metadata in background */
1468         f2fs_balance_fs_bg(sbi);
1469
1470         /* collect a number of dirty node pages and write together */
1471         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1472                 goto skip_write;
1473
1474         trace_f2fs_writepages(mapping->host, wbc, NODE);
1475
1476         diff = nr_pages_to_write(sbi, NODE, wbc);
1477         wbc->sync_mode = WB_SYNC_NONE;
1478         sync_node_pages(sbi, 0, wbc);
1479         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1480         return 0;
1481
1482 skip_write:
1483         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1484         trace_f2fs_writepages(mapping->host, wbc, NODE);
1485         return 0;
1486 }
1487
1488 static int f2fs_set_node_page_dirty(struct page *page)
1489 {
1490         trace_f2fs_set_page_dirty(page, NODE);
1491
1492         SetPageUptodate(page);
1493         if (!PageDirty(page)) {
1494                 __set_page_dirty_nobuffers(page);
1495                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1496                 SetPagePrivate(page);
1497                 f2fs_trace_pid(page);
1498                 return 1;
1499         }
1500         return 0;
1501 }
1502
1503 /*
1504  * Structure of the f2fs node operations
1505  */
1506 const struct address_space_operations f2fs_node_aops = {
1507         .writepage      = f2fs_write_node_page,
1508         .writepages     = f2fs_write_node_pages,
1509         .set_page_dirty = f2fs_set_node_page_dirty,
1510         .invalidatepage = f2fs_invalidate_page,
1511         .releasepage    = f2fs_release_page,
1512 };
1513
1514 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1515                                                 nid_t n)
1516 {
1517         return radix_tree_lookup(&nm_i->free_nid_root, n);
1518 }
1519
1520 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1521                                                 struct free_nid *i)
1522 {
1523         list_del(&i->list);
1524         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1525 }
1526
1527 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1528 {
1529         struct f2fs_nm_info *nm_i = NM_I(sbi);
1530         struct free_nid *i;
1531         struct nat_entry *ne;
1532         bool allocated = false;
1533
1534         if (!available_free_memory(sbi, FREE_NIDS))
1535                 return -1;
1536
1537         /* 0 nid should not be used */
1538         if (unlikely(nid == 0))
1539                 return 0;
1540
1541         if (build) {
1542                 /* do not add allocated nids */
1543                 ne = __lookup_nat_cache(nm_i, nid);
1544                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1545                                 nat_get_blkaddr(ne) != NULL_ADDR))
1546                         allocated = true;
1547                 if (allocated)
1548                         return 0;
1549         }
1550
1551         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1552         i->nid = nid;
1553         i->state = NID_NEW;
1554
1555         if (radix_tree_preload(GFP_NOFS)) {
1556                 kmem_cache_free(free_nid_slab, i);
1557                 return 0;
1558         }
1559
1560         spin_lock(&nm_i->free_nid_list_lock);
1561         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1562                 spin_unlock(&nm_i->free_nid_list_lock);
1563                 radix_tree_preload_end();
1564                 kmem_cache_free(free_nid_slab, i);
1565                 return 0;
1566         }
1567         list_add_tail(&i->list, &nm_i->free_nid_list);
1568         nm_i->fcnt++;
1569         spin_unlock(&nm_i->free_nid_list_lock);
1570         radix_tree_preload_end();
1571         return 1;
1572 }
1573
1574 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1575 {
1576         struct free_nid *i;
1577         bool need_free = false;
1578
1579         spin_lock(&nm_i->free_nid_list_lock);
1580         i = __lookup_free_nid_list(nm_i, nid);
1581         if (i && i->state == NID_NEW) {
1582                 __del_from_free_nid_list(nm_i, i);
1583                 nm_i->fcnt--;
1584                 need_free = true;
1585         }
1586         spin_unlock(&nm_i->free_nid_list_lock);
1587
1588         if (need_free)
1589                 kmem_cache_free(free_nid_slab, i);
1590 }
1591
1592 static void scan_nat_page(struct f2fs_sb_info *sbi,
1593                         struct page *nat_page, nid_t start_nid)
1594 {
1595         struct f2fs_nm_info *nm_i = NM_I(sbi);
1596         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1597         block_t blk_addr;
1598         int i;
1599
1600         i = start_nid % NAT_ENTRY_PER_BLOCK;
1601
1602         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1603
1604                 if (unlikely(start_nid >= nm_i->max_nid))
1605                         break;
1606
1607                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1608                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1609                 if (blk_addr == NULL_ADDR) {
1610                         if (add_free_nid(sbi, start_nid, true) < 0)
1611                                 break;
1612                 }
1613         }
1614 }
1615
1616 static void build_free_nids(struct f2fs_sb_info *sbi)
1617 {
1618         struct f2fs_nm_info *nm_i = NM_I(sbi);
1619         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1620         struct f2fs_journal *journal = curseg->journal;
1621         int i = 0;
1622         nid_t nid = nm_i->next_scan_nid;
1623
1624         /* Enough entries */
1625         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1626                 return;
1627
1628         /* readahead nat pages to be scanned */
1629         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1630                                                         META_NAT, true);
1631
1632         down_read(&nm_i->nat_tree_lock);
1633
1634         while (1) {
1635                 struct page *page = get_current_nat_page(sbi, nid);
1636
1637                 scan_nat_page(sbi, page, nid);
1638                 f2fs_put_page(page, 1);
1639
1640                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1641                 if (unlikely(nid >= nm_i->max_nid))
1642                         nid = 0;
1643
1644                 if (++i >= FREE_NID_PAGES)
1645                         break;
1646         }
1647
1648         /* go to the next free nat pages to find free nids abundantly */
1649         nm_i->next_scan_nid = nid;
1650
1651         /* find free nids from current sum_pages */
1652         down_read(&curseg->journal_rwsem);
1653         for (i = 0; i < nats_in_cursum(journal); i++) {
1654                 block_t addr;
1655
1656                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1657                 nid = le32_to_cpu(nid_in_journal(journal, i));
1658                 if (addr == NULL_ADDR)
1659                         add_free_nid(sbi, nid, true);
1660                 else
1661                         remove_free_nid(nm_i, nid);
1662         }
1663         up_read(&curseg->journal_rwsem);
1664         up_read(&nm_i->nat_tree_lock);
1665
1666         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1667                                         nm_i->ra_nid_pages, META_NAT, false);
1668 }
1669
1670 /*
1671  * If this function returns success, caller can obtain a new nid
1672  * from second parameter of this function.
1673  * The returned nid could be used ino as well as nid when inode is created.
1674  */
1675 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1676 {
1677         struct f2fs_nm_info *nm_i = NM_I(sbi);
1678         struct free_nid *i = NULL;
1679 retry:
1680         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1681                 return false;
1682
1683         spin_lock(&nm_i->free_nid_list_lock);
1684
1685         /* We should not use stale free nids created by build_free_nids */
1686         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1687                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1688                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1689                         if (i->state == NID_NEW)
1690                                 break;
1691
1692                 f2fs_bug_on(sbi, i->state != NID_NEW);
1693                 *nid = i->nid;
1694                 i->state = NID_ALLOC;
1695                 nm_i->fcnt--;
1696                 spin_unlock(&nm_i->free_nid_list_lock);
1697                 return true;
1698         }
1699         spin_unlock(&nm_i->free_nid_list_lock);
1700
1701         /* Let's scan nat pages and its caches to get free nids */
1702         mutex_lock(&nm_i->build_lock);
1703         build_free_nids(sbi);
1704         mutex_unlock(&nm_i->build_lock);
1705         goto retry;
1706 }
1707
1708 /*
1709  * alloc_nid() should be called prior to this function.
1710  */
1711 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1712 {
1713         struct f2fs_nm_info *nm_i = NM_I(sbi);
1714         struct free_nid *i;
1715
1716         spin_lock(&nm_i->free_nid_list_lock);
1717         i = __lookup_free_nid_list(nm_i, nid);
1718         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1719         __del_from_free_nid_list(nm_i, i);
1720         spin_unlock(&nm_i->free_nid_list_lock);
1721
1722         kmem_cache_free(free_nid_slab, i);
1723 }
1724
1725 /*
1726  * alloc_nid() should be called prior to this function.
1727  */
1728 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1729 {
1730         struct f2fs_nm_info *nm_i = NM_I(sbi);
1731         struct free_nid *i;
1732         bool need_free = false;
1733
1734         if (!nid)
1735                 return;
1736
1737         spin_lock(&nm_i->free_nid_list_lock);
1738         i = __lookup_free_nid_list(nm_i, nid);
1739         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1740         if (!available_free_memory(sbi, FREE_NIDS)) {
1741                 __del_from_free_nid_list(nm_i, i);
1742                 need_free = true;
1743         } else {
1744                 i->state = NID_NEW;
1745                 nm_i->fcnt++;
1746         }
1747         spin_unlock(&nm_i->free_nid_list_lock);
1748
1749         if (need_free)
1750                 kmem_cache_free(free_nid_slab, i);
1751 }
1752
1753 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1754 {
1755         struct f2fs_nm_info *nm_i = NM_I(sbi);
1756         struct free_nid *i, *next;
1757         int nr = nr_shrink;
1758
1759         if (!mutex_trylock(&nm_i->build_lock))
1760                 return 0;
1761
1762         spin_lock(&nm_i->free_nid_list_lock);
1763         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1764                 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1765                         break;
1766                 if (i->state == NID_ALLOC)
1767                         continue;
1768                 __del_from_free_nid_list(nm_i, i);
1769                 kmem_cache_free(free_nid_slab, i);
1770                 nm_i->fcnt--;
1771                 nr_shrink--;
1772         }
1773         spin_unlock(&nm_i->free_nid_list_lock);
1774         mutex_unlock(&nm_i->build_lock);
1775
1776         return nr - nr_shrink;
1777 }
1778
1779 void recover_inline_xattr(struct inode *inode, struct page *page)
1780 {
1781         void *src_addr, *dst_addr;
1782         size_t inline_size;
1783         struct page *ipage;
1784         struct f2fs_inode *ri;
1785
1786         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1787         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1788
1789         ri = F2FS_INODE(page);
1790         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1791                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1792                 goto update_inode;
1793         }
1794
1795         dst_addr = inline_xattr_addr(ipage);
1796         src_addr = inline_xattr_addr(page);
1797         inline_size = inline_xattr_size(inode);
1798
1799         f2fs_wait_on_page_writeback(ipage, NODE, true);
1800         memcpy(dst_addr, src_addr, inline_size);
1801 update_inode:
1802         update_inode(inode, ipage);
1803         f2fs_put_page(ipage, 1);
1804 }
1805
1806 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1807 {
1808         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1809         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1810         nid_t new_xnid = nid_of_node(page);
1811         struct node_info ni;
1812
1813         /* 1: invalidate the previous xattr nid */
1814         if (!prev_xnid)
1815                 goto recover_xnid;
1816
1817         /* Deallocate node address */
1818         get_node_info(sbi, prev_xnid, &ni);
1819         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1820         invalidate_blocks(sbi, ni.blk_addr);
1821         dec_valid_node_count(sbi, inode);
1822         set_node_addr(sbi, &ni, NULL_ADDR, false);
1823
1824 recover_xnid:
1825         /* 2: allocate new xattr nid */
1826         if (unlikely(!inc_valid_node_count(sbi, inode)))
1827                 f2fs_bug_on(sbi, 1);
1828
1829         remove_free_nid(NM_I(sbi), new_xnid);
1830         get_node_info(sbi, new_xnid, &ni);
1831         ni.ino = inode->i_ino;
1832         set_node_addr(sbi, &ni, NEW_ADDR, false);
1833         F2FS_I(inode)->i_xattr_nid = new_xnid;
1834
1835         /* 3: update xattr blkaddr */
1836         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1837         set_node_addr(sbi, &ni, blkaddr, false);
1838
1839         update_inode_page(inode);
1840 }
1841
1842 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1843 {
1844         struct f2fs_inode *src, *dst;
1845         nid_t ino = ino_of_node(page);
1846         struct node_info old_ni, new_ni;
1847         struct page *ipage;
1848
1849         get_node_info(sbi, ino, &old_ni);
1850
1851         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1852                 return -EINVAL;
1853
1854         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1855         if (!ipage)
1856                 return -ENOMEM;
1857
1858         /* Should not use this inode from free nid list */
1859         remove_free_nid(NM_I(sbi), ino);
1860
1861         SetPageUptodate(ipage);
1862         fill_node_footer(ipage, ino, ino, 0, true);
1863
1864         src = F2FS_INODE(page);
1865         dst = F2FS_INODE(ipage);
1866
1867         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1868         dst->i_size = 0;
1869         dst->i_blocks = cpu_to_le64(1);
1870         dst->i_links = cpu_to_le32(1);
1871         dst->i_xattr_nid = 0;
1872         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1873
1874         new_ni = old_ni;
1875         new_ni.ino = ino;
1876
1877         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1878                 WARN_ON(1);
1879         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1880         inc_valid_inode_count(sbi);
1881         set_page_dirty(ipage);
1882         f2fs_put_page(ipage, 1);
1883         return 0;
1884 }
1885
1886 int restore_node_summary(struct f2fs_sb_info *sbi,
1887                         unsigned int segno, struct f2fs_summary_block *sum)
1888 {
1889         struct f2fs_node *rn;
1890         struct f2fs_summary *sum_entry;
1891         block_t addr;
1892         int bio_blocks = MAX_BIO_BLOCKS(sbi);
1893         int i, idx, last_offset, nrpages;
1894
1895         /* scan the node segment */
1896         last_offset = sbi->blocks_per_seg;
1897         addr = START_BLOCK(sbi, segno);
1898         sum_entry = &sum->entries[0];
1899
1900         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1901                 nrpages = min(last_offset - i, bio_blocks);
1902
1903                 /* readahead node pages */
1904                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1905
1906                 for (idx = addr; idx < addr + nrpages; idx++) {
1907                         struct page *page = get_tmp_page(sbi, idx);
1908
1909                         rn = F2FS_NODE(page);
1910                         sum_entry->nid = rn->footer.nid;
1911                         sum_entry->version = 0;
1912                         sum_entry->ofs_in_node = 0;
1913                         sum_entry++;
1914                         f2fs_put_page(page, 1);
1915                 }
1916
1917                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1918                                                         addr + nrpages);
1919         }
1920         return 0;
1921 }
1922
1923 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1924 {
1925         struct f2fs_nm_info *nm_i = NM_I(sbi);
1926         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1927         struct f2fs_journal *journal = curseg->journal;
1928         int i;
1929
1930         down_write(&curseg->journal_rwsem);
1931         for (i = 0; i < nats_in_cursum(journal); i++) {
1932                 struct nat_entry *ne;
1933                 struct f2fs_nat_entry raw_ne;
1934                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1935
1936                 raw_ne = nat_in_journal(journal, i);
1937
1938                 ne = __lookup_nat_cache(nm_i, nid);
1939                 if (!ne) {
1940                         ne = grab_nat_entry(nm_i, nid);
1941                         node_info_from_raw_nat(&ne->ni, &raw_ne);
1942                 }
1943                 __set_nat_cache_dirty(nm_i, ne);
1944         }
1945         update_nats_in_cursum(journal, -i);
1946         up_write(&curseg->journal_rwsem);
1947 }
1948
1949 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1950                                                 struct list_head *head, int max)
1951 {
1952         struct nat_entry_set *cur;
1953
1954         if (nes->entry_cnt >= max)
1955                 goto add_out;
1956
1957         list_for_each_entry(cur, head, set_list) {
1958                 if (cur->entry_cnt >= nes->entry_cnt) {
1959                         list_add(&nes->set_list, cur->set_list.prev);
1960                         return;
1961                 }
1962         }
1963 add_out:
1964         list_add_tail(&nes->set_list, head);
1965 }
1966
1967 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1968                                         struct nat_entry_set *set)
1969 {
1970         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1971         struct f2fs_journal *journal = curseg->journal;
1972         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1973         bool to_journal = true;
1974         struct f2fs_nat_block *nat_blk;
1975         struct nat_entry *ne, *cur;
1976         struct page *page = NULL;
1977
1978         /*
1979          * there are two steps to flush nat entries:
1980          * #1, flush nat entries to journal in current hot data summary block.
1981          * #2, flush nat entries to nat page.
1982          */
1983         if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1984                 to_journal = false;
1985
1986         if (to_journal) {
1987                 down_write(&curseg->journal_rwsem);
1988         } else {
1989                 page = get_next_nat_page(sbi, start_nid);
1990                 nat_blk = page_address(page);
1991                 f2fs_bug_on(sbi, !nat_blk);
1992         }
1993
1994         /* flush dirty nats in nat entry set */
1995         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1996                 struct f2fs_nat_entry *raw_ne;
1997                 nid_t nid = nat_get_nid(ne);
1998                 int offset;
1999
2000                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2001                         continue;
2002
2003                 if (to_journal) {
2004                         offset = lookup_journal_in_cursum(journal,
2005                                                         NAT_JOURNAL, nid, 1);
2006                         f2fs_bug_on(sbi, offset < 0);
2007                         raw_ne = &nat_in_journal(journal, offset);
2008                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2009                 } else {
2010                         raw_ne = &nat_blk->entries[nid - start_nid];
2011                 }
2012                 raw_nat_from_node_info(raw_ne, &ne->ni);
2013                 nat_reset_flag(ne);
2014                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2015                 if (nat_get_blkaddr(ne) == NULL_ADDR)
2016                         add_free_nid(sbi, nid, false);
2017         }
2018
2019         if (to_journal)
2020                 up_write(&curseg->journal_rwsem);
2021         else
2022                 f2fs_put_page(page, 1);
2023
2024         f2fs_bug_on(sbi, set->entry_cnt);
2025
2026         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2027         kmem_cache_free(nat_entry_set_slab, set);
2028 }
2029
2030 /*
2031  * This function is called during the checkpointing process.
2032  */
2033 void flush_nat_entries(struct f2fs_sb_info *sbi)
2034 {
2035         struct f2fs_nm_info *nm_i = NM_I(sbi);
2036         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2037         struct f2fs_journal *journal = curseg->journal;
2038         struct nat_entry_set *setvec[SETVEC_SIZE];
2039         struct nat_entry_set *set, *tmp;
2040         unsigned int found;
2041         nid_t set_idx = 0;
2042         LIST_HEAD(sets);
2043
2044         if (!nm_i->dirty_nat_cnt)
2045                 return;
2046
2047         down_write(&nm_i->nat_tree_lock);
2048
2049         /*
2050          * if there are no enough space in journal to store dirty nat
2051          * entries, remove all entries from journal and merge them
2052          * into nat entry set.
2053          */
2054         if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2055                 remove_nats_in_journal(sbi);
2056
2057         while ((found = __gang_lookup_nat_set(nm_i,
2058                                         set_idx, SETVEC_SIZE, setvec))) {
2059                 unsigned idx;
2060                 set_idx = setvec[found - 1]->set + 1;
2061                 for (idx = 0; idx < found; idx++)
2062                         __adjust_nat_entry_set(setvec[idx], &sets,
2063                                                 MAX_NAT_JENTRIES(journal));
2064         }
2065
2066         /* flush dirty nats in nat entry set */
2067         list_for_each_entry_safe(set, tmp, &sets, set_list)
2068                 __flush_nat_entry_set(sbi, set);
2069
2070         up_write(&nm_i->nat_tree_lock);
2071
2072         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2073 }
2074
2075 static int init_node_manager(struct f2fs_sb_info *sbi)
2076 {
2077         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2078         struct f2fs_nm_info *nm_i = NM_I(sbi);
2079         unsigned char *version_bitmap;
2080         unsigned int nat_segs, nat_blocks;
2081
2082         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2083
2084         /* segment_count_nat includes pair segment so divide to 2. */
2085         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2086         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2087
2088         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2089
2090         /* not used nids: 0, node, meta, (and root counted as valid node) */
2091         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2092         nm_i->fcnt = 0;
2093         nm_i->nat_cnt = 0;
2094         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2095         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2096         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2097
2098         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2099         INIT_LIST_HEAD(&nm_i->free_nid_list);
2100         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2101         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2102         INIT_LIST_HEAD(&nm_i->nat_entries);
2103
2104         mutex_init(&nm_i->build_lock);
2105         spin_lock_init(&nm_i->free_nid_list_lock);
2106         init_rwsem(&nm_i->nat_tree_lock);
2107
2108         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2109         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2110         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2111         if (!version_bitmap)
2112                 return -EFAULT;
2113
2114         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2115                                         GFP_KERNEL);
2116         if (!nm_i->nat_bitmap)
2117                 return -ENOMEM;
2118         return 0;
2119 }
2120
2121 int build_node_manager(struct f2fs_sb_info *sbi)
2122 {
2123         int err;
2124
2125         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2126         if (!sbi->nm_info)
2127                 return -ENOMEM;
2128
2129         err = init_node_manager(sbi);
2130         if (err)
2131                 return err;
2132
2133         build_free_nids(sbi);
2134         return 0;
2135 }
2136
2137 void destroy_node_manager(struct f2fs_sb_info *sbi)
2138 {
2139         struct f2fs_nm_info *nm_i = NM_I(sbi);
2140         struct free_nid *i, *next_i;
2141         struct nat_entry *natvec[NATVEC_SIZE];
2142         struct nat_entry_set *setvec[SETVEC_SIZE];
2143         nid_t nid = 0;
2144         unsigned int found;
2145
2146         if (!nm_i)
2147                 return;
2148
2149         /* destroy free nid list */
2150         spin_lock(&nm_i->free_nid_list_lock);
2151         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2152                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2153                 __del_from_free_nid_list(nm_i, i);
2154                 nm_i->fcnt--;
2155                 spin_unlock(&nm_i->free_nid_list_lock);
2156                 kmem_cache_free(free_nid_slab, i);
2157                 spin_lock(&nm_i->free_nid_list_lock);
2158         }
2159         f2fs_bug_on(sbi, nm_i->fcnt);
2160         spin_unlock(&nm_i->free_nid_list_lock);
2161
2162         /* destroy nat cache */
2163         down_write(&nm_i->nat_tree_lock);
2164         while ((found = __gang_lookup_nat_cache(nm_i,
2165                                         nid, NATVEC_SIZE, natvec))) {
2166                 unsigned idx;
2167
2168                 nid = nat_get_nid(natvec[found - 1]) + 1;
2169                 for (idx = 0; idx < found; idx++)
2170                         __del_from_nat_cache(nm_i, natvec[idx]);
2171         }
2172         f2fs_bug_on(sbi, nm_i->nat_cnt);
2173
2174         /* destroy nat set cache */
2175         nid = 0;
2176         while ((found = __gang_lookup_nat_set(nm_i,
2177                                         nid, SETVEC_SIZE, setvec))) {
2178                 unsigned idx;
2179
2180                 nid = setvec[found - 1]->set + 1;
2181                 for (idx = 0; idx < found; idx++) {
2182                         /* entry_cnt is not zero, when cp_error was occurred */
2183                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2184                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2185                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2186                 }
2187         }
2188         up_write(&nm_i->nat_tree_lock);
2189
2190         kfree(nm_i->nat_bitmap);
2191         sbi->nm_info = NULL;
2192         kfree(nm_i);
2193 }
2194
2195 int __init create_node_manager_caches(void)
2196 {
2197         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2198                         sizeof(struct nat_entry));
2199         if (!nat_entry_slab)
2200                 goto fail;
2201
2202         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2203                         sizeof(struct free_nid));
2204         if (!free_nid_slab)
2205                 goto destroy_nat_entry;
2206
2207         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2208                         sizeof(struct nat_entry_set));
2209         if (!nat_entry_set_slab)
2210                 goto destroy_free_nid;
2211         return 0;
2212
2213 destroy_free_nid:
2214         kmem_cache_destroy(free_nid_slab);
2215 destroy_nat_entry:
2216         kmem_cache_destroy(nat_entry_slab);
2217 fail:
2218         return -ENOMEM;
2219 }
2220
2221 void destroy_node_manager_caches(void)
2222 {
2223         kmem_cache_destroy(nat_entry_set_slab);
2224         kmem_cache_destroy(free_nid_slab);
2225         kmem_cache_destroy(nat_entry_slab);
2226 }