]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/node.c
eced8d7bf5022a88d3a759c7c70ad9bde57d9f16
[linux-beck.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
30 {
31         struct sysinfo val;
32         unsigned long mem_size = 0;
33
34         si_meminfo(&val);
35         if (type == FREE_NIDS)
36                 mem_size = nm_i->fcnt * sizeof(struct free_nid);
37         else if (type == NAT_ENTRIES)
38                 mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
39         mem_size >>= 12;
40
41         /* give 50:50 memory for free nids and nat caches respectively */
42         return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
43 }
44
45 static void clear_node_page_dirty(struct page *page)
46 {
47         struct address_space *mapping = page->mapping;
48         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
49         unsigned int long flags;
50
51         if (PageDirty(page)) {
52                 spin_lock_irqsave(&mapping->tree_lock, flags);
53                 radix_tree_tag_clear(&mapping->page_tree,
54                                 page_index(page),
55                                 PAGECACHE_TAG_DIRTY);
56                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
57
58                 clear_page_dirty_for_io(page);
59                 dec_page_count(sbi, F2FS_DIRTY_NODES);
60         }
61         ClearPageUptodate(page);
62 }
63
64 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
65 {
66         pgoff_t index = current_nat_addr(sbi, nid);
67         return get_meta_page(sbi, index);
68 }
69
70 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72         struct page *src_page;
73         struct page *dst_page;
74         pgoff_t src_off;
75         pgoff_t dst_off;
76         void *src_addr;
77         void *dst_addr;
78         struct f2fs_nm_info *nm_i = NM_I(sbi);
79
80         src_off = current_nat_addr(sbi, nid);
81         dst_off = next_nat_addr(sbi, src_off);
82
83         /* get current nat block page with lock */
84         src_page = get_meta_page(sbi, src_off);
85
86         /* Dirty src_page means that it is already the new target NAT page. */
87         if (PageDirty(src_page))
88                 return src_page;
89
90         dst_page = grab_meta_page(sbi, dst_off);
91
92         src_addr = page_address(src_page);
93         dst_addr = page_address(dst_page);
94         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
95         set_page_dirty(dst_page);
96         f2fs_put_page(src_page, 1);
97
98         set_to_next_nat(nm_i, nid);
99
100         return dst_page;
101 }
102
103 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
104 {
105         return radix_tree_lookup(&nm_i->nat_root, n);
106 }
107
108 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
109                 nid_t start, unsigned int nr, struct nat_entry **ep)
110 {
111         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
112 }
113
114 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
115 {
116         list_del(&e->list);
117         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
118         nm_i->nat_cnt--;
119         kmem_cache_free(nat_entry_slab, e);
120 }
121
122 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124         struct f2fs_nm_info *nm_i = NM_I(sbi);
125         struct nat_entry *e;
126         int is_cp = 1;
127
128         read_lock(&nm_i->nat_tree_lock);
129         e = __lookup_nat_cache(nm_i, nid);
130         if (e && !e->checkpointed)
131                 is_cp = 0;
132         read_unlock(&nm_i->nat_tree_lock);
133         return is_cp;
134 }
135
136 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138         struct f2fs_nm_info *nm_i = NM_I(sbi);
139         struct nat_entry *e;
140         bool fsync_done = false;
141
142         read_lock(&nm_i->nat_tree_lock);
143         e = __lookup_nat_cache(nm_i, nid);
144         if (e)
145                 fsync_done = e->fsync_done;
146         read_unlock(&nm_i->nat_tree_lock);
147         return fsync_done;
148 }
149
150 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
151 {
152         struct nat_entry *new;
153
154         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
155         if (!new)
156                 return NULL;
157         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
158                 kmem_cache_free(nat_entry_slab, new);
159                 return NULL;
160         }
161         memset(new, 0, sizeof(struct nat_entry));
162         nat_set_nid(new, nid);
163         new->checkpointed = true;
164         list_add_tail(&new->list, &nm_i->nat_entries);
165         nm_i->nat_cnt++;
166         return new;
167 }
168
169 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
170                                                 struct f2fs_nat_entry *ne)
171 {
172         struct nat_entry *e;
173 retry:
174         write_lock(&nm_i->nat_tree_lock);
175         e = __lookup_nat_cache(nm_i, nid);
176         if (!e) {
177                 e = grab_nat_entry(nm_i, nid);
178                 if (!e) {
179                         write_unlock(&nm_i->nat_tree_lock);
180                         goto retry;
181                 }
182                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
183                 nat_set_ino(e, le32_to_cpu(ne->ino));
184                 nat_set_version(e, ne->version);
185         }
186         write_unlock(&nm_i->nat_tree_lock);
187 }
188
189 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
190                         block_t new_blkaddr, bool fsync_done)
191 {
192         struct f2fs_nm_info *nm_i = NM_I(sbi);
193         struct nat_entry *e;
194 retry:
195         write_lock(&nm_i->nat_tree_lock);
196         e = __lookup_nat_cache(nm_i, ni->nid);
197         if (!e) {
198                 e = grab_nat_entry(nm_i, ni->nid);
199                 if (!e) {
200                         write_unlock(&nm_i->nat_tree_lock);
201                         goto retry;
202                 }
203                 e->ni = *ni;
204                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205         } else if (new_blkaddr == NEW_ADDR) {
206                 /*
207                  * when nid is reallocated,
208                  * previous nat entry can be remained in nat cache.
209                  * So, reinitialize it with new information.
210                  */
211                 e->ni = *ni;
212                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213         }
214
215         /* sanity check */
216         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
217         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
218                         new_blkaddr == NULL_ADDR);
219         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
220                         new_blkaddr == NEW_ADDR);
221         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
222                         nat_get_blkaddr(e) != NULL_ADDR &&
223                         new_blkaddr == NEW_ADDR);
224
225         /* increament version no as node is removed */
226         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
227                 unsigned char version = nat_get_version(e);
228                 nat_set_version(e, inc_node_version(version));
229         }
230
231         /* change address */
232         nat_set_blkaddr(e, new_blkaddr);
233         __set_nat_cache_dirty(nm_i, e);
234
235         /* update fsync_mark if its inode nat entry is still alive */
236         e = __lookup_nat_cache(nm_i, ni->ino);
237         if (e)
238                 e->fsync_done = fsync_done;
239         write_unlock(&nm_i->nat_tree_lock);
240 }
241
242 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
243 {
244         struct f2fs_nm_info *nm_i = NM_I(sbi);
245
246         if (available_free_memory(nm_i, NAT_ENTRIES))
247                 return 0;
248
249         write_lock(&nm_i->nat_tree_lock);
250         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
251                 struct nat_entry *ne;
252                 ne = list_first_entry(&nm_i->nat_entries,
253                                         struct nat_entry, list);
254                 __del_from_nat_cache(nm_i, ne);
255                 nr_shrink--;
256         }
257         write_unlock(&nm_i->nat_tree_lock);
258         return nr_shrink;
259 }
260
261 /*
262  * This function returns always success
263  */
264 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
265 {
266         struct f2fs_nm_info *nm_i = NM_I(sbi);
267         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
268         struct f2fs_summary_block *sum = curseg->sum_blk;
269         nid_t start_nid = START_NID(nid);
270         struct f2fs_nat_block *nat_blk;
271         struct page *page = NULL;
272         struct f2fs_nat_entry ne;
273         struct nat_entry *e;
274         int i;
275
276         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
277         ni->nid = nid;
278
279         /* Check nat cache */
280         read_lock(&nm_i->nat_tree_lock);
281         e = __lookup_nat_cache(nm_i, nid);
282         if (e) {
283                 ni->ino = nat_get_ino(e);
284                 ni->blk_addr = nat_get_blkaddr(e);
285                 ni->version = nat_get_version(e);
286         }
287         read_unlock(&nm_i->nat_tree_lock);
288         if (e)
289                 return;
290
291         /* Check current segment summary */
292         mutex_lock(&curseg->curseg_mutex);
293         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
294         if (i >= 0) {
295                 ne = nat_in_journal(sum, i);
296                 node_info_from_raw_nat(ni, &ne);
297         }
298         mutex_unlock(&curseg->curseg_mutex);
299         if (i >= 0)
300                 goto cache;
301
302         /* Fill node_info from nat page */
303         page = get_current_nat_page(sbi, start_nid);
304         nat_blk = (struct f2fs_nat_block *)page_address(page);
305         ne = nat_blk->entries[nid - start_nid];
306         node_info_from_raw_nat(ni, &ne);
307         f2fs_put_page(page, 1);
308 cache:
309         /* cache nat entry */
310         cache_nat_entry(NM_I(sbi), nid, &ne);
311 }
312
313 /*
314  * The maximum depth is four.
315  * Offset[0] will have raw inode offset.
316  */
317 static int get_node_path(struct f2fs_inode_info *fi, long block,
318                                 int offset[4], unsigned int noffset[4])
319 {
320         const long direct_index = ADDRS_PER_INODE(fi);
321         const long direct_blks = ADDRS_PER_BLOCK;
322         const long dptrs_per_blk = NIDS_PER_BLOCK;
323         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325         int n = 0;
326         int level = 0;
327
328         noffset[0] = 0;
329
330         if (block < direct_index) {
331                 offset[n] = block;
332                 goto got;
333         }
334         block -= direct_index;
335         if (block < direct_blks) {
336                 offset[n++] = NODE_DIR1_BLOCK;
337                 noffset[n] = 1;
338                 offset[n] = block;
339                 level = 1;
340                 goto got;
341         }
342         block -= direct_blks;
343         if (block < direct_blks) {
344                 offset[n++] = NODE_DIR2_BLOCK;
345                 noffset[n] = 2;
346                 offset[n] = block;
347                 level = 1;
348                 goto got;
349         }
350         block -= direct_blks;
351         if (block < indirect_blks) {
352                 offset[n++] = NODE_IND1_BLOCK;
353                 noffset[n] = 3;
354                 offset[n++] = block / direct_blks;
355                 noffset[n] = 4 + offset[n - 1];
356                 offset[n] = block % direct_blks;
357                 level = 2;
358                 goto got;
359         }
360         block -= indirect_blks;
361         if (block < indirect_blks) {
362                 offset[n++] = NODE_IND2_BLOCK;
363                 noffset[n] = 4 + dptrs_per_blk;
364                 offset[n++] = block / direct_blks;
365                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366                 offset[n] = block % direct_blks;
367                 level = 2;
368                 goto got;
369         }
370         block -= indirect_blks;
371         if (block < dindirect_blks) {
372                 offset[n++] = NODE_DIND_BLOCK;
373                 noffset[n] = 5 + (dptrs_per_blk * 2);
374                 offset[n++] = block / indirect_blks;
375                 noffset[n] = 6 + (dptrs_per_blk * 2) +
376                               offset[n - 1] * (dptrs_per_blk + 1);
377                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378                 noffset[n] = 7 + (dptrs_per_blk * 2) +
379                               offset[n - 2] * (dptrs_per_blk + 1) +
380                               offset[n - 1];
381                 offset[n] = block % direct_blks;
382                 level = 3;
383                 goto got;
384         } else {
385                 BUG();
386         }
387 got:
388         return level;
389 }
390
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
394  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400         struct page *npage[4];
401         struct page *parent;
402         int offset[4];
403         unsigned int noffset[4];
404         nid_t nids[4];
405         int level, i;
406         int err = 0;
407
408         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
409
410         nids[0] = dn->inode->i_ino;
411         npage[0] = dn->inode_page;
412
413         if (!npage[0]) {
414                 npage[0] = get_node_page(sbi, nids[0]);
415                 if (IS_ERR(npage[0]))
416                         return PTR_ERR(npage[0]);
417         }
418         parent = npage[0];
419         if (level != 0)
420                 nids[1] = get_nid(parent, offset[0], true);
421         dn->inode_page = npage[0];
422         dn->inode_page_locked = true;
423
424         /* get indirect or direct nodes */
425         for (i = 1; i <= level; i++) {
426                 bool done = false;
427
428                 if (!nids[i] && mode == ALLOC_NODE) {
429                         /* alloc new node */
430                         if (!alloc_nid(sbi, &(nids[i]))) {
431                                 err = -ENOSPC;
432                                 goto release_pages;
433                         }
434
435                         dn->nid = nids[i];
436                         npage[i] = new_node_page(dn, noffset[i], NULL);
437                         if (IS_ERR(npage[i])) {
438                                 alloc_nid_failed(sbi, nids[i]);
439                                 err = PTR_ERR(npage[i]);
440                                 goto release_pages;
441                         }
442
443                         set_nid(parent, offset[i - 1], nids[i], i == 1);
444                         alloc_nid_done(sbi, nids[i]);
445                         done = true;
446                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
448                         if (IS_ERR(npage[i])) {
449                                 err = PTR_ERR(npage[i]);
450                                 goto release_pages;
451                         }
452                         done = true;
453                 }
454                 if (i == 1) {
455                         dn->inode_page_locked = false;
456                         unlock_page(parent);
457                 } else {
458                         f2fs_put_page(parent, 1);
459                 }
460
461                 if (!done) {
462                         npage[i] = get_node_page(sbi, nids[i]);
463                         if (IS_ERR(npage[i])) {
464                                 err = PTR_ERR(npage[i]);
465                                 f2fs_put_page(npage[0], 0);
466                                 goto release_out;
467                         }
468                 }
469                 if (i < level) {
470                         parent = npage[i];
471                         nids[i + 1] = get_nid(parent, offset[i], false);
472                 }
473         }
474         dn->nid = nids[level];
475         dn->ofs_in_node = offset[level];
476         dn->node_page = npage[level];
477         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478         return 0;
479
480 release_pages:
481         f2fs_put_page(parent, 1);
482         if (i > 1)
483                 f2fs_put_page(npage[0], 0);
484 release_out:
485         dn->inode_page = NULL;
486         dn->node_page = NULL;
487         return err;
488 }
489
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493         struct node_info ni;
494
495         get_node_info(sbi, dn->nid, &ni);
496         if (dn->inode->i_blocks == 0) {
497                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
498                 goto invalidate;
499         }
500         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
501
502         /* Deallocate node address */
503         invalidate_blocks(sbi, ni.blk_addr);
504         dec_valid_node_count(sbi, dn->inode);
505         set_node_addr(sbi, &ni, NULL_ADDR, false);
506
507         if (dn->nid == dn->inode->i_ino) {
508                 remove_orphan_inode(sbi, dn->nid);
509                 dec_valid_inode_count(sbi);
510         } else {
511                 sync_inode_page(dn);
512         }
513 invalidate:
514         clear_node_page_dirty(dn->node_page);
515         F2FS_SET_SB_DIRT(sbi);
516
517         f2fs_put_page(dn->node_page, 1);
518
519         invalidate_mapping_pages(NODE_MAPPING(sbi),
520                         dn->node_page->index, dn->node_page->index);
521
522         dn->node_page = NULL;
523         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
524 }
525
526 static int truncate_dnode(struct dnode_of_data *dn)
527 {
528         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
529         struct page *page;
530
531         if (dn->nid == 0)
532                 return 1;
533
534         /* get direct node */
535         page = get_node_page(sbi, dn->nid);
536         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
537                 return 1;
538         else if (IS_ERR(page))
539                 return PTR_ERR(page);
540
541         /* Make dnode_of_data for parameter */
542         dn->node_page = page;
543         dn->ofs_in_node = 0;
544         truncate_data_blocks(dn);
545         truncate_node(dn);
546         return 1;
547 }
548
549 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
550                                                 int ofs, int depth)
551 {
552         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
553         struct dnode_of_data rdn = *dn;
554         struct page *page;
555         struct f2fs_node *rn;
556         nid_t child_nid;
557         unsigned int child_nofs;
558         int freed = 0;
559         int i, ret;
560
561         if (dn->nid == 0)
562                 return NIDS_PER_BLOCK + 1;
563
564         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
565
566         page = get_node_page(sbi, dn->nid);
567         if (IS_ERR(page)) {
568                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
569                 return PTR_ERR(page);
570         }
571
572         rn = F2FS_NODE(page);
573         if (depth < 3) {
574                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
575                         child_nid = le32_to_cpu(rn->in.nid[i]);
576                         if (child_nid == 0)
577                                 continue;
578                         rdn.nid = child_nid;
579                         ret = truncate_dnode(&rdn);
580                         if (ret < 0)
581                                 goto out_err;
582                         set_nid(page, i, 0, false);
583                 }
584         } else {
585                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
586                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
587                         child_nid = le32_to_cpu(rn->in.nid[i]);
588                         if (child_nid == 0) {
589                                 child_nofs += NIDS_PER_BLOCK + 1;
590                                 continue;
591                         }
592                         rdn.nid = child_nid;
593                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
594                         if (ret == (NIDS_PER_BLOCK + 1)) {
595                                 set_nid(page, i, 0, false);
596                                 child_nofs += ret;
597                         } else if (ret < 0 && ret != -ENOENT) {
598                                 goto out_err;
599                         }
600                 }
601                 freed = child_nofs;
602         }
603
604         if (!ofs) {
605                 /* remove current indirect node */
606                 dn->node_page = page;
607                 truncate_node(dn);
608                 freed++;
609         } else {
610                 f2fs_put_page(page, 1);
611         }
612         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613         return freed;
614
615 out_err:
616         f2fs_put_page(page, 1);
617         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618         return ret;
619 }
620
621 static int truncate_partial_nodes(struct dnode_of_data *dn,
622                         struct f2fs_inode *ri, int *offset, int depth)
623 {
624         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
625         struct page *pages[2];
626         nid_t nid[3];
627         nid_t child_nid;
628         int err = 0;
629         int i;
630         int idx = depth - 2;
631
632         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633         if (!nid[0])
634                 return 0;
635
636         /* get indirect nodes in the path */
637         for (i = 0; i < idx + 1; i++) {
638                 /* refernece count'll be increased */
639                 pages[i] = get_node_page(sbi, nid[i]);
640                 if (IS_ERR(pages[i])) {
641                         err = PTR_ERR(pages[i]);
642                         idx = i - 1;
643                         goto fail;
644                 }
645                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
646         }
647
648         /* free direct nodes linked to a partial indirect node */
649         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
650                 child_nid = get_nid(pages[idx], i, false);
651                 if (!child_nid)
652                         continue;
653                 dn->nid = child_nid;
654                 err = truncate_dnode(dn);
655                 if (err < 0)
656                         goto fail;
657                 set_nid(pages[idx], i, 0, false);
658         }
659
660         if (offset[idx + 1] == 0) {
661                 dn->node_page = pages[idx];
662                 dn->nid = nid[idx];
663                 truncate_node(dn);
664         } else {
665                 f2fs_put_page(pages[idx], 1);
666         }
667         offset[idx]++;
668         offset[idx + 1] = 0;
669         idx--;
670 fail:
671         for (i = idx; i >= 0; i--)
672                 f2fs_put_page(pages[i], 1);
673
674         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
675
676         return err;
677 }
678
679 /*
680  * All the block addresses of data and nodes should be nullified.
681  */
682 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
683 {
684         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
685         int err = 0, cont = 1;
686         int level, offset[4], noffset[4];
687         unsigned int nofs = 0;
688         struct f2fs_inode *ri;
689         struct dnode_of_data dn;
690         struct page *page;
691
692         trace_f2fs_truncate_inode_blocks_enter(inode, from);
693
694         level = get_node_path(F2FS_I(inode), from, offset, noffset);
695 restart:
696         page = get_node_page(sbi, inode->i_ino);
697         if (IS_ERR(page)) {
698                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
699                 return PTR_ERR(page);
700         }
701
702         set_new_dnode(&dn, inode, page, NULL, 0);
703         unlock_page(page);
704
705         ri = F2FS_INODE(page);
706         switch (level) {
707         case 0:
708         case 1:
709                 nofs = noffset[1];
710                 break;
711         case 2:
712                 nofs = noffset[1];
713                 if (!offset[level - 1])
714                         goto skip_partial;
715                 err = truncate_partial_nodes(&dn, ri, offset, level);
716                 if (err < 0 && err != -ENOENT)
717                         goto fail;
718                 nofs += 1 + NIDS_PER_BLOCK;
719                 break;
720         case 3:
721                 nofs = 5 + 2 * NIDS_PER_BLOCK;
722                 if (!offset[level - 1])
723                         goto skip_partial;
724                 err = truncate_partial_nodes(&dn, ri, offset, level);
725                 if (err < 0 && err != -ENOENT)
726                         goto fail;
727                 break;
728         default:
729                 BUG();
730         }
731
732 skip_partial:
733         while (cont) {
734                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
735                 switch (offset[0]) {
736                 case NODE_DIR1_BLOCK:
737                 case NODE_DIR2_BLOCK:
738                         err = truncate_dnode(&dn);
739                         break;
740
741                 case NODE_IND1_BLOCK:
742                 case NODE_IND2_BLOCK:
743                         err = truncate_nodes(&dn, nofs, offset[1], 2);
744                         break;
745
746                 case NODE_DIND_BLOCK:
747                         err = truncate_nodes(&dn, nofs, offset[1], 3);
748                         cont = 0;
749                         break;
750
751                 default:
752                         BUG();
753                 }
754                 if (err < 0 && err != -ENOENT)
755                         goto fail;
756                 if (offset[1] == 0 &&
757                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
758                         lock_page(page);
759                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
760                                 f2fs_put_page(page, 1);
761                                 goto restart;
762                         }
763                         f2fs_wait_on_page_writeback(page, NODE);
764                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
765                         set_page_dirty(page);
766                         unlock_page(page);
767                 }
768                 offset[1] = 0;
769                 offset[0]++;
770                 nofs += err;
771         }
772 fail:
773         f2fs_put_page(page, 0);
774         trace_f2fs_truncate_inode_blocks_exit(inode, err);
775         return err > 0 ? 0 : err;
776 }
777
778 int truncate_xattr_node(struct inode *inode, struct page *page)
779 {
780         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781         nid_t nid = F2FS_I(inode)->i_xattr_nid;
782         struct dnode_of_data dn;
783         struct page *npage;
784
785         if (!nid)
786                 return 0;
787
788         npage = get_node_page(sbi, nid);
789         if (IS_ERR(npage))
790                 return PTR_ERR(npage);
791
792         F2FS_I(inode)->i_xattr_nid = 0;
793
794         /* need to do checkpoint during fsync */
795         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
796
797         set_new_dnode(&dn, inode, page, npage, nid);
798
799         if (page)
800                 dn.inode_page_locked = true;
801         truncate_node(&dn);
802         return 0;
803 }
804
805 /*
806  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
807  * f2fs_unlock_op().
808  */
809 void remove_inode_page(struct inode *inode)
810 {
811         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
812         struct page *page;
813         nid_t ino = inode->i_ino;
814         struct dnode_of_data dn;
815
816         page = get_node_page(sbi, ino);
817         if (IS_ERR(page))
818                 return;
819
820         if (truncate_xattr_node(inode, page)) {
821                 f2fs_put_page(page, 1);
822                 return;
823         }
824         /* 0 is possible, after f2fs_new_inode() is failed */
825         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826         set_new_dnode(&dn, inode, page, page, ino);
827         truncate_node(&dn);
828 }
829
830 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
831 {
832         struct dnode_of_data dn;
833
834         /* allocate inode page for new inode */
835         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
836
837         /* caller should f2fs_put_page(page, 1); */
838         return new_node_page(&dn, 0, NULL);
839 }
840
841 struct page *new_node_page(struct dnode_of_data *dn,
842                                 unsigned int ofs, struct page *ipage)
843 {
844         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
845         struct node_info old_ni, new_ni;
846         struct page *page;
847         int err;
848
849         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850                 return ERR_PTR(-EPERM);
851
852         page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
853                                         dn->nid, AOP_FLAG_NOFS);
854         if (!page)
855                 return ERR_PTR(-ENOMEM);
856
857         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
858                 err = -ENOSPC;
859                 goto fail;
860         }
861
862         get_node_info(sbi, dn->nid, &old_ni);
863
864         /* Reinitialize old_ni with new node page */
865         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
866         new_ni = old_ni;
867         new_ni.ino = dn->inode->i_ino;
868         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
869
870         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
871         set_cold_node(dn->inode, page);
872         SetPageUptodate(page);
873         set_page_dirty(page);
874
875         if (f2fs_has_xattr_block(ofs))
876                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
877
878         dn->node_page = page;
879         if (ipage)
880                 update_inode(dn->inode, ipage);
881         else
882                 sync_inode_page(dn);
883         if (ofs == 0)
884                 inc_valid_inode_count(sbi);
885
886         return page;
887
888 fail:
889         clear_node_page_dirty(page);
890         f2fs_put_page(page, 1);
891         return ERR_PTR(err);
892 }
893
894 /*
895  * Caller should do after getting the following values.
896  * 0: f2fs_put_page(page, 0)
897  * LOCKED_PAGE: f2fs_put_page(page, 1)
898  * error: nothing
899  */
900 static int read_node_page(struct page *page, int rw)
901 {
902         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
903         struct node_info ni;
904
905         get_node_info(sbi, page->index, &ni);
906
907         if (unlikely(ni.blk_addr == NULL_ADDR)) {
908                 f2fs_put_page(page, 1);
909                 return -ENOENT;
910         }
911
912         if (PageUptodate(page))
913                 return LOCKED_PAGE;
914
915         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
916 }
917
918 /*
919  * Readahead a node page
920  */
921 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
922 {
923         struct page *apage;
924         int err;
925
926         apage = find_get_page(NODE_MAPPING(sbi), nid);
927         if (apage && PageUptodate(apage)) {
928                 f2fs_put_page(apage, 0);
929                 return;
930         }
931         f2fs_put_page(apage, 0);
932
933         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
934         if (!apage)
935                 return;
936
937         err = read_node_page(apage, READA);
938         if (err == 0)
939                 f2fs_put_page(apage, 0);
940         else if (err == LOCKED_PAGE)
941                 f2fs_put_page(apage, 1);
942 }
943
944 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945 {
946         struct page *page;
947         int err;
948 repeat:
949         page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
950                                         nid, AOP_FLAG_NOFS);
951         if (!page)
952                 return ERR_PTR(-ENOMEM);
953
954         err = read_node_page(page, READ_SYNC);
955         if (err < 0)
956                 return ERR_PTR(err);
957         else if (err == LOCKED_PAGE)
958                 goto got_it;
959
960         lock_page(page);
961         if (unlikely(!PageUptodate(page))) {
962                 f2fs_put_page(page, 1);
963                 return ERR_PTR(-EIO);
964         }
965         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
966                 f2fs_put_page(page, 1);
967                 goto repeat;
968         }
969 got_it:
970         f2fs_bug_on(nid != nid_of_node(page));
971         mark_page_accessed(page);
972         return page;
973 }
974
975 /*
976  * Return a locked page for the desired node page.
977  * And, readahead MAX_RA_NODE number of node pages.
978  */
979 struct page *get_node_page_ra(struct page *parent, int start)
980 {
981         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
982         struct blk_plug plug;
983         struct page *page;
984         int err, i, end;
985         nid_t nid;
986
987         /* First, try getting the desired direct node. */
988         nid = get_nid(parent, start, false);
989         if (!nid)
990                 return ERR_PTR(-ENOENT);
991 repeat:
992         page = grab_cache_page(NODE_MAPPING(sbi), nid);
993         if (!page)
994                 return ERR_PTR(-ENOMEM);
995
996         err = read_node_page(page, READ_SYNC);
997         if (err < 0)
998                 return ERR_PTR(err);
999         else if (err == LOCKED_PAGE)
1000                 goto page_hit;
1001
1002         blk_start_plug(&plug);
1003
1004         /* Then, try readahead for siblings of the desired node */
1005         end = start + MAX_RA_NODE;
1006         end = min(end, NIDS_PER_BLOCK);
1007         for (i = start + 1; i < end; i++) {
1008                 nid = get_nid(parent, i, false);
1009                 if (!nid)
1010                         continue;
1011                 ra_node_page(sbi, nid);
1012         }
1013
1014         blk_finish_plug(&plug);
1015
1016         lock_page(page);
1017         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1018                 f2fs_put_page(page, 1);
1019                 goto repeat;
1020         }
1021 page_hit:
1022         if (unlikely(!PageUptodate(page))) {
1023                 f2fs_put_page(page, 1);
1024                 return ERR_PTR(-EIO);
1025         }
1026         mark_page_accessed(page);
1027         return page;
1028 }
1029
1030 void sync_inode_page(struct dnode_of_data *dn)
1031 {
1032         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1033                 update_inode(dn->inode, dn->node_page);
1034         } else if (dn->inode_page) {
1035                 if (!dn->inode_page_locked)
1036                         lock_page(dn->inode_page);
1037                 update_inode(dn->inode, dn->inode_page);
1038                 if (!dn->inode_page_locked)
1039                         unlock_page(dn->inode_page);
1040         } else {
1041                 update_inode_page(dn->inode);
1042         }
1043 }
1044
1045 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1046                                         struct writeback_control *wbc)
1047 {
1048         pgoff_t index, end;
1049         struct pagevec pvec;
1050         int step = ino ? 2 : 0;
1051         int nwritten = 0, wrote = 0;
1052
1053         pagevec_init(&pvec, 0);
1054
1055 next_step:
1056         index = 0;
1057         end = LONG_MAX;
1058
1059         while (index <= end) {
1060                 int i, nr_pages;
1061                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1062                                 PAGECACHE_TAG_DIRTY,
1063                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1064                 if (nr_pages == 0)
1065                         break;
1066
1067                 for (i = 0; i < nr_pages; i++) {
1068                         struct page *page = pvec.pages[i];
1069
1070                         /*
1071                          * flushing sequence with step:
1072                          * 0. indirect nodes
1073                          * 1. dentry dnodes
1074                          * 2. file dnodes
1075                          */
1076                         if (step == 0 && IS_DNODE(page))
1077                                 continue;
1078                         if (step == 1 && (!IS_DNODE(page) ||
1079                                                 is_cold_node(page)))
1080                                 continue;
1081                         if (step == 2 && (!IS_DNODE(page) ||
1082                                                 !is_cold_node(page)))
1083                                 continue;
1084
1085                         /*
1086                          * If an fsync mode,
1087                          * we should not skip writing node pages.
1088                          */
1089                         if (ino && ino_of_node(page) == ino)
1090                                 lock_page(page);
1091                         else if (!trylock_page(page))
1092                                 continue;
1093
1094                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1095 continue_unlock:
1096                                 unlock_page(page);
1097                                 continue;
1098                         }
1099                         if (ino && ino_of_node(page) != ino)
1100                                 goto continue_unlock;
1101
1102                         if (!PageDirty(page)) {
1103                                 /* someone wrote it for us */
1104                                 goto continue_unlock;
1105                         }
1106
1107                         if (!clear_page_dirty_for_io(page))
1108                                 goto continue_unlock;
1109
1110                         /* called by fsync() */
1111                         if (ino && IS_DNODE(page)) {
1112                                 int mark = !is_checkpointed_node(sbi, ino);
1113                                 set_fsync_mark(page, 1);
1114                                 if (IS_INODE(page))
1115                                         set_dentry_mark(page, mark);
1116                                 nwritten++;
1117                         } else {
1118                                 set_fsync_mark(page, 0);
1119                                 set_dentry_mark(page, 0);
1120                         }
1121                         NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1122                         wrote++;
1123
1124                         if (--wbc->nr_to_write == 0)
1125                                 break;
1126                 }
1127                 pagevec_release(&pvec);
1128                 cond_resched();
1129
1130                 if (wbc->nr_to_write == 0) {
1131                         step = 2;
1132                         break;
1133                 }
1134         }
1135
1136         if (step < 2) {
1137                 step++;
1138                 goto next_step;
1139         }
1140
1141         if (wrote)
1142                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1143         return nwritten;
1144 }
1145
1146 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1147 {
1148         pgoff_t index = 0, end = LONG_MAX;
1149         struct pagevec pvec;
1150         int ret2 = 0, ret = 0;
1151
1152         pagevec_init(&pvec, 0);
1153
1154         while (index <= end) {
1155                 int i, nr_pages;
1156                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1157                                 PAGECACHE_TAG_WRITEBACK,
1158                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1159                 if (nr_pages == 0)
1160                         break;
1161
1162                 for (i = 0; i < nr_pages; i++) {
1163                         struct page *page = pvec.pages[i];
1164
1165                         /* until radix tree lookup accepts end_index */
1166                         if (unlikely(page->index > end))
1167                                 continue;
1168
1169                         if (ino && ino_of_node(page) == ino) {
1170                                 f2fs_wait_on_page_writeback(page, NODE);
1171                                 if (TestClearPageError(page))
1172                                         ret = -EIO;
1173                         }
1174                 }
1175                 pagevec_release(&pvec);
1176                 cond_resched();
1177         }
1178
1179         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1180                 ret2 = -ENOSPC;
1181         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1182                 ret2 = -EIO;
1183         if (!ret)
1184                 ret = ret2;
1185         return ret;
1186 }
1187
1188 static int f2fs_write_node_page(struct page *page,
1189                                 struct writeback_control *wbc)
1190 {
1191         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1192         nid_t nid;
1193         block_t new_addr;
1194         struct node_info ni;
1195         struct f2fs_io_info fio = {
1196                 .type = NODE,
1197                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1198         };
1199
1200         if (unlikely(sbi->por_doing))
1201                 goto redirty_out;
1202
1203         f2fs_wait_on_page_writeback(page, NODE);
1204
1205         /* get old block addr of this node page */
1206         nid = nid_of_node(page);
1207         f2fs_bug_on(page->index != nid);
1208
1209         get_node_info(sbi, nid, &ni);
1210
1211         /* This page is already truncated */
1212         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1213                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1214                 unlock_page(page);
1215                 return 0;
1216         }
1217
1218         if (wbc->for_reclaim)
1219                 goto redirty_out;
1220
1221         mutex_lock(&sbi->node_write);
1222         set_page_writeback(page);
1223         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1224         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1225         dec_page_count(sbi, F2FS_DIRTY_NODES);
1226         mutex_unlock(&sbi->node_write);
1227         unlock_page(page);
1228         return 0;
1229
1230 redirty_out:
1231         dec_page_count(sbi, F2FS_DIRTY_NODES);
1232         wbc->pages_skipped++;
1233         account_page_redirty(page);
1234         set_page_dirty(page);
1235         return AOP_WRITEPAGE_ACTIVATE;
1236 }
1237
1238 static int f2fs_write_node_pages(struct address_space *mapping,
1239                             struct writeback_control *wbc)
1240 {
1241         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1242         long diff;
1243
1244         /* balancing f2fs's metadata in background */
1245         f2fs_balance_fs_bg(sbi);
1246
1247         /* collect a number of dirty node pages and write together */
1248         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1249                 goto skip_write;
1250
1251         diff = nr_pages_to_write(sbi, NODE, wbc);
1252         wbc->sync_mode = WB_SYNC_NONE;
1253         sync_node_pages(sbi, 0, wbc);
1254         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1255         return 0;
1256
1257 skip_write:
1258         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1259         return 0;
1260 }
1261
1262 static int f2fs_set_node_page_dirty(struct page *page)
1263 {
1264         struct address_space *mapping = page->mapping;
1265         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1266
1267         trace_f2fs_set_page_dirty(page, NODE);
1268
1269         SetPageUptodate(page);
1270         if (!PageDirty(page)) {
1271                 __set_page_dirty_nobuffers(page);
1272                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1273                 SetPagePrivate(page);
1274                 return 1;
1275         }
1276         return 0;
1277 }
1278
1279 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1280                                       unsigned int length)
1281 {
1282         struct inode *inode = page->mapping->host;
1283         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1284         if (PageDirty(page))
1285                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1286         ClearPagePrivate(page);
1287 }
1288
1289 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1290 {
1291         ClearPagePrivate(page);
1292         return 1;
1293 }
1294
1295 /*
1296  * Structure of the f2fs node operations
1297  */
1298 const struct address_space_operations f2fs_node_aops = {
1299         .writepage      = f2fs_write_node_page,
1300         .writepages     = f2fs_write_node_pages,
1301         .set_page_dirty = f2fs_set_node_page_dirty,
1302         .invalidatepage = f2fs_invalidate_node_page,
1303         .releasepage    = f2fs_release_node_page,
1304 };
1305
1306 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1307                                                 nid_t n)
1308 {
1309         return radix_tree_lookup(&nm_i->free_nid_root, n);
1310 }
1311
1312 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1313                                                 struct free_nid *i)
1314 {
1315         list_del(&i->list);
1316         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1317         kmem_cache_free(free_nid_slab, i);
1318 }
1319
1320 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1321 {
1322         struct free_nid *i;
1323         struct nat_entry *ne;
1324         bool allocated = false;
1325
1326         if (!available_free_memory(nm_i, FREE_NIDS))
1327                 return -1;
1328
1329         /* 0 nid should not be used */
1330         if (unlikely(nid == 0))
1331                 return 0;
1332
1333         if (build) {
1334                 /* do not add allocated nids */
1335                 read_lock(&nm_i->nat_tree_lock);
1336                 ne = __lookup_nat_cache(nm_i, nid);
1337                 if (ne &&
1338                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1339                         allocated = true;
1340                 read_unlock(&nm_i->nat_tree_lock);
1341                 if (allocated)
1342                         return 0;
1343         }
1344
1345         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1346         i->nid = nid;
1347         i->state = NID_NEW;
1348
1349         spin_lock(&nm_i->free_nid_list_lock);
1350         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1351                 spin_unlock(&nm_i->free_nid_list_lock);
1352                 kmem_cache_free(free_nid_slab, i);
1353                 return 0;
1354         }
1355         list_add_tail(&i->list, &nm_i->free_nid_list);
1356         nm_i->fcnt++;
1357         spin_unlock(&nm_i->free_nid_list_lock);
1358         return 1;
1359 }
1360
1361 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1362 {
1363         struct free_nid *i;
1364         spin_lock(&nm_i->free_nid_list_lock);
1365         i = __lookup_free_nid_list(nm_i, nid);
1366         if (i && i->state == NID_NEW) {
1367                 __del_from_free_nid_list(nm_i, i);
1368                 nm_i->fcnt--;
1369         }
1370         spin_unlock(&nm_i->free_nid_list_lock);
1371 }
1372
1373 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1374                         struct page *nat_page, nid_t start_nid)
1375 {
1376         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1377         block_t blk_addr;
1378         int i;
1379
1380         i = start_nid % NAT_ENTRY_PER_BLOCK;
1381
1382         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1383
1384                 if (unlikely(start_nid >= nm_i->max_nid))
1385                         break;
1386
1387                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1388                 f2fs_bug_on(blk_addr == NEW_ADDR);
1389                 if (blk_addr == NULL_ADDR) {
1390                         if (add_free_nid(nm_i, start_nid, true) < 0)
1391                                 break;
1392                 }
1393         }
1394 }
1395
1396 static void build_free_nids(struct f2fs_sb_info *sbi)
1397 {
1398         struct f2fs_nm_info *nm_i = NM_I(sbi);
1399         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1400         struct f2fs_summary_block *sum = curseg->sum_blk;
1401         int i = 0;
1402         nid_t nid = nm_i->next_scan_nid;
1403
1404         /* Enough entries */
1405         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1406                 return;
1407
1408         /* readahead nat pages to be scanned */
1409         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1410
1411         while (1) {
1412                 struct page *page = get_current_nat_page(sbi, nid);
1413
1414                 scan_nat_page(nm_i, page, nid);
1415                 f2fs_put_page(page, 1);
1416
1417                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1418                 if (unlikely(nid >= nm_i->max_nid))
1419                         nid = 0;
1420
1421                 if (i++ == FREE_NID_PAGES)
1422                         break;
1423         }
1424
1425         /* go to the next free nat pages to find free nids abundantly */
1426         nm_i->next_scan_nid = nid;
1427
1428         /* find free nids from current sum_pages */
1429         mutex_lock(&curseg->curseg_mutex);
1430         for (i = 0; i < nats_in_cursum(sum); i++) {
1431                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1432                 nid = le32_to_cpu(nid_in_journal(sum, i));
1433                 if (addr == NULL_ADDR)
1434                         add_free_nid(nm_i, nid, true);
1435                 else
1436                         remove_free_nid(nm_i, nid);
1437         }
1438         mutex_unlock(&curseg->curseg_mutex);
1439 }
1440
1441 /*
1442  * If this function returns success, caller can obtain a new nid
1443  * from second parameter of this function.
1444  * The returned nid could be used ino as well as nid when inode is created.
1445  */
1446 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1447 {
1448         struct f2fs_nm_info *nm_i = NM_I(sbi);
1449         struct free_nid *i = NULL;
1450         struct list_head *this;
1451 retry:
1452         if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1453                 return false;
1454
1455         spin_lock(&nm_i->free_nid_list_lock);
1456
1457         /* We should not use stale free nids created by build_free_nids */
1458         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1459                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1460                 list_for_each(this, &nm_i->free_nid_list) {
1461                         i = list_entry(this, struct free_nid, list);
1462                         if (i->state == NID_NEW)
1463                                 break;
1464                 }
1465
1466                 f2fs_bug_on(i->state != NID_NEW);
1467                 *nid = i->nid;
1468                 i->state = NID_ALLOC;
1469                 nm_i->fcnt--;
1470                 spin_unlock(&nm_i->free_nid_list_lock);
1471                 return true;
1472         }
1473         spin_unlock(&nm_i->free_nid_list_lock);
1474
1475         /* Let's scan nat pages and its caches to get free nids */
1476         mutex_lock(&nm_i->build_lock);
1477         build_free_nids(sbi);
1478         mutex_unlock(&nm_i->build_lock);
1479         goto retry;
1480 }
1481
1482 /*
1483  * alloc_nid() should be called prior to this function.
1484  */
1485 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1486 {
1487         struct f2fs_nm_info *nm_i = NM_I(sbi);
1488         struct free_nid *i;
1489
1490         spin_lock(&nm_i->free_nid_list_lock);
1491         i = __lookup_free_nid_list(nm_i, nid);
1492         f2fs_bug_on(!i || i->state != NID_ALLOC);
1493         __del_from_free_nid_list(nm_i, i);
1494         spin_unlock(&nm_i->free_nid_list_lock);
1495 }
1496
1497 /*
1498  * alloc_nid() should be called prior to this function.
1499  */
1500 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1501 {
1502         struct f2fs_nm_info *nm_i = NM_I(sbi);
1503         struct free_nid *i;
1504
1505         if (!nid)
1506                 return;
1507
1508         spin_lock(&nm_i->free_nid_list_lock);
1509         i = __lookup_free_nid_list(nm_i, nid);
1510         f2fs_bug_on(!i || i->state != NID_ALLOC);
1511         if (!available_free_memory(nm_i, FREE_NIDS)) {
1512                 __del_from_free_nid_list(nm_i, i);
1513         } else {
1514                 i->state = NID_NEW;
1515                 nm_i->fcnt++;
1516         }
1517         spin_unlock(&nm_i->free_nid_list_lock);
1518 }
1519
1520 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1521                 struct f2fs_summary *sum, struct node_info *ni,
1522                 block_t new_blkaddr)
1523 {
1524         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1525         set_node_addr(sbi, ni, new_blkaddr, false);
1526         clear_node_page_dirty(page);
1527 }
1528
1529 void recover_inline_xattr(struct inode *inode, struct page *page)
1530 {
1531         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1532         void *src_addr, *dst_addr;
1533         size_t inline_size;
1534         struct page *ipage;
1535         struct f2fs_inode *ri;
1536
1537         if (!f2fs_has_inline_xattr(inode))
1538                 return;
1539
1540         if (!IS_INODE(page))
1541                 return;
1542
1543         ri = F2FS_INODE(page);
1544         if (!(ri->i_inline & F2FS_INLINE_XATTR))
1545                 return;
1546
1547         ipage = get_node_page(sbi, inode->i_ino);
1548         f2fs_bug_on(IS_ERR(ipage));
1549
1550         dst_addr = inline_xattr_addr(ipage);
1551         src_addr = inline_xattr_addr(page);
1552         inline_size = inline_xattr_size(inode);
1553
1554         memcpy(dst_addr, src_addr, inline_size);
1555
1556         update_inode(inode, ipage);
1557         f2fs_put_page(ipage, 1);
1558 }
1559
1560 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1561 {
1562         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1563         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1564         nid_t new_xnid = nid_of_node(page);
1565         struct node_info ni;
1566
1567         recover_inline_xattr(inode, page);
1568
1569         if (!f2fs_has_xattr_block(ofs_of_node(page)))
1570                 return false;
1571
1572         /* 1: invalidate the previous xattr nid */
1573         if (!prev_xnid)
1574                 goto recover_xnid;
1575
1576         /* Deallocate node address */
1577         get_node_info(sbi, prev_xnid, &ni);
1578         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1579         invalidate_blocks(sbi, ni.blk_addr);
1580         dec_valid_node_count(sbi, inode);
1581         set_node_addr(sbi, &ni, NULL_ADDR, false);
1582
1583 recover_xnid:
1584         /* 2: allocate new xattr nid */
1585         if (unlikely(!inc_valid_node_count(sbi, inode)))
1586                 f2fs_bug_on(1);
1587
1588         remove_free_nid(NM_I(sbi), new_xnid);
1589         get_node_info(sbi, new_xnid, &ni);
1590         ni.ino = inode->i_ino;
1591         set_node_addr(sbi, &ni, NEW_ADDR, false);
1592         F2FS_I(inode)->i_xattr_nid = new_xnid;
1593
1594         /* 3: update xattr blkaddr */
1595         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1596         set_node_addr(sbi, &ni, blkaddr, false);
1597
1598         update_inode_page(inode);
1599         return true;
1600 }
1601
1602 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1603 {
1604         struct f2fs_inode *src, *dst;
1605         nid_t ino = ino_of_node(page);
1606         struct node_info old_ni, new_ni;
1607         struct page *ipage;
1608
1609         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1610         if (!ipage)
1611                 return -ENOMEM;
1612
1613         /* Should not use this inode  from free nid list */
1614         remove_free_nid(NM_I(sbi), ino);
1615
1616         get_node_info(sbi, ino, &old_ni);
1617         SetPageUptodate(ipage);
1618         fill_node_footer(ipage, ino, ino, 0, true);
1619
1620         src = F2FS_INODE(page);
1621         dst = F2FS_INODE(ipage);
1622
1623         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1624         dst->i_size = 0;
1625         dst->i_blocks = cpu_to_le64(1);
1626         dst->i_links = cpu_to_le32(1);
1627         dst->i_xattr_nid = 0;
1628
1629         new_ni = old_ni;
1630         new_ni.ino = ino;
1631
1632         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1633                 WARN_ON(1);
1634         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1635         inc_valid_inode_count(sbi);
1636         f2fs_put_page(ipage, 1);
1637         return 0;
1638 }
1639
1640 /*
1641  * ra_sum_pages() merge contiguous pages into one bio and submit.
1642  * these pre-readed pages are linked in pages list.
1643  */
1644 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1645                                 int start, int nrpages)
1646 {
1647         struct page *page;
1648         int page_idx = start;
1649         struct f2fs_io_info fio = {
1650                 .type = META,
1651                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1652         };
1653
1654         for (; page_idx < start + nrpages; page_idx++) {
1655                 /* alloc temporal page for read node summary info*/
1656                 page = alloc_page(GFP_F2FS_ZERO);
1657                 if (!page)
1658                         break;
1659
1660                 lock_page(page);
1661                 page->index = page_idx;
1662                 list_add_tail(&page->lru, pages);
1663         }
1664
1665         list_for_each_entry(page, pages, lru)
1666                 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1667
1668         f2fs_submit_merged_bio(sbi, META, READ);
1669
1670         return page_idx - start;
1671 }
1672
1673 int restore_node_summary(struct f2fs_sb_info *sbi,
1674                         unsigned int segno, struct f2fs_summary_block *sum)
1675 {
1676         struct f2fs_node *rn;
1677         struct f2fs_summary *sum_entry;
1678         struct page *page, *tmp;
1679         block_t addr;
1680         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1681         int i, last_offset, nrpages, err = 0;
1682         LIST_HEAD(page_list);
1683
1684         /* scan the node segment */
1685         last_offset = sbi->blocks_per_seg;
1686         addr = START_BLOCK(sbi, segno);
1687         sum_entry = &sum->entries[0];
1688
1689         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1690                 nrpages = min(last_offset - i, bio_blocks);
1691
1692                 /* read ahead node pages */
1693                 nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1694                 if (!nrpages)
1695                         return -ENOMEM;
1696
1697                 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1698                         if (err)
1699                                 goto skip;
1700
1701                         lock_page(page);
1702                         if (unlikely(!PageUptodate(page))) {
1703                                 err = -EIO;
1704                         } else {
1705                                 rn = F2FS_NODE(page);
1706                                 sum_entry->nid = rn->footer.nid;
1707                                 sum_entry->version = 0;
1708                                 sum_entry->ofs_in_node = 0;
1709                                 sum_entry++;
1710                         }
1711                         unlock_page(page);
1712 skip:
1713                         list_del(&page->lru);
1714                         __free_pages(page, 0);
1715                 }
1716         }
1717         return err;
1718 }
1719
1720 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1721 {
1722         struct f2fs_nm_info *nm_i = NM_I(sbi);
1723         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1724         struct f2fs_summary_block *sum = curseg->sum_blk;
1725         int i;
1726
1727         mutex_lock(&curseg->curseg_mutex);
1728
1729         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1730                 mutex_unlock(&curseg->curseg_mutex);
1731                 return false;
1732         }
1733
1734         for (i = 0; i < nats_in_cursum(sum); i++) {
1735                 struct nat_entry *ne;
1736                 struct f2fs_nat_entry raw_ne;
1737                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1738
1739                 raw_ne = nat_in_journal(sum, i);
1740 retry:
1741                 write_lock(&nm_i->nat_tree_lock);
1742                 ne = __lookup_nat_cache(nm_i, nid);
1743                 if (ne) {
1744                         __set_nat_cache_dirty(nm_i, ne);
1745                         write_unlock(&nm_i->nat_tree_lock);
1746                         continue;
1747                 }
1748                 ne = grab_nat_entry(nm_i, nid);
1749                 if (!ne) {
1750                         write_unlock(&nm_i->nat_tree_lock);
1751                         goto retry;
1752                 }
1753                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1754                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1755                 nat_set_version(ne, raw_ne.version);
1756                 __set_nat_cache_dirty(nm_i, ne);
1757                 write_unlock(&nm_i->nat_tree_lock);
1758         }
1759         update_nats_in_cursum(sum, -i);
1760         mutex_unlock(&curseg->curseg_mutex);
1761         return true;
1762 }
1763
1764 /*
1765  * This function is called during the checkpointing process.
1766  */
1767 void flush_nat_entries(struct f2fs_sb_info *sbi)
1768 {
1769         struct f2fs_nm_info *nm_i = NM_I(sbi);
1770         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1771         struct f2fs_summary_block *sum = curseg->sum_blk;
1772         struct list_head *cur, *n;
1773         struct page *page = NULL;
1774         struct f2fs_nat_block *nat_blk = NULL;
1775         nid_t start_nid = 0, end_nid = 0;
1776         bool flushed;
1777
1778         flushed = flush_nats_in_journal(sbi);
1779
1780         if (!flushed)
1781                 mutex_lock(&curseg->curseg_mutex);
1782
1783         /* 1) flush dirty nat caches */
1784         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1785                 struct nat_entry *ne;
1786                 nid_t nid;
1787                 struct f2fs_nat_entry raw_ne;
1788                 int offset = -1;
1789                 block_t new_blkaddr;
1790
1791                 ne = list_entry(cur, struct nat_entry, list);
1792                 nid = nat_get_nid(ne);
1793
1794                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1795                         continue;
1796                 if (flushed)
1797                         goto to_nat_page;
1798
1799                 /* if there is room for nat enries in curseg->sumpage */
1800                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1801                 if (offset >= 0) {
1802                         raw_ne = nat_in_journal(sum, offset);
1803                         goto flush_now;
1804                 }
1805 to_nat_page:
1806                 if (!page || (start_nid > nid || nid > end_nid)) {
1807                         if (page) {
1808                                 f2fs_put_page(page, 1);
1809                                 page = NULL;
1810                         }
1811                         start_nid = START_NID(nid);
1812                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1813
1814                         /*
1815                          * get nat block with dirty flag, increased reference
1816                          * count, mapped and lock
1817                          */
1818                         page = get_next_nat_page(sbi, start_nid);
1819                         nat_blk = page_address(page);
1820                 }
1821
1822                 f2fs_bug_on(!nat_blk);
1823                 raw_ne = nat_blk->entries[nid - start_nid];
1824 flush_now:
1825                 new_blkaddr = nat_get_blkaddr(ne);
1826
1827                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1828                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1829                 raw_ne.version = nat_get_version(ne);
1830
1831                 if (offset < 0) {
1832                         nat_blk->entries[nid - start_nid] = raw_ne;
1833                 } else {
1834                         nat_in_journal(sum, offset) = raw_ne;
1835                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1836                 }
1837
1838                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1839                                 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1840                         write_lock(&nm_i->nat_tree_lock);
1841                         __del_from_nat_cache(nm_i, ne);
1842                         write_unlock(&nm_i->nat_tree_lock);
1843                 } else {
1844                         write_lock(&nm_i->nat_tree_lock);
1845                         __clear_nat_cache_dirty(nm_i, ne);
1846                         write_unlock(&nm_i->nat_tree_lock);
1847                 }
1848         }
1849         if (!flushed)
1850                 mutex_unlock(&curseg->curseg_mutex);
1851         f2fs_put_page(page, 1);
1852 }
1853
1854 static int init_node_manager(struct f2fs_sb_info *sbi)
1855 {
1856         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1857         struct f2fs_nm_info *nm_i = NM_I(sbi);
1858         unsigned char *version_bitmap;
1859         unsigned int nat_segs, nat_blocks;
1860
1861         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1862
1863         /* segment_count_nat includes pair segment so divide to 2. */
1864         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1865         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1866
1867         /* not used nids: 0, node, meta, (and root counted as valid node) */
1868         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1869         nm_i->fcnt = 0;
1870         nm_i->nat_cnt = 0;
1871         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1872
1873         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1874         INIT_LIST_HEAD(&nm_i->free_nid_list);
1875         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1876         INIT_LIST_HEAD(&nm_i->nat_entries);
1877         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1878
1879         mutex_init(&nm_i->build_lock);
1880         spin_lock_init(&nm_i->free_nid_list_lock);
1881         rwlock_init(&nm_i->nat_tree_lock);
1882
1883         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1884         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1885         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1886         if (!version_bitmap)
1887                 return -EFAULT;
1888
1889         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1890                                         GFP_KERNEL);
1891         if (!nm_i->nat_bitmap)
1892                 return -ENOMEM;
1893         return 0;
1894 }
1895
1896 int build_node_manager(struct f2fs_sb_info *sbi)
1897 {
1898         int err;
1899
1900         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1901         if (!sbi->nm_info)
1902                 return -ENOMEM;
1903
1904         err = init_node_manager(sbi);
1905         if (err)
1906                 return err;
1907
1908         build_free_nids(sbi);
1909         return 0;
1910 }
1911
1912 void destroy_node_manager(struct f2fs_sb_info *sbi)
1913 {
1914         struct f2fs_nm_info *nm_i = NM_I(sbi);
1915         struct free_nid *i, *next_i;
1916         struct nat_entry *natvec[NATVEC_SIZE];
1917         nid_t nid = 0;
1918         unsigned int found;
1919
1920         if (!nm_i)
1921                 return;
1922
1923         /* destroy free nid list */
1924         spin_lock(&nm_i->free_nid_list_lock);
1925         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1926                 f2fs_bug_on(i->state == NID_ALLOC);
1927                 __del_from_free_nid_list(nm_i, i);
1928                 nm_i->fcnt--;
1929         }
1930         f2fs_bug_on(nm_i->fcnt);
1931         spin_unlock(&nm_i->free_nid_list_lock);
1932
1933         /* destroy nat cache */
1934         write_lock(&nm_i->nat_tree_lock);
1935         while ((found = __gang_lookup_nat_cache(nm_i,
1936                                         nid, NATVEC_SIZE, natvec))) {
1937                 unsigned idx;
1938                 nid = nat_get_nid(natvec[found - 1]) + 1;
1939                 for (idx = 0; idx < found; idx++)
1940                         __del_from_nat_cache(nm_i, natvec[idx]);
1941         }
1942         f2fs_bug_on(nm_i->nat_cnt);
1943         write_unlock(&nm_i->nat_tree_lock);
1944
1945         kfree(nm_i->nat_bitmap);
1946         sbi->nm_info = NULL;
1947         kfree(nm_i);
1948 }
1949
1950 int __init create_node_manager_caches(void)
1951 {
1952         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1953                         sizeof(struct nat_entry));
1954         if (!nat_entry_slab)
1955                 return -ENOMEM;
1956
1957         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1958                         sizeof(struct free_nid));
1959         if (!free_nid_slab) {
1960                 kmem_cache_destroy(nat_entry_slab);
1961                 return -ENOMEM;
1962         }
1963         return 0;
1964 }
1965
1966 void destroy_node_manager_caches(void)
1967 {
1968         kmem_cache_destroy(free_nid_slab);
1969         kmem_cache_destroy(nat_entry_slab);
1970 }