]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
f2fs: show the number of writeback pages in stat
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /* give 25%, 25%, 50%, 50% memory for each components respectively */
45         if (type == FREE_NIDS) {
46                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
47                                                         PAGE_CACHE_SHIFT;
48                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
49         } else if (type == NAT_ENTRIES) {
50                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
51                                                         PAGE_CACHE_SHIFT;
52                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
53         } else if (type == DIRTY_DENTS) {
54                 if (sbi->sb->s_bdi->dirty_exceeded)
55                         return false;
56                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
57                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
58         } else if (type == INO_ENTRIES) {
59                 int i;
60
61                 for (i = 0; i <= UPDATE_INO; i++)
62                         mem_size += (sbi->im[i].ino_num *
63                                 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
64                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
65         } else {
66                 if (sbi->sb->s_bdi->dirty_exceeded)
67                         return false;
68         }
69         return res;
70 }
71
72 static void clear_node_page_dirty(struct page *page)
73 {
74         struct address_space *mapping = page->mapping;
75         unsigned int long flags;
76
77         if (PageDirty(page)) {
78                 spin_lock_irqsave(&mapping->tree_lock, flags);
79                 radix_tree_tag_clear(&mapping->page_tree,
80                                 page_index(page),
81                                 PAGECACHE_TAG_DIRTY);
82                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
83
84                 clear_page_dirty_for_io(page);
85                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
86         }
87         ClearPageUptodate(page);
88 }
89
90 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
91 {
92         pgoff_t index = current_nat_addr(sbi, nid);
93         return get_meta_page(sbi, index);
94 }
95
96 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
97 {
98         struct page *src_page;
99         struct page *dst_page;
100         pgoff_t src_off;
101         pgoff_t dst_off;
102         void *src_addr;
103         void *dst_addr;
104         struct f2fs_nm_info *nm_i = NM_I(sbi);
105
106         src_off = current_nat_addr(sbi, nid);
107         dst_off = next_nat_addr(sbi, src_off);
108
109         /* get current nat block page with lock */
110         src_page = get_meta_page(sbi, src_off);
111         dst_page = grab_meta_page(sbi, dst_off);
112         f2fs_bug_on(sbi, PageDirty(src_page));
113
114         src_addr = page_address(src_page);
115         dst_addr = page_address(dst_page);
116         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
117         set_page_dirty(dst_page);
118         f2fs_put_page(src_page, 1);
119
120         set_to_next_nat(nm_i, nid);
121
122         return dst_page;
123 }
124
125 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
126 {
127         return radix_tree_lookup(&nm_i->nat_root, n);
128 }
129
130 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
131                 nid_t start, unsigned int nr, struct nat_entry **ep)
132 {
133         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
134 }
135
136 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
137 {
138         list_del(&e->list);
139         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
140         nm_i->nat_cnt--;
141         kmem_cache_free(nat_entry_slab, e);
142 }
143
144 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
145                                                 struct nat_entry *ne)
146 {
147         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
148         struct nat_entry_set *head;
149
150         if (get_nat_flag(ne, IS_DIRTY))
151                 return;
152
153         head = radix_tree_lookup(&nm_i->nat_set_root, set);
154         if (!head) {
155                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
156
157                 INIT_LIST_HEAD(&head->entry_list);
158                 INIT_LIST_HEAD(&head->set_list);
159                 head->set = set;
160                 head->entry_cnt = 0;
161                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
162         }
163         list_move_tail(&ne->list, &head->entry_list);
164         nm_i->dirty_nat_cnt++;
165         head->entry_cnt++;
166         set_nat_flag(ne, IS_DIRTY, true);
167 }
168
169 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
170                                                 struct nat_entry *ne)
171 {
172         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
173         struct nat_entry_set *head;
174
175         head = radix_tree_lookup(&nm_i->nat_set_root, set);
176         if (head) {
177                 list_move_tail(&ne->list, &nm_i->nat_entries);
178                 set_nat_flag(ne, IS_DIRTY, false);
179                 head->entry_cnt--;
180                 nm_i->dirty_nat_cnt--;
181         }
182 }
183
184 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
185                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
186 {
187         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
188                                                         start, nr);
189 }
190
191 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
192 {
193         struct f2fs_nm_info *nm_i = NM_I(sbi);
194         struct nat_entry *e;
195         bool is_cp = true;
196
197         down_read(&nm_i->nat_tree_lock);
198         e = __lookup_nat_cache(nm_i, nid);
199         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
200                 is_cp = false;
201         up_read(&nm_i->nat_tree_lock);
202         return is_cp;
203 }
204
205 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
206 {
207         struct f2fs_nm_info *nm_i = NM_I(sbi);
208         struct nat_entry *e;
209         bool fsynced = false;
210
211         down_read(&nm_i->nat_tree_lock);
212         e = __lookup_nat_cache(nm_i, ino);
213         if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
214                 fsynced = true;
215         up_read(&nm_i->nat_tree_lock);
216         return fsynced;
217 }
218
219 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
220 {
221         struct f2fs_nm_info *nm_i = NM_I(sbi);
222         struct nat_entry *e;
223         bool need_update = true;
224
225         down_read(&nm_i->nat_tree_lock);
226         e = __lookup_nat_cache(nm_i, ino);
227         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
228                         (get_nat_flag(e, IS_CHECKPOINTED) ||
229                          get_nat_flag(e, HAS_FSYNCED_INODE)))
230                 need_update = false;
231         up_read(&nm_i->nat_tree_lock);
232         return need_update;
233 }
234
235 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
236 {
237         struct nat_entry *new;
238
239         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
240         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
241         memset(new, 0, sizeof(struct nat_entry));
242         nat_set_nid(new, nid);
243         nat_reset_flag(new);
244         list_add_tail(&new->list, &nm_i->nat_entries);
245         nm_i->nat_cnt++;
246         return new;
247 }
248
249 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
250                                                 struct f2fs_nat_entry *ne)
251 {
252         struct nat_entry *e;
253
254         down_write(&nm_i->nat_tree_lock);
255         e = __lookup_nat_cache(nm_i, nid);
256         if (!e) {
257                 e = grab_nat_entry(nm_i, nid);
258                 node_info_from_raw_nat(&e->ni, ne);
259         }
260         up_write(&nm_i->nat_tree_lock);
261 }
262
263 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
264                         block_t new_blkaddr, bool fsync_done)
265 {
266         struct f2fs_nm_info *nm_i = NM_I(sbi);
267         struct nat_entry *e;
268
269         down_write(&nm_i->nat_tree_lock);
270         e = __lookup_nat_cache(nm_i, ni->nid);
271         if (!e) {
272                 e = grab_nat_entry(nm_i, ni->nid);
273                 copy_node_info(&e->ni, ni);
274                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
275         } else if (new_blkaddr == NEW_ADDR) {
276                 /*
277                  * when nid is reallocated,
278                  * previous nat entry can be remained in nat cache.
279                  * So, reinitialize it with new information.
280                  */
281                 copy_node_info(&e->ni, ni);
282                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
283         }
284
285         /* sanity check */
286         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
287         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
288                         new_blkaddr == NULL_ADDR);
289         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
290                         new_blkaddr == NEW_ADDR);
291         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
292                         nat_get_blkaddr(e) != NULL_ADDR &&
293                         new_blkaddr == NEW_ADDR);
294
295         /* increment version no as node is removed */
296         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
297                 unsigned char version = nat_get_version(e);
298                 nat_set_version(e, inc_node_version(version));
299         }
300
301         /* change address */
302         nat_set_blkaddr(e, new_blkaddr);
303         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
304                 set_nat_flag(e, IS_CHECKPOINTED, false);
305         __set_nat_cache_dirty(nm_i, e);
306
307         /* update fsync_mark if its inode nat entry is still alive */
308         e = __lookup_nat_cache(nm_i, ni->ino);
309         if (e) {
310                 if (fsync_done && ni->nid == ni->ino)
311                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
312                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
313         }
314         up_write(&nm_i->nat_tree_lock);
315 }
316
317 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
318 {
319         struct f2fs_nm_info *nm_i = NM_I(sbi);
320
321         if (available_free_memory(sbi, NAT_ENTRIES))
322                 return 0;
323
324         down_write(&nm_i->nat_tree_lock);
325         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
326                 struct nat_entry *ne;
327                 ne = list_first_entry(&nm_i->nat_entries,
328                                         struct nat_entry, list);
329                 __del_from_nat_cache(nm_i, ne);
330                 nr_shrink--;
331         }
332         up_write(&nm_i->nat_tree_lock);
333         return nr_shrink;
334 }
335
336 /*
337  * This function always returns success
338  */
339 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
340 {
341         struct f2fs_nm_info *nm_i = NM_I(sbi);
342         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
343         struct f2fs_summary_block *sum = curseg->sum_blk;
344         nid_t start_nid = START_NID(nid);
345         struct f2fs_nat_block *nat_blk;
346         struct page *page = NULL;
347         struct f2fs_nat_entry ne;
348         struct nat_entry *e;
349         int i;
350
351         ni->nid = nid;
352
353         /* Check nat cache */
354         down_read(&nm_i->nat_tree_lock);
355         e = __lookup_nat_cache(nm_i, nid);
356         if (e) {
357                 ni->ino = nat_get_ino(e);
358                 ni->blk_addr = nat_get_blkaddr(e);
359                 ni->version = nat_get_version(e);
360         }
361         up_read(&nm_i->nat_tree_lock);
362         if (e)
363                 return;
364
365         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
366
367         /* Check current segment summary */
368         mutex_lock(&curseg->curseg_mutex);
369         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
370         if (i >= 0) {
371                 ne = nat_in_journal(sum, i);
372                 node_info_from_raw_nat(ni, &ne);
373         }
374         mutex_unlock(&curseg->curseg_mutex);
375         if (i >= 0)
376                 goto cache;
377
378         /* Fill node_info from nat page */
379         page = get_current_nat_page(sbi, start_nid);
380         nat_blk = (struct f2fs_nat_block *)page_address(page);
381         ne = nat_blk->entries[nid - start_nid];
382         node_info_from_raw_nat(ni, &ne);
383         f2fs_put_page(page, 1);
384 cache:
385         /* cache nat entry */
386         cache_nat_entry(NM_I(sbi), nid, &ne);
387 }
388
389 /*
390  * The maximum depth is four.
391  * Offset[0] will have raw inode offset.
392  */
393 static int get_node_path(struct f2fs_inode_info *fi, long block,
394                                 int offset[4], unsigned int noffset[4])
395 {
396         const long direct_index = ADDRS_PER_INODE(fi);
397         const long direct_blks = ADDRS_PER_BLOCK;
398         const long dptrs_per_blk = NIDS_PER_BLOCK;
399         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
400         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
401         int n = 0;
402         int level = 0;
403
404         noffset[0] = 0;
405
406         if (block < direct_index) {
407                 offset[n] = block;
408                 goto got;
409         }
410         block -= direct_index;
411         if (block < direct_blks) {
412                 offset[n++] = NODE_DIR1_BLOCK;
413                 noffset[n] = 1;
414                 offset[n] = block;
415                 level = 1;
416                 goto got;
417         }
418         block -= direct_blks;
419         if (block < direct_blks) {
420                 offset[n++] = NODE_DIR2_BLOCK;
421                 noffset[n] = 2;
422                 offset[n] = block;
423                 level = 1;
424                 goto got;
425         }
426         block -= direct_blks;
427         if (block < indirect_blks) {
428                 offset[n++] = NODE_IND1_BLOCK;
429                 noffset[n] = 3;
430                 offset[n++] = block / direct_blks;
431                 noffset[n] = 4 + offset[n - 1];
432                 offset[n] = block % direct_blks;
433                 level = 2;
434                 goto got;
435         }
436         block -= indirect_blks;
437         if (block < indirect_blks) {
438                 offset[n++] = NODE_IND2_BLOCK;
439                 noffset[n] = 4 + dptrs_per_blk;
440                 offset[n++] = block / direct_blks;
441                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
442                 offset[n] = block % direct_blks;
443                 level = 2;
444                 goto got;
445         }
446         block -= indirect_blks;
447         if (block < dindirect_blks) {
448                 offset[n++] = NODE_DIND_BLOCK;
449                 noffset[n] = 5 + (dptrs_per_blk * 2);
450                 offset[n++] = block / indirect_blks;
451                 noffset[n] = 6 + (dptrs_per_blk * 2) +
452                               offset[n - 1] * (dptrs_per_blk + 1);
453                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
454                 noffset[n] = 7 + (dptrs_per_blk * 2) +
455                               offset[n - 2] * (dptrs_per_blk + 1) +
456                               offset[n - 1];
457                 offset[n] = block % direct_blks;
458                 level = 3;
459                 goto got;
460         } else {
461                 BUG();
462         }
463 got:
464         return level;
465 }
466
467 /*
468  * Caller should call f2fs_put_dnode(dn).
469  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
470  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
471  * In the case of RDONLY_NODE, we don't need to care about mutex.
472  */
473 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
474 {
475         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
476         struct page *npage[4];
477         struct page *parent;
478         int offset[4];
479         unsigned int noffset[4];
480         nid_t nids[4];
481         int level, i;
482         int err = 0;
483
484         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
485
486         nids[0] = dn->inode->i_ino;
487         npage[0] = dn->inode_page;
488
489         if (!npage[0]) {
490                 npage[0] = get_node_page(sbi, nids[0]);
491                 if (IS_ERR(npage[0]))
492                         return PTR_ERR(npage[0]);
493         }
494         parent = npage[0];
495         if (level != 0)
496                 nids[1] = get_nid(parent, offset[0], true);
497         dn->inode_page = npage[0];
498         dn->inode_page_locked = true;
499
500         /* get indirect or direct nodes */
501         for (i = 1; i <= level; i++) {
502                 bool done = false;
503
504                 if (!nids[i] && mode == ALLOC_NODE) {
505                         /* alloc new node */
506                         if (!alloc_nid(sbi, &(nids[i]))) {
507                                 err = -ENOSPC;
508                                 goto release_pages;
509                         }
510
511                         dn->nid = nids[i];
512                         npage[i] = new_node_page(dn, noffset[i], NULL);
513                         if (IS_ERR(npage[i])) {
514                                 alloc_nid_failed(sbi, nids[i]);
515                                 err = PTR_ERR(npage[i]);
516                                 goto release_pages;
517                         }
518
519                         set_nid(parent, offset[i - 1], nids[i], i == 1);
520                         alloc_nid_done(sbi, nids[i]);
521                         done = true;
522                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
523                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
524                         if (IS_ERR(npage[i])) {
525                                 err = PTR_ERR(npage[i]);
526                                 goto release_pages;
527                         }
528                         done = true;
529                 }
530                 if (i == 1) {
531                         dn->inode_page_locked = false;
532                         unlock_page(parent);
533                 } else {
534                         f2fs_put_page(parent, 1);
535                 }
536
537                 if (!done) {
538                         npage[i] = get_node_page(sbi, nids[i]);
539                         if (IS_ERR(npage[i])) {
540                                 err = PTR_ERR(npage[i]);
541                                 f2fs_put_page(npage[0], 0);
542                                 goto release_out;
543                         }
544                 }
545                 if (i < level) {
546                         parent = npage[i];
547                         nids[i + 1] = get_nid(parent, offset[i], false);
548                 }
549         }
550         dn->nid = nids[level];
551         dn->ofs_in_node = offset[level];
552         dn->node_page = npage[level];
553         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
554         return 0;
555
556 release_pages:
557         f2fs_put_page(parent, 1);
558         if (i > 1)
559                 f2fs_put_page(npage[0], 0);
560 release_out:
561         dn->inode_page = NULL;
562         dn->node_page = NULL;
563         return err;
564 }
565
566 static void truncate_node(struct dnode_of_data *dn)
567 {
568         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
569         struct node_info ni;
570
571         get_node_info(sbi, dn->nid, &ni);
572         if (dn->inode->i_blocks == 0) {
573                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
574                 goto invalidate;
575         }
576         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
577
578         /* Deallocate node address */
579         invalidate_blocks(sbi, ni.blk_addr);
580         dec_valid_node_count(sbi, dn->inode);
581         set_node_addr(sbi, &ni, NULL_ADDR, false);
582
583         if (dn->nid == dn->inode->i_ino) {
584                 remove_orphan_inode(sbi, dn->nid);
585                 dec_valid_inode_count(sbi);
586         } else {
587                 sync_inode_page(dn);
588         }
589 invalidate:
590         clear_node_page_dirty(dn->node_page);
591         set_sbi_flag(sbi, SBI_IS_DIRTY);
592
593         f2fs_put_page(dn->node_page, 1);
594
595         invalidate_mapping_pages(NODE_MAPPING(sbi),
596                         dn->node_page->index, dn->node_page->index);
597
598         dn->node_page = NULL;
599         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
600 }
601
602 static int truncate_dnode(struct dnode_of_data *dn)
603 {
604         struct page *page;
605
606         if (dn->nid == 0)
607                 return 1;
608
609         /* get direct node */
610         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
611         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
612                 return 1;
613         else if (IS_ERR(page))
614                 return PTR_ERR(page);
615
616         /* Make dnode_of_data for parameter */
617         dn->node_page = page;
618         dn->ofs_in_node = 0;
619         truncate_data_blocks(dn);
620         truncate_node(dn);
621         return 1;
622 }
623
624 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
625                                                 int ofs, int depth)
626 {
627         struct dnode_of_data rdn = *dn;
628         struct page *page;
629         struct f2fs_node *rn;
630         nid_t child_nid;
631         unsigned int child_nofs;
632         int freed = 0;
633         int i, ret;
634
635         if (dn->nid == 0)
636                 return NIDS_PER_BLOCK + 1;
637
638         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
639
640         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
641         if (IS_ERR(page)) {
642                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
643                 return PTR_ERR(page);
644         }
645
646         rn = F2FS_NODE(page);
647         if (depth < 3) {
648                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
649                         child_nid = le32_to_cpu(rn->in.nid[i]);
650                         if (child_nid == 0)
651                                 continue;
652                         rdn.nid = child_nid;
653                         ret = truncate_dnode(&rdn);
654                         if (ret < 0)
655                                 goto out_err;
656                         set_nid(page, i, 0, false);
657                 }
658         } else {
659                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
660                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
661                         child_nid = le32_to_cpu(rn->in.nid[i]);
662                         if (child_nid == 0) {
663                                 child_nofs += NIDS_PER_BLOCK + 1;
664                                 continue;
665                         }
666                         rdn.nid = child_nid;
667                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
668                         if (ret == (NIDS_PER_BLOCK + 1)) {
669                                 set_nid(page, i, 0, false);
670                                 child_nofs += ret;
671                         } else if (ret < 0 && ret != -ENOENT) {
672                                 goto out_err;
673                         }
674                 }
675                 freed = child_nofs;
676         }
677
678         if (!ofs) {
679                 /* remove current indirect node */
680                 dn->node_page = page;
681                 truncate_node(dn);
682                 freed++;
683         } else {
684                 f2fs_put_page(page, 1);
685         }
686         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
687         return freed;
688
689 out_err:
690         f2fs_put_page(page, 1);
691         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
692         return ret;
693 }
694
695 static int truncate_partial_nodes(struct dnode_of_data *dn,
696                         struct f2fs_inode *ri, int *offset, int depth)
697 {
698         struct page *pages[2];
699         nid_t nid[3];
700         nid_t child_nid;
701         int err = 0;
702         int i;
703         int idx = depth - 2;
704
705         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
706         if (!nid[0])
707                 return 0;
708
709         /* get indirect nodes in the path */
710         for (i = 0; i < idx + 1; i++) {
711                 /* reference count'll be increased */
712                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
713                 if (IS_ERR(pages[i])) {
714                         err = PTR_ERR(pages[i]);
715                         idx = i - 1;
716                         goto fail;
717                 }
718                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
719         }
720
721         /* free direct nodes linked to a partial indirect node */
722         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
723                 child_nid = get_nid(pages[idx], i, false);
724                 if (!child_nid)
725                         continue;
726                 dn->nid = child_nid;
727                 err = truncate_dnode(dn);
728                 if (err < 0)
729                         goto fail;
730                 set_nid(pages[idx], i, 0, false);
731         }
732
733         if (offset[idx + 1] == 0) {
734                 dn->node_page = pages[idx];
735                 dn->nid = nid[idx];
736                 truncate_node(dn);
737         } else {
738                 f2fs_put_page(pages[idx], 1);
739         }
740         offset[idx]++;
741         offset[idx + 1] = 0;
742         idx--;
743 fail:
744         for (i = idx; i >= 0; i--)
745                 f2fs_put_page(pages[i], 1);
746
747         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
748
749         return err;
750 }
751
752 /*
753  * All the block addresses of data and nodes should be nullified.
754  */
755 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
756 {
757         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
758         int err = 0, cont = 1;
759         int level, offset[4], noffset[4];
760         unsigned int nofs = 0;
761         struct f2fs_inode *ri;
762         struct dnode_of_data dn;
763         struct page *page;
764
765         trace_f2fs_truncate_inode_blocks_enter(inode, from);
766
767         level = get_node_path(F2FS_I(inode), from, offset, noffset);
768 restart:
769         page = get_node_page(sbi, inode->i_ino);
770         if (IS_ERR(page)) {
771                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
772                 return PTR_ERR(page);
773         }
774
775         set_new_dnode(&dn, inode, page, NULL, 0);
776         unlock_page(page);
777
778         ri = F2FS_INODE(page);
779         switch (level) {
780         case 0:
781         case 1:
782                 nofs = noffset[1];
783                 break;
784         case 2:
785                 nofs = noffset[1];
786                 if (!offset[level - 1])
787                         goto skip_partial;
788                 err = truncate_partial_nodes(&dn, ri, offset, level);
789                 if (err < 0 && err != -ENOENT)
790                         goto fail;
791                 nofs += 1 + NIDS_PER_BLOCK;
792                 break;
793         case 3:
794                 nofs = 5 + 2 * NIDS_PER_BLOCK;
795                 if (!offset[level - 1])
796                         goto skip_partial;
797                 err = truncate_partial_nodes(&dn, ri, offset, level);
798                 if (err < 0 && err != -ENOENT)
799                         goto fail;
800                 break;
801         default:
802                 BUG();
803         }
804
805 skip_partial:
806         while (cont) {
807                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
808                 switch (offset[0]) {
809                 case NODE_DIR1_BLOCK:
810                 case NODE_DIR2_BLOCK:
811                         err = truncate_dnode(&dn);
812                         break;
813
814                 case NODE_IND1_BLOCK:
815                 case NODE_IND2_BLOCK:
816                         err = truncate_nodes(&dn, nofs, offset[1], 2);
817                         break;
818
819                 case NODE_DIND_BLOCK:
820                         err = truncate_nodes(&dn, nofs, offset[1], 3);
821                         cont = 0;
822                         break;
823
824                 default:
825                         BUG();
826                 }
827                 if (err < 0 && err != -ENOENT)
828                         goto fail;
829                 if (offset[1] == 0 &&
830                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
831                         lock_page(page);
832                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
833                                 f2fs_put_page(page, 1);
834                                 goto restart;
835                         }
836                         f2fs_wait_on_page_writeback(page, NODE);
837                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
838                         set_page_dirty(page);
839                         unlock_page(page);
840                 }
841                 offset[1] = 0;
842                 offset[0]++;
843                 nofs += err;
844         }
845 fail:
846         f2fs_put_page(page, 0);
847         trace_f2fs_truncate_inode_blocks_exit(inode, err);
848         return err > 0 ? 0 : err;
849 }
850
851 int truncate_xattr_node(struct inode *inode, struct page *page)
852 {
853         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
854         nid_t nid = F2FS_I(inode)->i_xattr_nid;
855         struct dnode_of_data dn;
856         struct page *npage;
857
858         if (!nid)
859                 return 0;
860
861         npage = get_node_page(sbi, nid);
862         if (IS_ERR(npage))
863                 return PTR_ERR(npage);
864
865         F2FS_I(inode)->i_xattr_nid = 0;
866
867         /* need to do checkpoint during fsync */
868         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
869
870         set_new_dnode(&dn, inode, page, npage, nid);
871
872         if (page)
873                 dn.inode_page_locked = true;
874         truncate_node(&dn);
875         return 0;
876 }
877
878 /*
879  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
880  * f2fs_unlock_op().
881  */
882 void remove_inode_page(struct inode *inode)
883 {
884         struct dnode_of_data dn;
885
886         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
887         if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
888                 return;
889
890         if (truncate_xattr_node(inode, dn.inode_page)) {
891                 f2fs_put_dnode(&dn);
892                 return;
893         }
894
895         /* remove potential inline_data blocks */
896         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
897                                 S_ISLNK(inode->i_mode))
898                 truncate_data_blocks_range(&dn, 1);
899
900         /* 0 is possible, after f2fs_new_inode() has failed */
901         f2fs_bug_on(F2FS_I_SB(inode),
902                         inode->i_blocks != 0 && inode->i_blocks != 1);
903
904         /* will put inode & node pages */
905         truncate_node(&dn);
906 }
907
908 struct page *new_inode_page(struct inode *inode)
909 {
910         struct dnode_of_data dn;
911
912         /* allocate inode page for new inode */
913         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
914
915         /* caller should f2fs_put_page(page, 1); */
916         return new_node_page(&dn, 0, NULL);
917 }
918
919 struct page *new_node_page(struct dnode_of_data *dn,
920                                 unsigned int ofs, struct page *ipage)
921 {
922         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
923         struct node_info old_ni, new_ni;
924         struct page *page;
925         int err;
926
927         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
928                 return ERR_PTR(-EPERM);
929
930         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
931         if (!page)
932                 return ERR_PTR(-ENOMEM);
933
934         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
935                 err = -ENOSPC;
936                 goto fail;
937         }
938
939         get_node_info(sbi, dn->nid, &old_ni);
940
941         /* Reinitialize old_ni with new node page */
942         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
943         new_ni = old_ni;
944         new_ni.ino = dn->inode->i_ino;
945         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
946
947         f2fs_wait_on_page_writeback(page, NODE);
948         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
949         set_cold_node(dn->inode, page);
950         SetPageUptodate(page);
951         set_page_dirty(page);
952
953         if (f2fs_has_xattr_block(ofs))
954                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
955
956         dn->node_page = page;
957         if (ipage)
958                 update_inode(dn->inode, ipage);
959         else
960                 sync_inode_page(dn);
961         if (ofs == 0)
962                 inc_valid_inode_count(sbi);
963
964         return page;
965
966 fail:
967         clear_node_page_dirty(page);
968         f2fs_put_page(page, 1);
969         return ERR_PTR(err);
970 }
971
972 /*
973  * Caller should do after getting the following values.
974  * 0: f2fs_put_page(page, 0)
975  * LOCKED_PAGE: f2fs_put_page(page, 1)
976  * error: nothing
977  */
978 static int read_node_page(struct page *page, int rw)
979 {
980         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
981         struct node_info ni;
982         struct f2fs_io_info fio = {
983                 .type = NODE,
984                 .rw = rw,
985         };
986
987         get_node_info(sbi, page->index, &ni);
988
989         if (unlikely(ni.blk_addr == NULL_ADDR)) {
990                 f2fs_put_page(page, 1);
991                 return -ENOENT;
992         }
993
994         if (PageUptodate(page))
995                 return LOCKED_PAGE;
996
997         fio.blk_addr = ni.blk_addr;
998         return f2fs_submit_page_bio(sbi, page, &fio);
999 }
1000
1001 /*
1002  * Readahead a node page
1003  */
1004 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1005 {
1006         struct page *apage;
1007         int err;
1008
1009         apage = find_get_page(NODE_MAPPING(sbi), nid);
1010         if (apage && PageUptodate(apage)) {
1011                 f2fs_put_page(apage, 0);
1012                 return;
1013         }
1014         f2fs_put_page(apage, 0);
1015
1016         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1017         if (!apage)
1018                 return;
1019
1020         err = read_node_page(apage, READA);
1021         if (err == 0)
1022                 f2fs_put_page(apage, 0);
1023         else if (err == LOCKED_PAGE)
1024                 f2fs_put_page(apage, 1);
1025 }
1026
1027 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1028 {
1029         struct page *page;
1030         int err;
1031 repeat:
1032         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1033         if (!page)
1034                 return ERR_PTR(-ENOMEM);
1035
1036         err = read_node_page(page, READ_SYNC);
1037         if (err < 0)
1038                 return ERR_PTR(err);
1039         else if (err == LOCKED_PAGE)
1040                 goto got_it;
1041
1042         lock_page(page);
1043         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1044                 f2fs_put_page(page, 1);
1045                 return ERR_PTR(-EIO);
1046         }
1047         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1048                 f2fs_put_page(page, 1);
1049                 goto repeat;
1050         }
1051 got_it:
1052         return page;
1053 }
1054
1055 /*
1056  * Return a locked page for the desired node page.
1057  * And, readahead MAX_RA_NODE number of node pages.
1058  */
1059 struct page *get_node_page_ra(struct page *parent, int start)
1060 {
1061         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1062         struct blk_plug plug;
1063         struct page *page;
1064         int err, i, end;
1065         nid_t nid;
1066
1067         /* First, try getting the desired direct node. */
1068         nid = get_nid(parent, start, false);
1069         if (!nid)
1070                 return ERR_PTR(-ENOENT);
1071 repeat:
1072         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1073         if (!page)
1074                 return ERR_PTR(-ENOMEM);
1075
1076         err = read_node_page(page, READ_SYNC);
1077         if (err < 0)
1078                 return ERR_PTR(err);
1079         else if (err == LOCKED_PAGE)
1080                 goto page_hit;
1081
1082         blk_start_plug(&plug);
1083
1084         /* Then, try readahead for siblings of the desired node */
1085         end = start + MAX_RA_NODE;
1086         end = min(end, NIDS_PER_BLOCK);
1087         for (i = start + 1; i < end; i++) {
1088                 nid = get_nid(parent, i, false);
1089                 if (!nid)
1090                         continue;
1091                 ra_node_page(sbi, nid);
1092         }
1093
1094         blk_finish_plug(&plug);
1095
1096         lock_page(page);
1097         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1098                 f2fs_put_page(page, 1);
1099                 goto repeat;
1100         }
1101 page_hit:
1102         if (unlikely(!PageUptodate(page))) {
1103                 f2fs_put_page(page, 1);
1104                 return ERR_PTR(-EIO);
1105         }
1106         return page;
1107 }
1108
1109 void sync_inode_page(struct dnode_of_data *dn)
1110 {
1111         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1112                 update_inode(dn->inode, dn->node_page);
1113         } else if (dn->inode_page) {
1114                 if (!dn->inode_page_locked)
1115                         lock_page(dn->inode_page);
1116                 update_inode(dn->inode, dn->inode_page);
1117                 if (!dn->inode_page_locked)
1118                         unlock_page(dn->inode_page);
1119         } else {
1120                 update_inode_page(dn->inode);
1121         }
1122 }
1123
1124 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1125                                         struct writeback_control *wbc)
1126 {
1127         pgoff_t index, end;
1128         struct pagevec pvec;
1129         int step = ino ? 2 : 0;
1130         int nwritten = 0, wrote = 0;
1131
1132         pagevec_init(&pvec, 0);
1133
1134 next_step:
1135         index = 0;
1136         end = LONG_MAX;
1137
1138         while (index <= end) {
1139                 int i, nr_pages;
1140                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1141                                 PAGECACHE_TAG_DIRTY,
1142                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1143                 if (nr_pages == 0)
1144                         break;
1145
1146                 for (i = 0; i < nr_pages; i++) {
1147                         struct page *page = pvec.pages[i];
1148
1149                         /*
1150                          * flushing sequence with step:
1151                          * 0. indirect nodes
1152                          * 1. dentry dnodes
1153                          * 2. file dnodes
1154                          */
1155                         if (step == 0 && IS_DNODE(page))
1156                                 continue;
1157                         if (step == 1 && (!IS_DNODE(page) ||
1158                                                 is_cold_node(page)))
1159                                 continue;
1160                         if (step == 2 && (!IS_DNODE(page) ||
1161                                                 !is_cold_node(page)))
1162                                 continue;
1163
1164                         /*
1165                          * If an fsync mode,
1166                          * we should not skip writing node pages.
1167                          */
1168                         if (ino && ino_of_node(page) == ino)
1169                                 lock_page(page);
1170                         else if (!trylock_page(page))
1171                                 continue;
1172
1173                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1174 continue_unlock:
1175                                 unlock_page(page);
1176                                 continue;
1177                         }
1178                         if (ino && ino_of_node(page) != ino)
1179                                 goto continue_unlock;
1180
1181                         if (!PageDirty(page)) {
1182                                 /* someone wrote it for us */
1183                                 goto continue_unlock;
1184                         }
1185
1186                         if (!clear_page_dirty_for_io(page))
1187                                 goto continue_unlock;
1188
1189                         /* called by fsync() */
1190                         if (ino && IS_DNODE(page)) {
1191                                 set_fsync_mark(page, 1);
1192                                 if (IS_INODE(page)) {
1193                                         if (!is_checkpointed_node(sbi, ino) &&
1194                                                 !has_fsynced_inode(sbi, ino))
1195                                                 set_dentry_mark(page, 1);
1196                                         else
1197                                                 set_dentry_mark(page, 0);
1198                                 }
1199                                 nwritten++;
1200                         } else {
1201                                 set_fsync_mark(page, 0);
1202                                 set_dentry_mark(page, 0);
1203                         }
1204
1205                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1206                                 unlock_page(page);
1207                         else
1208                                 wrote++;
1209
1210                         if (--wbc->nr_to_write == 0)
1211                                 break;
1212                 }
1213                 pagevec_release(&pvec);
1214                 cond_resched();
1215
1216                 if (wbc->nr_to_write == 0) {
1217                         step = 2;
1218                         break;
1219                 }
1220         }
1221
1222         if (step < 2) {
1223                 step++;
1224                 goto next_step;
1225         }
1226
1227         if (wrote)
1228                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1229         return nwritten;
1230 }
1231
1232 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1233 {
1234         pgoff_t index = 0, end = LONG_MAX;
1235         struct pagevec pvec;
1236         int ret2 = 0, ret = 0;
1237
1238         pagevec_init(&pvec, 0);
1239
1240         while (index <= end) {
1241                 int i, nr_pages;
1242                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1243                                 PAGECACHE_TAG_WRITEBACK,
1244                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1245                 if (nr_pages == 0)
1246                         break;
1247
1248                 for (i = 0; i < nr_pages; i++) {
1249                         struct page *page = pvec.pages[i];
1250
1251                         /* until radix tree lookup accepts end_index */
1252                         if (unlikely(page->index > end))
1253                                 continue;
1254
1255                         if (ino && ino_of_node(page) == ino) {
1256                                 f2fs_wait_on_page_writeback(page, NODE);
1257                                 if (TestClearPageError(page))
1258                                         ret = -EIO;
1259                         }
1260                 }
1261                 pagevec_release(&pvec);
1262                 cond_resched();
1263         }
1264
1265         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1266                 ret2 = -ENOSPC;
1267         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1268                 ret2 = -EIO;
1269         if (!ret)
1270                 ret = ret2;
1271         return ret;
1272 }
1273
1274 static int f2fs_write_node_page(struct page *page,
1275                                 struct writeback_control *wbc)
1276 {
1277         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1278         nid_t nid;
1279         struct node_info ni;
1280         struct f2fs_io_info fio = {
1281                 .type = NODE,
1282                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1283         };
1284
1285         trace_f2fs_writepage(page, NODE);
1286
1287         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1288                 goto redirty_out;
1289         if (unlikely(f2fs_cp_error(sbi)))
1290                 goto redirty_out;
1291
1292         f2fs_wait_on_page_writeback(page, NODE);
1293
1294         /* get old block addr of this node page */
1295         nid = nid_of_node(page);
1296         f2fs_bug_on(sbi, page->index != nid);
1297
1298         get_node_info(sbi, nid, &ni);
1299
1300         /* This page is already truncated */
1301         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1302                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1303                 unlock_page(page);
1304                 return 0;
1305         }
1306
1307         if (wbc->for_reclaim) {
1308                 if (!down_read_trylock(&sbi->node_write))
1309                         goto redirty_out;
1310         } else {
1311                 down_read(&sbi->node_write);
1312         }
1313
1314         set_page_writeback(page);
1315         fio.blk_addr = ni.blk_addr;
1316         write_node_page(sbi, page, nid, &fio);
1317         set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1318         dec_page_count(sbi, F2FS_DIRTY_NODES);
1319         up_read(&sbi->node_write);
1320         unlock_page(page);
1321
1322         if (wbc->for_reclaim)
1323                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1324
1325         return 0;
1326
1327 redirty_out:
1328         redirty_page_for_writepage(wbc, page);
1329         return AOP_WRITEPAGE_ACTIVATE;
1330 }
1331
1332 static int f2fs_write_node_pages(struct address_space *mapping,
1333                             struct writeback_control *wbc)
1334 {
1335         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1336         long diff;
1337
1338         trace_f2fs_writepages(mapping->host, wbc, NODE);
1339
1340         /* balancing f2fs's metadata in background */
1341         f2fs_balance_fs_bg(sbi);
1342
1343         /* collect a number of dirty node pages and write together */
1344         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1345                 goto skip_write;
1346
1347         diff = nr_pages_to_write(sbi, NODE, wbc);
1348         wbc->sync_mode = WB_SYNC_NONE;
1349         sync_node_pages(sbi, 0, wbc);
1350         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1351         return 0;
1352
1353 skip_write:
1354         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1355         return 0;
1356 }
1357
1358 static int f2fs_set_node_page_dirty(struct page *page)
1359 {
1360         trace_f2fs_set_page_dirty(page, NODE);
1361
1362         SetPageUptodate(page);
1363         if (!PageDirty(page)) {
1364                 __set_page_dirty_nobuffers(page);
1365                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1366                 SetPagePrivate(page);
1367                 f2fs_trace_pid(page);
1368                 return 1;
1369         }
1370         return 0;
1371 }
1372
1373 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1374                                       unsigned int length)
1375 {
1376         struct inode *inode = page->mapping->host;
1377         if (PageDirty(page))
1378                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1379         ClearPagePrivate(page);
1380 }
1381
1382 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1383 {
1384         /* If this is dirty page, keep PagePrivate */
1385         if (PageDirty(page))
1386                 return 0;
1387
1388         ClearPagePrivate(page);
1389         return 1;
1390 }
1391
1392 /*
1393  * Structure of the f2fs node operations
1394  */
1395 const struct address_space_operations f2fs_node_aops = {
1396         .writepage      = f2fs_write_node_page,
1397         .writepages     = f2fs_write_node_pages,
1398         .set_page_dirty = f2fs_set_node_page_dirty,
1399         .invalidatepage = f2fs_invalidate_node_page,
1400         .releasepage    = f2fs_release_node_page,
1401 };
1402
1403 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1404                                                 nid_t n)
1405 {
1406         return radix_tree_lookup(&nm_i->free_nid_root, n);
1407 }
1408
1409 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1410                                                 struct free_nid *i)
1411 {
1412         list_del(&i->list);
1413         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1414 }
1415
1416 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1417 {
1418         struct f2fs_nm_info *nm_i = NM_I(sbi);
1419         struct free_nid *i;
1420         struct nat_entry *ne;
1421         bool allocated = false;
1422
1423         if (!available_free_memory(sbi, FREE_NIDS))
1424                 return -1;
1425
1426         /* 0 nid should not be used */
1427         if (unlikely(nid == 0))
1428                 return 0;
1429
1430         if (build) {
1431                 /* do not add allocated nids */
1432                 down_read(&nm_i->nat_tree_lock);
1433                 ne = __lookup_nat_cache(nm_i, nid);
1434                 if (ne &&
1435                         (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1436                                 nat_get_blkaddr(ne) != NULL_ADDR))
1437                         allocated = true;
1438                 up_read(&nm_i->nat_tree_lock);
1439                 if (allocated)
1440                         return 0;
1441         }
1442
1443         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1444         i->nid = nid;
1445         i->state = NID_NEW;
1446
1447         if (radix_tree_preload(GFP_NOFS)) {
1448                 kmem_cache_free(free_nid_slab, i);
1449                 return 0;
1450         }
1451
1452         spin_lock(&nm_i->free_nid_list_lock);
1453         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1454                 spin_unlock(&nm_i->free_nid_list_lock);
1455                 radix_tree_preload_end();
1456                 kmem_cache_free(free_nid_slab, i);
1457                 return 0;
1458         }
1459         list_add_tail(&i->list, &nm_i->free_nid_list);
1460         nm_i->fcnt++;
1461         spin_unlock(&nm_i->free_nid_list_lock);
1462         radix_tree_preload_end();
1463         return 1;
1464 }
1465
1466 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1467 {
1468         struct free_nid *i;
1469         bool need_free = false;
1470
1471         spin_lock(&nm_i->free_nid_list_lock);
1472         i = __lookup_free_nid_list(nm_i, nid);
1473         if (i && i->state == NID_NEW) {
1474                 __del_from_free_nid_list(nm_i, i);
1475                 nm_i->fcnt--;
1476                 need_free = true;
1477         }
1478         spin_unlock(&nm_i->free_nid_list_lock);
1479
1480         if (need_free)
1481                 kmem_cache_free(free_nid_slab, i);
1482 }
1483
1484 static void scan_nat_page(struct f2fs_sb_info *sbi,
1485                         struct page *nat_page, nid_t start_nid)
1486 {
1487         struct f2fs_nm_info *nm_i = NM_I(sbi);
1488         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1489         block_t blk_addr;
1490         int i;
1491
1492         i = start_nid % NAT_ENTRY_PER_BLOCK;
1493
1494         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1495
1496                 if (unlikely(start_nid >= nm_i->max_nid))
1497                         break;
1498
1499                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1500                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1501                 if (blk_addr == NULL_ADDR) {
1502                         if (add_free_nid(sbi, start_nid, true) < 0)
1503                                 break;
1504                 }
1505         }
1506 }
1507
1508 static void build_free_nids(struct f2fs_sb_info *sbi)
1509 {
1510         struct f2fs_nm_info *nm_i = NM_I(sbi);
1511         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1512         struct f2fs_summary_block *sum = curseg->sum_blk;
1513         int i = 0;
1514         nid_t nid = nm_i->next_scan_nid;
1515
1516         /* Enough entries */
1517         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1518                 return;
1519
1520         /* readahead nat pages to be scanned */
1521         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1522
1523         while (1) {
1524                 struct page *page = get_current_nat_page(sbi, nid);
1525
1526                 scan_nat_page(sbi, page, nid);
1527                 f2fs_put_page(page, 1);
1528
1529                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1530                 if (unlikely(nid >= nm_i->max_nid))
1531                         nid = 0;
1532
1533                 if (i++ == FREE_NID_PAGES)
1534                         break;
1535         }
1536
1537         /* go to the next free nat pages to find free nids abundantly */
1538         nm_i->next_scan_nid = nid;
1539
1540         /* find free nids from current sum_pages */
1541         mutex_lock(&curseg->curseg_mutex);
1542         for (i = 0; i < nats_in_cursum(sum); i++) {
1543                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1544                 nid = le32_to_cpu(nid_in_journal(sum, i));
1545                 if (addr == NULL_ADDR)
1546                         add_free_nid(sbi, nid, true);
1547                 else
1548                         remove_free_nid(nm_i, nid);
1549         }
1550         mutex_unlock(&curseg->curseg_mutex);
1551 }
1552
1553 /*
1554  * If this function returns success, caller can obtain a new nid
1555  * from second parameter of this function.
1556  * The returned nid could be used ino as well as nid when inode is created.
1557  */
1558 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1559 {
1560         struct f2fs_nm_info *nm_i = NM_I(sbi);
1561         struct free_nid *i = NULL;
1562 retry:
1563         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1564                 return false;
1565
1566         spin_lock(&nm_i->free_nid_list_lock);
1567
1568         /* We should not use stale free nids created by build_free_nids */
1569         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1570                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1571                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1572                         if (i->state == NID_NEW)
1573                                 break;
1574
1575                 f2fs_bug_on(sbi, i->state != NID_NEW);
1576                 *nid = i->nid;
1577                 i->state = NID_ALLOC;
1578                 nm_i->fcnt--;
1579                 spin_unlock(&nm_i->free_nid_list_lock);
1580                 return true;
1581         }
1582         spin_unlock(&nm_i->free_nid_list_lock);
1583
1584         /* Let's scan nat pages and its caches to get free nids */
1585         mutex_lock(&nm_i->build_lock);
1586         build_free_nids(sbi);
1587         mutex_unlock(&nm_i->build_lock);
1588         goto retry;
1589 }
1590
1591 /*
1592  * alloc_nid() should be called prior to this function.
1593  */
1594 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1595 {
1596         struct f2fs_nm_info *nm_i = NM_I(sbi);
1597         struct free_nid *i;
1598
1599         spin_lock(&nm_i->free_nid_list_lock);
1600         i = __lookup_free_nid_list(nm_i, nid);
1601         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1602         __del_from_free_nid_list(nm_i, i);
1603         spin_unlock(&nm_i->free_nid_list_lock);
1604
1605         kmem_cache_free(free_nid_slab, i);
1606 }
1607
1608 /*
1609  * alloc_nid() should be called prior to this function.
1610  */
1611 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1612 {
1613         struct f2fs_nm_info *nm_i = NM_I(sbi);
1614         struct free_nid *i;
1615         bool need_free = false;
1616
1617         if (!nid)
1618                 return;
1619
1620         spin_lock(&nm_i->free_nid_list_lock);
1621         i = __lookup_free_nid_list(nm_i, nid);
1622         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1623         if (!available_free_memory(sbi, FREE_NIDS)) {
1624                 __del_from_free_nid_list(nm_i, i);
1625                 need_free = true;
1626         } else {
1627                 i->state = NID_NEW;
1628                 nm_i->fcnt++;
1629         }
1630         spin_unlock(&nm_i->free_nid_list_lock);
1631
1632         if (need_free)
1633                 kmem_cache_free(free_nid_slab, i);
1634 }
1635
1636 void recover_inline_xattr(struct inode *inode, struct page *page)
1637 {
1638         void *src_addr, *dst_addr;
1639         size_t inline_size;
1640         struct page *ipage;
1641         struct f2fs_inode *ri;
1642
1643         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1644         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1645
1646         ri = F2FS_INODE(page);
1647         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1648                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1649                 goto update_inode;
1650         }
1651
1652         dst_addr = inline_xattr_addr(ipage);
1653         src_addr = inline_xattr_addr(page);
1654         inline_size = inline_xattr_size(inode);
1655
1656         f2fs_wait_on_page_writeback(ipage, NODE);
1657         memcpy(dst_addr, src_addr, inline_size);
1658 update_inode:
1659         update_inode(inode, ipage);
1660         f2fs_put_page(ipage, 1);
1661 }
1662
1663 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1664 {
1665         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1667         nid_t new_xnid = nid_of_node(page);
1668         struct node_info ni;
1669
1670         /* 1: invalidate the previous xattr nid */
1671         if (!prev_xnid)
1672                 goto recover_xnid;
1673
1674         /* Deallocate node address */
1675         get_node_info(sbi, prev_xnid, &ni);
1676         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1677         invalidate_blocks(sbi, ni.blk_addr);
1678         dec_valid_node_count(sbi, inode);
1679         set_node_addr(sbi, &ni, NULL_ADDR, false);
1680
1681 recover_xnid:
1682         /* 2: allocate new xattr nid */
1683         if (unlikely(!inc_valid_node_count(sbi, inode)))
1684                 f2fs_bug_on(sbi, 1);
1685
1686         remove_free_nid(NM_I(sbi), new_xnid);
1687         get_node_info(sbi, new_xnid, &ni);
1688         ni.ino = inode->i_ino;
1689         set_node_addr(sbi, &ni, NEW_ADDR, false);
1690         F2FS_I(inode)->i_xattr_nid = new_xnid;
1691
1692         /* 3: update xattr blkaddr */
1693         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1694         set_node_addr(sbi, &ni, blkaddr, false);
1695
1696         update_inode_page(inode);
1697 }
1698
1699 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1700 {
1701         struct f2fs_inode *src, *dst;
1702         nid_t ino = ino_of_node(page);
1703         struct node_info old_ni, new_ni;
1704         struct page *ipage;
1705
1706         get_node_info(sbi, ino, &old_ni);
1707
1708         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1709                 return -EINVAL;
1710
1711         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1712         if (!ipage)
1713                 return -ENOMEM;
1714
1715         /* Should not use this inode from free nid list */
1716         remove_free_nid(NM_I(sbi), ino);
1717
1718         SetPageUptodate(ipage);
1719         fill_node_footer(ipage, ino, ino, 0, true);
1720
1721         src = F2FS_INODE(page);
1722         dst = F2FS_INODE(ipage);
1723
1724         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1725         dst->i_size = 0;
1726         dst->i_blocks = cpu_to_le64(1);
1727         dst->i_links = cpu_to_le32(1);
1728         dst->i_xattr_nid = 0;
1729         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1730
1731         new_ni = old_ni;
1732         new_ni.ino = ino;
1733
1734         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1735                 WARN_ON(1);
1736         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1737         inc_valid_inode_count(sbi);
1738         set_page_dirty(ipage);
1739         f2fs_put_page(ipage, 1);
1740         return 0;
1741 }
1742
1743 int restore_node_summary(struct f2fs_sb_info *sbi,
1744                         unsigned int segno, struct f2fs_summary_block *sum)
1745 {
1746         struct f2fs_node *rn;
1747         struct f2fs_summary *sum_entry;
1748         block_t addr;
1749         int bio_blocks = MAX_BIO_BLOCKS(sbi);
1750         int i, idx, last_offset, nrpages;
1751
1752         /* scan the node segment */
1753         last_offset = sbi->blocks_per_seg;
1754         addr = START_BLOCK(sbi, segno);
1755         sum_entry = &sum->entries[0];
1756
1757         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1758                 nrpages = min(last_offset - i, bio_blocks);
1759
1760                 /* readahead node pages */
1761                 ra_meta_pages(sbi, addr, nrpages, META_POR);
1762
1763                 for (idx = addr; idx < addr + nrpages; idx++) {
1764                         struct page *page = get_meta_page(sbi, idx);
1765
1766                         rn = F2FS_NODE(page);
1767                         sum_entry->nid = rn->footer.nid;
1768                         sum_entry->version = 0;
1769                         sum_entry->ofs_in_node = 0;
1770                         sum_entry++;
1771                         f2fs_put_page(page, 1);
1772                 }
1773
1774                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1775                                                         addr + nrpages);
1776         }
1777         return 0;
1778 }
1779
1780 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1781 {
1782         struct f2fs_nm_info *nm_i = NM_I(sbi);
1783         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1784         struct f2fs_summary_block *sum = curseg->sum_blk;
1785         int i;
1786
1787         mutex_lock(&curseg->curseg_mutex);
1788         for (i = 0; i < nats_in_cursum(sum); i++) {
1789                 struct nat_entry *ne;
1790                 struct f2fs_nat_entry raw_ne;
1791                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1792
1793                 raw_ne = nat_in_journal(sum, i);
1794
1795                 down_write(&nm_i->nat_tree_lock);
1796                 ne = __lookup_nat_cache(nm_i, nid);
1797                 if (!ne) {
1798                         ne = grab_nat_entry(nm_i, nid);
1799                         node_info_from_raw_nat(&ne->ni, &raw_ne);
1800                 }
1801                 __set_nat_cache_dirty(nm_i, ne);
1802                 up_write(&nm_i->nat_tree_lock);
1803         }
1804         update_nats_in_cursum(sum, -i);
1805         mutex_unlock(&curseg->curseg_mutex);
1806 }
1807
1808 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1809                                                 struct list_head *head, int max)
1810 {
1811         struct nat_entry_set *cur;
1812
1813         if (nes->entry_cnt >= max)
1814                 goto add_out;
1815
1816         list_for_each_entry(cur, head, set_list) {
1817                 if (cur->entry_cnt >= nes->entry_cnt) {
1818                         list_add(&nes->set_list, cur->set_list.prev);
1819                         return;
1820                 }
1821         }
1822 add_out:
1823         list_add_tail(&nes->set_list, head);
1824 }
1825
1826 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1827                                         struct nat_entry_set *set)
1828 {
1829         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1830         struct f2fs_summary_block *sum = curseg->sum_blk;
1831         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1832         bool to_journal = true;
1833         struct f2fs_nat_block *nat_blk;
1834         struct nat_entry *ne, *cur;
1835         struct page *page = NULL;
1836
1837         /*
1838          * there are two steps to flush nat entries:
1839          * #1, flush nat entries to journal in current hot data summary block.
1840          * #2, flush nat entries to nat page.
1841          */
1842         if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1843                 to_journal = false;
1844
1845         if (to_journal) {
1846                 mutex_lock(&curseg->curseg_mutex);
1847         } else {
1848                 page = get_next_nat_page(sbi, start_nid);
1849                 nat_blk = page_address(page);
1850                 f2fs_bug_on(sbi, !nat_blk);
1851         }
1852
1853         /* flush dirty nats in nat entry set */
1854         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1855                 struct f2fs_nat_entry *raw_ne;
1856                 nid_t nid = nat_get_nid(ne);
1857                 int offset;
1858
1859                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1860                         continue;
1861
1862                 if (to_journal) {
1863                         offset = lookup_journal_in_cursum(sum,
1864                                                         NAT_JOURNAL, nid, 1);
1865                         f2fs_bug_on(sbi, offset < 0);
1866                         raw_ne = &nat_in_journal(sum, offset);
1867                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1868                 } else {
1869                         raw_ne = &nat_blk->entries[nid - start_nid];
1870                 }
1871                 raw_nat_from_node_info(raw_ne, &ne->ni);
1872
1873                 down_write(&NM_I(sbi)->nat_tree_lock);
1874                 nat_reset_flag(ne);
1875                 __clear_nat_cache_dirty(NM_I(sbi), ne);
1876                 up_write(&NM_I(sbi)->nat_tree_lock);
1877
1878                 if (nat_get_blkaddr(ne) == NULL_ADDR)
1879                         add_free_nid(sbi, nid, false);
1880         }
1881
1882         if (to_journal)
1883                 mutex_unlock(&curseg->curseg_mutex);
1884         else
1885                 f2fs_put_page(page, 1);
1886
1887         f2fs_bug_on(sbi, set->entry_cnt);
1888
1889         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1890         kmem_cache_free(nat_entry_set_slab, set);
1891 }
1892
1893 /*
1894  * This function is called during the checkpointing process.
1895  */
1896 void flush_nat_entries(struct f2fs_sb_info *sbi)
1897 {
1898         struct f2fs_nm_info *nm_i = NM_I(sbi);
1899         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1900         struct f2fs_summary_block *sum = curseg->sum_blk;
1901         struct nat_entry_set *setvec[SETVEC_SIZE];
1902         struct nat_entry_set *set, *tmp;
1903         unsigned int found;
1904         nid_t set_idx = 0;
1905         LIST_HEAD(sets);
1906
1907         if (!nm_i->dirty_nat_cnt)
1908                 return;
1909         /*
1910          * if there are no enough space in journal to store dirty nat
1911          * entries, remove all entries from journal and merge them
1912          * into nat entry set.
1913          */
1914         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1915                 remove_nats_in_journal(sbi);
1916
1917         while ((found = __gang_lookup_nat_set(nm_i,
1918                                         set_idx, SETVEC_SIZE, setvec))) {
1919                 unsigned idx;
1920                 set_idx = setvec[found - 1]->set + 1;
1921                 for (idx = 0; idx < found; idx++)
1922                         __adjust_nat_entry_set(setvec[idx], &sets,
1923                                                         MAX_NAT_JENTRIES(sum));
1924         }
1925
1926         /* flush dirty nats in nat entry set */
1927         list_for_each_entry_safe(set, tmp, &sets, set_list)
1928                 __flush_nat_entry_set(sbi, set);
1929
1930         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1931 }
1932
1933 static int init_node_manager(struct f2fs_sb_info *sbi)
1934 {
1935         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1936         struct f2fs_nm_info *nm_i = NM_I(sbi);
1937         unsigned char *version_bitmap;
1938         unsigned int nat_segs, nat_blocks;
1939
1940         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1941
1942         /* segment_count_nat includes pair segment so divide to 2. */
1943         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1944         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1945
1946         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1947
1948         /* not used nids: 0, node, meta, (and root counted as valid node) */
1949         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1950         nm_i->fcnt = 0;
1951         nm_i->nat_cnt = 0;
1952         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1953
1954         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1955         INIT_LIST_HEAD(&nm_i->free_nid_list);
1956         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1957         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1958         INIT_LIST_HEAD(&nm_i->nat_entries);
1959
1960         mutex_init(&nm_i->build_lock);
1961         spin_lock_init(&nm_i->free_nid_list_lock);
1962         init_rwsem(&nm_i->nat_tree_lock);
1963
1964         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1965         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1966         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1967         if (!version_bitmap)
1968                 return -EFAULT;
1969
1970         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1971                                         GFP_KERNEL);
1972         if (!nm_i->nat_bitmap)
1973                 return -ENOMEM;
1974         return 0;
1975 }
1976
1977 int build_node_manager(struct f2fs_sb_info *sbi)
1978 {
1979         int err;
1980
1981         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1982         if (!sbi->nm_info)
1983                 return -ENOMEM;
1984
1985         err = init_node_manager(sbi);
1986         if (err)
1987                 return err;
1988
1989         build_free_nids(sbi);
1990         return 0;
1991 }
1992
1993 void destroy_node_manager(struct f2fs_sb_info *sbi)
1994 {
1995         struct f2fs_nm_info *nm_i = NM_I(sbi);
1996         struct free_nid *i, *next_i;
1997         struct nat_entry *natvec[NATVEC_SIZE];
1998         struct nat_entry_set *setvec[SETVEC_SIZE];
1999         nid_t nid = 0;
2000         unsigned int found;
2001
2002         if (!nm_i)
2003                 return;
2004
2005         /* destroy free nid list */
2006         spin_lock(&nm_i->free_nid_list_lock);
2007         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2008                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2009                 __del_from_free_nid_list(nm_i, i);
2010                 nm_i->fcnt--;
2011                 spin_unlock(&nm_i->free_nid_list_lock);
2012                 kmem_cache_free(free_nid_slab, i);
2013                 spin_lock(&nm_i->free_nid_list_lock);
2014         }
2015         f2fs_bug_on(sbi, nm_i->fcnt);
2016         spin_unlock(&nm_i->free_nid_list_lock);
2017
2018         /* destroy nat cache */
2019         down_write(&nm_i->nat_tree_lock);
2020         while ((found = __gang_lookup_nat_cache(nm_i,
2021                                         nid, NATVEC_SIZE, natvec))) {
2022                 unsigned idx;
2023
2024                 nid = nat_get_nid(natvec[found - 1]) + 1;
2025                 for (idx = 0; idx < found; idx++)
2026                         __del_from_nat_cache(nm_i, natvec[idx]);
2027         }
2028         f2fs_bug_on(sbi, nm_i->nat_cnt);
2029
2030         /* destroy nat set cache */
2031         nid = 0;
2032         while ((found = __gang_lookup_nat_set(nm_i,
2033                                         nid, SETVEC_SIZE, setvec))) {
2034                 unsigned idx;
2035
2036                 nid = setvec[found - 1]->set + 1;
2037                 for (idx = 0; idx < found; idx++) {
2038                         /* entry_cnt is not zero, when cp_error was occurred */
2039                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2040                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2041                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2042                 }
2043         }
2044         up_write(&nm_i->nat_tree_lock);
2045
2046         kfree(nm_i->nat_bitmap);
2047         sbi->nm_info = NULL;
2048         kfree(nm_i);
2049 }
2050
2051 int __init create_node_manager_caches(void)
2052 {
2053         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2054                         sizeof(struct nat_entry));
2055         if (!nat_entry_slab)
2056                 goto fail;
2057
2058         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2059                         sizeof(struct free_nid));
2060         if (!free_nid_slab)
2061                 goto destroy_nat_entry;
2062
2063         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2064                         sizeof(struct nat_entry_set));
2065         if (!nat_entry_set_slab)
2066                 goto destroy_free_nid;
2067         return 0;
2068
2069 destroy_free_nid:
2070         kmem_cache_destroy(free_nid_slab);
2071 destroy_nat_entry:
2072         kmem_cache_destroy(nat_entry_slab);
2073 fail:
2074         return -ENOMEM;
2075 }
2076
2077 void destroy_node_manager_caches(void)
2078 {
2079         kmem_cache_destroy(nat_entry_set_slab);
2080         kmem_cache_destroy(free_nid_slab);
2081         kmem_cache_destroy(nat_entry_slab);
2082 }