]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/node.c
f2fs: introduce F2FS_INODE macro to get f2fs_inode
[linux-beck.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26
27 static void clear_node_page_dirty(struct page *page)
28 {
29         struct address_space *mapping = page->mapping;
30         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31         unsigned int long flags;
32
33         if (PageDirty(page)) {
34                 spin_lock_irqsave(&mapping->tree_lock, flags);
35                 radix_tree_tag_clear(&mapping->page_tree,
36                                 page_index(page),
37                                 PAGECACHE_TAG_DIRTY);
38                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40                 clear_page_dirty_for_io(page);
41                 dec_page_count(sbi, F2FS_DIRTY_NODES);
42         }
43         ClearPageUptodate(page);
44 }
45
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48         pgoff_t index = current_nat_addr(sbi, nid);
49         return get_meta_page(sbi, index);
50 }
51
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54         struct page *src_page;
55         struct page *dst_page;
56         pgoff_t src_off;
57         pgoff_t dst_off;
58         void *src_addr;
59         void *dst_addr;
60         struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62         src_off = current_nat_addr(sbi, nid);
63         dst_off = next_nat_addr(sbi, src_off);
64
65         /* get current nat block page with lock */
66         src_page = get_meta_page(sbi, src_off);
67
68         /* Dirty src_page means that it is already the new target NAT page. */
69         if (PageDirty(src_page))
70                 return src_page;
71
72         dst_page = grab_meta_page(sbi, dst_off);
73
74         src_addr = page_address(src_page);
75         dst_addr = page_address(dst_page);
76         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77         set_page_dirty(dst_page);
78         f2fs_put_page(src_page, 1);
79
80         set_to_next_nat(nm_i, nid);
81
82         return dst_page;
83 }
84
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90         struct address_space *mapping = sbi->meta_inode->i_mapping;
91         struct f2fs_nm_info *nm_i = NM_I(sbi);
92         struct page *page;
93         pgoff_t index;
94         int i;
95         struct f2fs_io_info fio = {
96                 .type = META,
97                 .rw = READ_SYNC | REQ_META | REQ_PRIO
98         };
99
100
101         for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
102                 if (unlikely(nid >= nm_i->max_nid))
103                         nid = 0;
104                 index = current_nat_addr(sbi, nid);
105
106                 page = grab_cache_page(mapping, index);
107                 if (!page)
108                         continue;
109                 if (PageUptodate(page)) {
110                         mark_page_accessed(page);
111                         f2fs_put_page(page, 1);
112                         continue;
113                 }
114                 f2fs_submit_page_mbio(sbi, page, index, &fio);
115                 mark_page_accessed(page);
116                 f2fs_put_page(page, 0);
117         }
118         f2fs_submit_merged_bio(sbi, META, READ);
119 }
120
121 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
122 {
123         return radix_tree_lookup(&nm_i->nat_root, n);
124 }
125
126 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
127                 nid_t start, unsigned int nr, struct nat_entry **ep)
128 {
129         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
130 }
131
132 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
133 {
134         list_del(&e->list);
135         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
136         nm_i->nat_cnt--;
137         kmem_cache_free(nat_entry_slab, e);
138 }
139
140 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
141 {
142         struct f2fs_nm_info *nm_i = NM_I(sbi);
143         struct nat_entry *e;
144         int is_cp = 1;
145
146         read_lock(&nm_i->nat_tree_lock);
147         e = __lookup_nat_cache(nm_i, nid);
148         if (e && !e->checkpointed)
149                 is_cp = 0;
150         read_unlock(&nm_i->nat_tree_lock);
151         return is_cp;
152 }
153
154 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
155 {
156         struct nat_entry *new;
157
158         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
159         if (!new)
160                 return NULL;
161         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
162                 kmem_cache_free(nat_entry_slab, new);
163                 return NULL;
164         }
165         memset(new, 0, sizeof(struct nat_entry));
166         nat_set_nid(new, nid);
167         list_add_tail(&new->list, &nm_i->nat_entries);
168         nm_i->nat_cnt++;
169         return new;
170 }
171
172 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
173                                                 struct f2fs_nat_entry *ne)
174 {
175         struct nat_entry *e;
176 retry:
177         write_lock(&nm_i->nat_tree_lock);
178         e = __lookup_nat_cache(nm_i, nid);
179         if (!e) {
180                 e = grab_nat_entry(nm_i, nid);
181                 if (!e) {
182                         write_unlock(&nm_i->nat_tree_lock);
183                         goto retry;
184                 }
185                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
186                 nat_set_ino(e, le32_to_cpu(ne->ino));
187                 nat_set_version(e, ne->version);
188                 e->checkpointed = true;
189         }
190         write_unlock(&nm_i->nat_tree_lock);
191 }
192
193 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
194                         block_t new_blkaddr)
195 {
196         struct f2fs_nm_info *nm_i = NM_I(sbi);
197         struct nat_entry *e;
198 retry:
199         write_lock(&nm_i->nat_tree_lock);
200         e = __lookup_nat_cache(nm_i, ni->nid);
201         if (!e) {
202                 e = grab_nat_entry(nm_i, ni->nid);
203                 if (!e) {
204                         write_unlock(&nm_i->nat_tree_lock);
205                         goto retry;
206                 }
207                 e->ni = *ni;
208                 e->checkpointed = true;
209                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
210         } else if (new_blkaddr == NEW_ADDR) {
211                 /*
212                  * when nid is reallocated,
213                  * previous nat entry can be remained in nat cache.
214                  * So, reinitialize it with new information.
215                  */
216                 e->ni = *ni;
217                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
218         }
219
220         if (new_blkaddr == NEW_ADDR)
221                 e->checkpointed = false;
222
223         /* sanity check */
224         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
225         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
226                         new_blkaddr == NULL_ADDR);
227         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
228                         new_blkaddr == NEW_ADDR);
229         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
230                         nat_get_blkaddr(e) != NULL_ADDR &&
231                         new_blkaddr == NEW_ADDR);
232
233         /* increament version no as node is removed */
234         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
235                 unsigned char version = nat_get_version(e);
236                 nat_set_version(e, inc_node_version(version));
237         }
238
239         /* change address */
240         nat_set_blkaddr(e, new_blkaddr);
241         __set_nat_cache_dirty(nm_i, e);
242         write_unlock(&nm_i->nat_tree_lock);
243 }
244
245 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
246 {
247         struct f2fs_nm_info *nm_i = NM_I(sbi);
248
249         if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
250                 return 0;
251
252         write_lock(&nm_i->nat_tree_lock);
253         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
254                 struct nat_entry *ne;
255                 ne = list_first_entry(&nm_i->nat_entries,
256                                         struct nat_entry, list);
257                 __del_from_nat_cache(nm_i, ne);
258                 nr_shrink--;
259         }
260         write_unlock(&nm_i->nat_tree_lock);
261         return nr_shrink;
262 }
263
264 /*
265  * This function returns always success
266  */
267 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
268 {
269         struct f2fs_nm_info *nm_i = NM_I(sbi);
270         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
271         struct f2fs_summary_block *sum = curseg->sum_blk;
272         nid_t start_nid = START_NID(nid);
273         struct f2fs_nat_block *nat_blk;
274         struct page *page = NULL;
275         struct f2fs_nat_entry ne;
276         struct nat_entry *e;
277         int i;
278
279         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
280         ni->nid = nid;
281
282         /* Check nat cache */
283         read_lock(&nm_i->nat_tree_lock);
284         e = __lookup_nat_cache(nm_i, nid);
285         if (e) {
286                 ni->ino = nat_get_ino(e);
287                 ni->blk_addr = nat_get_blkaddr(e);
288                 ni->version = nat_get_version(e);
289         }
290         read_unlock(&nm_i->nat_tree_lock);
291         if (e)
292                 return;
293
294         /* Check current segment summary */
295         mutex_lock(&curseg->curseg_mutex);
296         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
297         if (i >= 0) {
298                 ne = nat_in_journal(sum, i);
299                 node_info_from_raw_nat(ni, &ne);
300         }
301         mutex_unlock(&curseg->curseg_mutex);
302         if (i >= 0)
303                 goto cache;
304
305         /* Fill node_info from nat page */
306         page = get_current_nat_page(sbi, start_nid);
307         nat_blk = (struct f2fs_nat_block *)page_address(page);
308         ne = nat_blk->entries[nid - start_nid];
309         node_info_from_raw_nat(ni, &ne);
310         f2fs_put_page(page, 1);
311 cache:
312         /* cache nat entry */
313         cache_nat_entry(NM_I(sbi), nid, &ne);
314 }
315
316 /*
317  * The maximum depth is four.
318  * Offset[0] will have raw inode offset.
319  */
320 static int get_node_path(struct f2fs_inode_info *fi, long block,
321                                 int offset[4], unsigned int noffset[4])
322 {
323         const long direct_index = ADDRS_PER_INODE(fi);
324         const long direct_blks = ADDRS_PER_BLOCK;
325         const long dptrs_per_blk = NIDS_PER_BLOCK;
326         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
327         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
328         int n = 0;
329         int level = 0;
330
331         noffset[0] = 0;
332
333         if (block < direct_index) {
334                 offset[n] = block;
335                 goto got;
336         }
337         block -= direct_index;
338         if (block < direct_blks) {
339                 offset[n++] = NODE_DIR1_BLOCK;
340                 noffset[n] = 1;
341                 offset[n] = block;
342                 level = 1;
343                 goto got;
344         }
345         block -= direct_blks;
346         if (block < direct_blks) {
347                 offset[n++] = NODE_DIR2_BLOCK;
348                 noffset[n] = 2;
349                 offset[n] = block;
350                 level = 1;
351                 goto got;
352         }
353         block -= direct_blks;
354         if (block < indirect_blks) {
355                 offset[n++] = NODE_IND1_BLOCK;
356                 noffset[n] = 3;
357                 offset[n++] = block / direct_blks;
358                 noffset[n] = 4 + offset[n - 1];
359                 offset[n] = block % direct_blks;
360                 level = 2;
361                 goto got;
362         }
363         block -= indirect_blks;
364         if (block < indirect_blks) {
365                 offset[n++] = NODE_IND2_BLOCK;
366                 noffset[n] = 4 + dptrs_per_blk;
367                 offset[n++] = block / direct_blks;
368                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
369                 offset[n] = block % direct_blks;
370                 level = 2;
371                 goto got;
372         }
373         block -= indirect_blks;
374         if (block < dindirect_blks) {
375                 offset[n++] = NODE_DIND_BLOCK;
376                 noffset[n] = 5 + (dptrs_per_blk * 2);
377                 offset[n++] = block / indirect_blks;
378                 noffset[n] = 6 + (dptrs_per_blk * 2) +
379                               offset[n - 1] * (dptrs_per_blk + 1);
380                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
381                 noffset[n] = 7 + (dptrs_per_blk * 2) +
382                               offset[n - 2] * (dptrs_per_blk + 1) +
383                               offset[n - 1];
384                 offset[n] = block % direct_blks;
385                 level = 3;
386                 goto got;
387         } else {
388                 BUG();
389         }
390 got:
391         return level;
392 }
393
394 /*
395  * Caller should call f2fs_put_dnode(dn).
396  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
397  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
398  * In the case of RDONLY_NODE, we don't need to care about mutex.
399  */
400 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
401 {
402         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
403         struct page *npage[4];
404         struct page *parent;
405         int offset[4];
406         unsigned int noffset[4];
407         nid_t nids[4];
408         int level, i;
409         int err = 0;
410
411         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
412
413         nids[0] = dn->inode->i_ino;
414         npage[0] = dn->inode_page;
415
416         if (!npage[0]) {
417                 npage[0] = get_node_page(sbi, nids[0]);
418                 if (IS_ERR(npage[0]))
419                         return PTR_ERR(npage[0]);
420         }
421         parent = npage[0];
422         if (level != 0)
423                 nids[1] = get_nid(parent, offset[0], true);
424         dn->inode_page = npage[0];
425         dn->inode_page_locked = true;
426
427         /* get indirect or direct nodes */
428         for (i = 1; i <= level; i++) {
429                 bool done = false;
430
431                 if (!nids[i] && mode == ALLOC_NODE) {
432                         /* alloc new node */
433                         if (!alloc_nid(sbi, &(nids[i]))) {
434                                 err = -ENOSPC;
435                                 goto release_pages;
436                         }
437
438                         dn->nid = nids[i];
439                         npage[i] = new_node_page(dn, noffset[i], NULL);
440                         if (IS_ERR(npage[i])) {
441                                 alloc_nid_failed(sbi, nids[i]);
442                                 err = PTR_ERR(npage[i]);
443                                 goto release_pages;
444                         }
445
446                         set_nid(parent, offset[i - 1], nids[i], i == 1);
447                         alloc_nid_done(sbi, nids[i]);
448                         done = true;
449                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
450                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
451                         if (IS_ERR(npage[i])) {
452                                 err = PTR_ERR(npage[i]);
453                                 goto release_pages;
454                         }
455                         done = true;
456                 }
457                 if (i == 1) {
458                         dn->inode_page_locked = false;
459                         unlock_page(parent);
460                 } else {
461                         f2fs_put_page(parent, 1);
462                 }
463
464                 if (!done) {
465                         npage[i] = get_node_page(sbi, nids[i]);
466                         if (IS_ERR(npage[i])) {
467                                 err = PTR_ERR(npage[i]);
468                                 f2fs_put_page(npage[0], 0);
469                                 goto release_out;
470                         }
471                 }
472                 if (i < level) {
473                         parent = npage[i];
474                         nids[i + 1] = get_nid(parent, offset[i], false);
475                 }
476         }
477         dn->nid = nids[level];
478         dn->ofs_in_node = offset[level];
479         dn->node_page = npage[level];
480         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
481         return 0;
482
483 release_pages:
484         f2fs_put_page(parent, 1);
485         if (i > 1)
486                 f2fs_put_page(npage[0], 0);
487 release_out:
488         dn->inode_page = NULL;
489         dn->node_page = NULL;
490         return err;
491 }
492
493 static void truncate_node(struct dnode_of_data *dn)
494 {
495         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
496         struct node_info ni;
497
498         get_node_info(sbi, dn->nid, &ni);
499         if (dn->inode->i_blocks == 0) {
500                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
501                 goto invalidate;
502         }
503         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
504
505         /* Deallocate node address */
506         invalidate_blocks(sbi, ni.blk_addr);
507         dec_valid_node_count(sbi, dn->inode);
508         set_node_addr(sbi, &ni, NULL_ADDR);
509
510         if (dn->nid == dn->inode->i_ino) {
511                 remove_orphan_inode(sbi, dn->nid);
512                 dec_valid_inode_count(sbi);
513         } else {
514                 sync_inode_page(dn);
515         }
516 invalidate:
517         clear_node_page_dirty(dn->node_page);
518         F2FS_SET_SB_DIRT(sbi);
519
520         f2fs_put_page(dn->node_page, 1);
521         dn->node_page = NULL;
522         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
523 }
524
525 static int truncate_dnode(struct dnode_of_data *dn)
526 {
527         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
528         struct page *page;
529
530         if (dn->nid == 0)
531                 return 1;
532
533         /* get direct node */
534         page = get_node_page(sbi, dn->nid);
535         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
536                 return 1;
537         else if (IS_ERR(page))
538                 return PTR_ERR(page);
539
540         /* Make dnode_of_data for parameter */
541         dn->node_page = page;
542         dn->ofs_in_node = 0;
543         truncate_data_blocks(dn);
544         truncate_node(dn);
545         return 1;
546 }
547
548 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
549                                                 int ofs, int depth)
550 {
551         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
552         struct dnode_of_data rdn = *dn;
553         struct page *page;
554         struct f2fs_node *rn;
555         nid_t child_nid;
556         unsigned int child_nofs;
557         int freed = 0;
558         int i, ret;
559
560         if (dn->nid == 0)
561                 return NIDS_PER_BLOCK + 1;
562
563         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
564
565         page = get_node_page(sbi, dn->nid);
566         if (IS_ERR(page)) {
567                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
568                 return PTR_ERR(page);
569         }
570
571         rn = F2FS_NODE(page);
572         if (depth < 3) {
573                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
574                         child_nid = le32_to_cpu(rn->in.nid[i]);
575                         if (child_nid == 0)
576                                 continue;
577                         rdn.nid = child_nid;
578                         ret = truncate_dnode(&rdn);
579                         if (ret < 0)
580                                 goto out_err;
581                         set_nid(page, i, 0, false);
582                 }
583         } else {
584                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
585                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
586                         child_nid = le32_to_cpu(rn->in.nid[i]);
587                         if (child_nid == 0) {
588                                 child_nofs += NIDS_PER_BLOCK + 1;
589                                 continue;
590                         }
591                         rdn.nid = child_nid;
592                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
593                         if (ret == (NIDS_PER_BLOCK + 1)) {
594                                 set_nid(page, i, 0, false);
595                                 child_nofs += ret;
596                         } else if (ret < 0 && ret != -ENOENT) {
597                                 goto out_err;
598                         }
599                 }
600                 freed = child_nofs;
601         }
602
603         if (!ofs) {
604                 /* remove current indirect node */
605                 dn->node_page = page;
606                 truncate_node(dn);
607                 freed++;
608         } else {
609                 f2fs_put_page(page, 1);
610         }
611         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
612         return freed;
613
614 out_err:
615         f2fs_put_page(page, 1);
616         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
617         return ret;
618 }
619
620 static int truncate_partial_nodes(struct dnode_of_data *dn,
621                         struct f2fs_inode *ri, int *offset, int depth)
622 {
623         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
624         struct page *pages[2];
625         nid_t nid[3];
626         nid_t child_nid;
627         int err = 0;
628         int i;
629         int idx = depth - 2;
630
631         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
632         if (!nid[0])
633                 return 0;
634
635         /* get indirect nodes in the path */
636         for (i = 0; i < depth - 1; i++) {
637                 /* refernece count'll be increased */
638                 pages[i] = get_node_page(sbi, nid[i]);
639                 if (IS_ERR(pages[i])) {
640                         depth = i + 1;
641                         err = PTR_ERR(pages[i]);
642                         goto fail;
643                 }
644                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
645         }
646
647         /* free direct nodes linked to a partial indirect node */
648         for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
649                 child_nid = get_nid(pages[idx], i, false);
650                 if (!child_nid)
651                         continue;
652                 dn->nid = child_nid;
653                 err = truncate_dnode(dn);
654                 if (err < 0)
655                         goto fail;
656                 set_nid(pages[idx], i, 0, false);
657         }
658
659         if (offset[depth - 1] == 0) {
660                 dn->node_page = pages[idx];
661                 dn->nid = nid[idx];
662                 truncate_node(dn);
663         } else {
664                 f2fs_put_page(pages[idx], 1);
665         }
666         offset[idx]++;
667         offset[depth - 1] = 0;
668 fail:
669         for (i = depth - 3; i >= 0; i--)
670                 f2fs_put_page(pages[i], 1);
671
672         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
673
674         return err;
675 }
676
677 /*
678  * All the block addresses of data and nodes should be nullified.
679  */
680 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
681 {
682         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
683         struct address_space *node_mapping = sbi->node_inode->i_mapping;
684         int err = 0, cont = 1;
685         int level, offset[4], noffset[4];
686         unsigned int nofs = 0;
687         struct f2fs_inode *ri;
688         struct dnode_of_data dn;
689         struct page *page;
690
691         trace_f2fs_truncate_inode_blocks_enter(inode, from);
692
693         level = get_node_path(F2FS_I(inode), from, offset, noffset);
694 restart:
695         page = get_node_page(sbi, inode->i_ino);
696         if (IS_ERR(page)) {
697                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
698                 return PTR_ERR(page);
699         }
700
701         set_new_dnode(&dn, inode, page, NULL, 0);
702         unlock_page(page);
703
704         ri = F2FS_INODE(page);
705         switch (level) {
706         case 0:
707         case 1:
708                 nofs = noffset[1];
709                 break;
710         case 2:
711                 nofs = noffset[1];
712                 if (!offset[level - 1])
713                         goto skip_partial;
714                 err = truncate_partial_nodes(&dn, ri, offset, level);
715                 if (err < 0 && err != -ENOENT)
716                         goto fail;
717                 nofs += 1 + NIDS_PER_BLOCK;
718                 break;
719         case 3:
720                 nofs = 5 + 2 * NIDS_PER_BLOCK;
721                 if (!offset[level - 1])
722                         goto skip_partial;
723                 err = truncate_partial_nodes(&dn, ri, offset, level);
724                 if (err < 0 && err != -ENOENT)
725                         goto fail;
726                 break;
727         default:
728                 BUG();
729         }
730
731 skip_partial:
732         while (cont) {
733                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
734                 switch (offset[0]) {
735                 case NODE_DIR1_BLOCK:
736                 case NODE_DIR2_BLOCK:
737                         err = truncate_dnode(&dn);
738                         break;
739
740                 case NODE_IND1_BLOCK:
741                 case NODE_IND2_BLOCK:
742                         err = truncate_nodes(&dn, nofs, offset[1], 2);
743                         break;
744
745                 case NODE_DIND_BLOCK:
746                         err = truncate_nodes(&dn, nofs, offset[1], 3);
747                         cont = 0;
748                         break;
749
750                 default:
751                         BUG();
752                 }
753                 if (err < 0 && err != -ENOENT)
754                         goto fail;
755                 if (offset[1] == 0 &&
756                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
757                         lock_page(page);
758                         if (unlikely(page->mapping != node_mapping)) {
759                                 f2fs_put_page(page, 1);
760                                 goto restart;
761                         }
762                         wait_on_page_writeback(page);
763                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
764                         set_page_dirty(page);
765                         unlock_page(page);
766                 }
767                 offset[1] = 0;
768                 offset[0]++;
769                 nofs += err;
770         }
771 fail:
772         f2fs_put_page(page, 0);
773         trace_f2fs_truncate_inode_blocks_exit(inode, err);
774         return err > 0 ? 0 : err;
775 }
776
777 int truncate_xattr_node(struct inode *inode, struct page *page)
778 {
779         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
780         nid_t nid = F2FS_I(inode)->i_xattr_nid;
781         struct dnode_of_data dn;
782         struct page *npage;
783
784         if (!nid)
785                 return 0;
786
787         npage = get_node_page(sbi, nid);
788         if (IS_ERR(npage))
789                 return PTR_ERR(npage);
790
791         F2FS_I(inode)->i_xattr_nid = 0;
792
793         /* need to do checkpoint during fsync */
794         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
795
796         set_new_dnode(&dn, inode, page, npage, nid);
797
798         if (page)
799                 dn.inode_page_locked = true;
800         truncate_node(&dn);
801         return 0;
802 }
803
804 /*
805  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
806  * f2fs_unlock_op().
807  */
808 void remove_inode_page(struct inode *inode)
809 {
810         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
811         struct page *page;
812         nid_t ino = inode->i_ino;
813         struct dnode_of_data dn;
814
815         page = get_node_page(sbi, ino);
816         if (IS_ERR(page))
817                 return;
818
819         if (truncate_xattr_node(inode, page)) {
820                 f2fs_put_page(page, 1);
821                 return;
822         }
823         /* 0 is possible, after f2fs_new_inode() is failed */
824         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
825         set_new_dnode(&dn, inode, page, page, ino);
826         truncate_node(&dn);
827 }
828
829 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
830 {
831         struct dnode_of_data dn;
832
833         /* allocate inode page for new inode */
834         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
835
836         /* caller should f2fs_put_page(page, 1); */
837         return new_node_page(&dn, 0, NULL);
838 }
839
840 struct page *new_node_page(struct dnode_of_data *dn,
841                                 unsigned int ofs, struct page *ipage)
842 {
843         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
844         struct address_space *mapping = sbi->node_inode->i_mapping;
845         struct node_info old_ni, new_ni;
846         struct page *page;
847         int err;
848
849         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850                 return ERR_PTR(-EPERM);
851
852         page = grab_cache_page(mapping, dn->nid);
853         if (!page)
854                 return ERR_PTR(-ENOMEM);
855
856         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
857                 err = -ENOSPC;
858                 goto fail;
859         }
860
861         get_node_info(sbi, dn->nid, &old_ni);
862
863         /* Reinitialize old_ni with new node page */
864         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
865         new_ni = old_ni;
866         new_ni.ino = dn->inode->i_ino;
867         set_node_addr(sbi, &new_ni, NEW_ADDR);
868
869         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
870         set_cold_node(dn->inode, page);
871         SetPageUptodate(page);
872         set_page_dirty(page);
873
874         if (ofs == XATTR_NODE_OFFSET)
875                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
876
877         dn->node_page = page;
878         if (ipage)
879                 update_inode(dn->inode, ipage);
880         else
881                 sync_inode_page(dn);
882         if (ofs == 0)
883                 inc_valid_inode_count(sbi);
884
885         return page;
886
887 fail:
888         clear_node_page_dirty(page);
889         f2fs_put_page(page, 1);
890         return ERR_PTR(err);
891 }
892
893 /*
894  * Caller should do after getting the following values.
895  * 0: f2fs_put_page(page, 0)
896  * LOCKED_PAGE: f2fs_put_page(page, 1)
897  * error: nothing
898  */
899 static int read_node_page(struct page *page, int rw)
900 {
901         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
902         struct node_info ni;
903
904         get_node_info(sbi, page->index, &ni);
905
906         if (unlikely(ni.blk_addr == NULL_ADDR)) {
907                 f2fs_put_page(page, 1);
908                 return -ENOENT;
909         }
910
911         if (PageUptodate(page))
912                 return LOCKED_PAGE;
913
914         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
915 }
916
917 /*
918  * Readahead a node page
919  */
920 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
921 {
922         struct address_space *mapping = sbi->node_inode->i_mapping;
923         struct page *apage;
924         int err;
925
926         apage = find_get_page(mapping, nid);
927         if (apage && PageUptodate(apage)) {
928                 f2fs_put_page(apage, 0);
929                 return;
930         }
931         f2fs_put_page(apage, 0);
932
933         apage = grab_cache_page(mapping, nid);
934         if (!apage)
935                 return;
936
937         err = read_node_page(apage, READA);
938         if (err == 0)
939                 f2fs_put_page(apage, 0);
940         else if (err == LOCKED_PAGE)
941                 f2fs_put_page(apage, 1);
942 }
943
944 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945 {
946         struct address_space *mapping = sbi->node_inode->i_mapping;
947         struct page *page;
948         int err;
949 repeat:
950         page = grab_cache_page(mapping, nid);
951         if (!page)
952                 return ERR_PTR(-ENOMEM);
953
954         err = read_node_page(page, READ_SYNC);
955         if (err < 0)
956                 return ERR_PTR(err);
957         else if (err == LOCKED_PAGE)
958                 goto got_it;
959
960         lock_page(page);
961         if (unlikely(!PageUptodate(page))) {
962                 f2fs_put_page(page, 1);
963                 return ERR_PTR(-EIO);
964         }
965         if (unlikely(page->mapping != mapping)) {
966                 f2fs_put_page(page, 1);
967                 goto repeat;
968         }
969 got_it:
970         f2fs_bug_on(nid != nid_of_node(page));
971         mark_page_accessed(page);
972         return page;
973 }
974
975 /*
976  * Return a locked page for the desired node page.
977  * And, readahead MAX_RA_NODE number of node pages.
978  */
979 struct page *get_node_page_ra(struct page *parent, int start)
980 {
981         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
982         struct address_space *mapping = sbi->node_inode->i_mapping;
983         struct blk_plug plug;
984         struct page *page;
985         int err, i, end;
986         nid_t nid;
987
988         /* First, try getting the desired direct node. */
989         nid = get_nid(parent, start, false);
990         if (!nid)
991                 return ERR_PTR(-ENOENT);
992 repeat:
993         page = grab_cache_page(mapping, nid);
994         if (!page)
995                 return ERR_PTR(-ENOMEM);
996
997         err = read_node_page(page, READ_SYNC);
998         if (err < 0)
999                 return ERR_PTR(err);
1000         else if (err == LOCKED_PAGE)
1001                 goto page_hit;
1002
1003         blk_start_plug(&plug);
1004
1005         /* Then, try readahead for siblings of the desired node */
1006         end = start + MAX_RA_NODE;
1007         end = min(end, NIDS_PER_BLOCK);
1008         for (i = start + 1; i < end; i++) {
1009                 nid = get_nid(parent, i, false);
1010                 if (!nid)
1011                         continue;
1012                 ra_node_page(sbi, nid);
1013         }
1014
1015         blk_finish_plug(&plug);
1016
1017         lock_page(page);
1018         if (unlikely(page->mapping != mapping)) {
1019                 f2fs_put_page(page, 1);
1020                 goto repeat;
1021         }
1022 page_hit:
1023         if (unlikely(!PageUptodate(page))) {
1024                 f2fs_put_page(page, 1);
1025                 return ERR_PTR(-EIO);
1026         }
1027         mark_page_accessed(page);
1028         return page;
1029 }
1030
1031 void sync_inode_page(struct dnode_of_data *dn)
1032 {
1033         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1034                 update_inode(dn->inode, dn->node_page);
1035         } else if (dn->inode_page) {
1036                 if (!dn->inode_page_locked)
1037                         lock_page(dn->inode_page);
1038                 update_inode(dn->inode, dn->inode_page);
1039                 if (!dn->inode_page_locked)
1040                         unlock_page(dn->inode_page);
1041         } else {
1042                 update_inode_page(dn->inode);
1043         }
1044 }
1045
1046 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1047                                         struct writeback_control *wbc)
1048 {
1049         struct address_space *mapping = sbi->node_inode->i_mapping;
1050         pgoff_t index, end;
1051         struct pagevec pvec;
1052         int step = ino ? 2 : 0;
1053         int nwritten = 0, wrote = 0;
1054
1055         pagevec_init(&pvec, 0);
1056
1057 next_step:
1058         index = 0;
1059         end = LONG_MAX;
1060
1061         while (index <= end) {
1062                 int i, nr_pages;
1063                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1064                                 PAGECACHE_TAG_DIRTY,
1065                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1066                 if (nr_pages == 0)
1067                         break;
1068
1069                 for (i = 0; i < nr_pages; i++) {
1070                         struct page *page = pvec.pages[i];
1071
1072                         /*
1073                          * flushing sequence with step:
1074                          * 0. indirect nodes
1075                          * 1. dentry dnodes
1076                          * 2. file dnodes
1077                          */
1078                         if (step == 0 && IS_DNODE(page))
1079                                 continue;
1080                         if (step == 1 && (!IS_DNODE(page) ||
1081                                                 is_cold_node(page)))
1082                                 continue;
1083                         if (step == 2 && (!IS_DNODE(page) ||
1084                                                 !is_cold_node(page)))
1085                                 continue;
1086
1087                         /*
1088                          * If an fsync mode,
1089                          * we should not skip writing node pages.
1090                          */
1091                         if (ino && ino_of_node(page) == ino)
1092                                 lock_page(page);
1093                         else if (!trylock_page(page))
1094                                 continue;
1095
1096                         if (unlikely(page->mapping != mapping)) {
1097 continue_unlock:
1098                                 unlock_page(page);
1099                                 continue;
1100                         }
1101                         if (ino && ino_of_node(page) != ino)
1102                                 goto continue_unlock;
1103
1104                         if (!PageDirty(page)) {
1105                                 /* someone wrote it for us */
1106                                 goto continue_unlock;
1107                         }
1108
1109                         if (!clear_page_dirty_for_io(page))
1110                                 goto continue_unlock;
1111
1112                         /* called by fsync() */
1113                         if (ino && IS_DNODE(page)) {
1114                                 int mark = !is_checkpointed_node(sbi, ino);
1115                                 set_fsync_mark(page, 1);
1116                                 if (IS_INODE(page))
1117                                         set_dentry_mark(page, mark);
1118                                 nwritten++;
1119                         } else {
1120                                 set_fsync_mark(page, 0);
1121                                 set_dentry_mark(page, 0);
1122                         }
1123                         mapping->a_ops->writepage(page, wbc);
1124                         wrote++;
1125
1126                         if (--wbc->nr_to_write == 0)
1127                                 break;
1128                 }
1129                 pagevec_release(&pvec);
1130                 cond_resched();
1131
1132                 if (wbc->nr_to_write == 0) {
1133                         step = 2;
1134                         break;
1135                 }
1136         }
1137
1138         if (step < 2) {
1139                 step++;
1140                 goto next_step;
1141         }
1142
1143         if (wrote)
1144                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1145         return nwritten;
1146 }
1147
1148 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1149 {
1150         struct address_space *mapping = sbi->node_inode->i_mapping;
1151         pgoff_t index = 0, end = LONG_MAX;
1152         struct pagevec pvec;
1153         int nr_pages;
1154         int ret2 = 0, ret = 0;
1155
1156         pagevec_init(&pvec, 0);
1157         while ((index <= end) &&
1158                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1159                         PAGECACHE_TAG_WRITEBACK,
1160                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
1161                 unsigned i;
1162
1163                 for (i = 0; i < nr_pages; i++) {
1164                         struct page *page = pvec.pages[i];
1165
1166                         /* until radix tree lookup accepts end_index */
1167                         if (unlikely(page->index > end))
1168                                 continue;
1169
1170                         if (ino && ino_of_node(page) == ino) {
1171                                 wait_on_page_writeback(page);
1172                                 if (TestClearPageError(page))
1173                                         ret = -EIO;
1174                         }
1175                 }
1176                 pagevec_release(&pvec);
1177                 cond_resched();
1178         }
1179
1180         if (unlikely(test_and_clear_bit(AS_ENOSPC, &mapping->flags)))
1181                 ret2 = -ENOSPC;
1182         if (unlikely(test_and_clear_bit(AS_EIO, &mapping->flags)))
1183                 ret2 = -EIO;
1184         if (!ret)
1185                 ret = ret2;
1186         return ret;
1187 }
1188
1189 static int f2fs_write_node_page(struct page *page,
1190                                 struct writeback_control *wbc)
1191 {
1192         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1193         nid_t nid;
1194         block_t new_addr;
1195         struct node_info ni;
1196
1197         if (unlikely(sbi->por_doing))
1198                 goto redirty_out;
1199
1200         wait_on_page_writeback(page);
1201
1202         /* get old block addr of this node page */
1203         nid = nid_of_node(page);
1204         f2fs_bug_on(page->index != nid);
1205
1206         get_node_info(sbi, nid, &ni);
1207
1208         /* This page is already truncated */
1209         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1210                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1211                 unlock_page(page);
1212                 return 0;
1213         }
1214
1215         if (wbc->for_reclaim)
1216                 goto redirty_out;
1217
1218         mutex_lock(&sbi->node_write);
1219         set_page_writeback(page);
1220         write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1221         set_node_addr(sbi, &ni, new_addr);
1222         dec_page_count(sbi, F2FS_DIRTY_NODES);
1223         mutex_unlock(&sbi->node_write);
1224         unlock_page(page);
1225         return 0;
1226
1227 redirty_out:
1228         dec_page_count(sbi, F2FS_DIRTY_NODES);
1229         wbc->pages_skipped++;
1230         set_page_dirty(page);
1231         return AOP_WRITEPAGE_ACTIVATE;
1232 }
1233
1234 /*
1235  * It is very important to gather dirty pages and write at once, so that we can
1236  * submit a big bio without interfering other data writes.
1237  * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1238  */
1239 #define COLLECT_DIRTY_NODES     1536
1240 static int f2fs_write_node_pages(struct address_space *mapping,
1241                             struct writeback_control *wbc)
1242 {
1243         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1244         long nr_to_write = wbc->nr_to_write;
1245
1246         /* balancing f2fs's metadata in background */
1247         f2fs_balance_fs_bg(sbi);
1248
1249         /* collect a number of dirty node pages and write together */
1250         if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1251                 return 0;
1252
1253         /* if mounting is failed, skip writing node pages */
1254         wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1255         sync_node_pages(sbi, 0, wbc);
1256         wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1257                                                 wbc->nr_to_write);
1258         return 0;
1259 }
1260
1261 static int f2fs_set_node_page_dirty(struct page *page)
1262 {
1263         struct address_space *mapping = page->mapping;
1264         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266         trace_f2fs_set_page_dirty(page, NODE);
1267
1268         SetPageUptodate(page);
1269         if (!PageDirty(page)) {
1270                 __set_page_dirty_nobuffers(page);
1271                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1272                 SetPagePrivate(page);
1273                 return 1;
1274         }
1275         return 0;
1276 }
1277
1278 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279                                       unsigned int length)
1280 {
1281         struct inode *inode = page->mapping->host;
1282         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283         if (PageDirty(page))
1284                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1285         ClearPagePrivate(page);
1286 }
1287
1288 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289 {
1290         ClearPagePrivate(page);
1291         return 1;
1292 }
1293
1294 /*
1295  * Structure of the f2fs node operations
1296  */
1297 const struct address_space_operations f2fs_node_aops = {
1298         .writepage      = f2fs_write_node_page,
1299         .writepages     = f2fs_write_node_pages,
1300         .set_page_dirty = f2fs_set_node_page_dirty,
1301         .invalidatepage = f2fs_invalidate_node_page,
1302         .releasepage    = f2fs_release_node_page,
1303 };
1304
1305 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1306 {
1307         struct list_head *this;
1308         struct free_nid *i;
1309         list_for_each(this, head) {
1310                 i = list_entry(this, struct free_nid, list);
1311                 if (i->nid == n)
1312                         return i;
1313         }
1314         return NULL;
1315 }
1316
1317 static void __del_from_free_nid_list(struct free_nid *i)
1318 {
1319         list_del(&i->list);
1320         kmem_cache_free(free_nid_slab, i);
1321 }
1322
1323 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1324 {
1325         struct free_nid *i;
1326         struct nat_entry *ne;
1327         bool allocated = false;
1328
1329         if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1330                 return -1;
1331
1332         /* 0 nid should not be used */
1333         if (unlikely(nid == 0))
1334                 return 0;
1335
1336         if (build) {
1337                 /* do not add allocated nids */
1338                 read_lock(&nm_i->nat_tree_lock);
1339                 ne = __lookup_nat_cache(nm_i, nid);
1340                 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1341                         allocated = true;
1342                 read_unlock(&nm_i->nat_tree_lock);
1343                 if (allocated)
1344                         return 0;
1345         }
1346
1347         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1348         i->nid = nid;
1349         i->state = NID_NEW;
1350
1351         spin_lock(&nm_i->free_nid_list_lock);
1352         if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1353                 spin_unlock(&nm_i->free_nid_list_lock);
1354                 kmem_cache_free(free_nid_slab, i);
1355                 return 0;
1356         }
1357         list_add_tail(&i->list, &nm_i->free_nid_list);
1358         nm_i->fcnt++;
1359         spin_unlock(&nm_i->free_nid_list_lock);
1360         return 1;
1361 }
1362
1363 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1364 {
1365         struct free_nid *i;
1366         spin_lock(&nm_i->free_nid_list_lock);
1367         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1368         if (i && i->state == NID_NEW) {
1369                 __del_from_free_nid_list(i);
1370                 nm_i->fcnt--;
1371         }
1372         spin_unlock(&nm_i->free_nid_list_lock);
1373 }
1374
1375 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1376                         struct page *nat_page, nid_t start_nid)
1377 {
1378         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1379         block_t blk_addr;
1380         int i;
1381
1382         i = start_nid % NAT_ENTRY_PER_BLOCK;
1383
1384         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1385
1386                 if (unlikely(start_nid >= nm_i->max_nid))
1387                         break;
1388
1389                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1390                 f2fs_bug_on(blk_addr == NEW_ADDR);
1391                 if (blk_addr == NULL_ADDR) {
1392                         if (add_free_nid(nm_i, start_nid, true) < 0)
1393                                 break;
1394                 }
1395         }
1396 }
1397
1398 static void build_free_nids(struct f2fs_sb_info *sbi)
1399 {
1400         struct f2fs_nm_info *nm_i = NM_I(sbi);
1401         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1402         struct f2fs_summary_block *sum = curseg->sum_blk;
1403         int i = 0;
1404         nid_t nid = nm_i->next_scan_nid;
1405
1406         /* Enough entries */
1407         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1408                 return;
1409
1410         /* readahead nat pages to be scanned */
1411         ra_nat_pages(sbi, nid);
1412
1413         while (1) {
1414                 struct page *page = get_current_nat_page(sbi, nid);
1415
1416                 scan_nat_page(nm_i, page, nid);
1417                 f2fs_put_page(page, 1);
1418
1419                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1420                 if (unlikely(nid >= nm_i->max_nid))
1421                         nid = 0;
1422
1423                 if (i++ == FREE_NID_PAGES)
1424                         break;
1425         }
1426
1427         /* go to the next free nat pages to find free nids abundantly */
1428         nm_i->next_scan_nid = nid;
1429
1430         /* find free nids from current sum_pages */
1431         mutex_lock(&curseg->curseg_mutex);
1432         for (i = 0; i < nats_in_cursum(sum); i++) {
1433                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1434                 nid = le32_to_cpu(nid_in_journal(sum, i));
1435                 if (addr == NULL_ADDR)
1436                         add_free_nid(nm_i, nid, true);
1437                 else
1438                         remove_free_nid(nm_i, nid);
1439         }
1440         mutex_unlock(&curseg->curseg_mutex);
1441 }
1442
1443 /*
1444  * If this function returns success, caller can obtain a new nid
1445  * from second parameter of this function.
1446  * The returned nid could be used ino as well as nid when inode is created.
1447  */
1448 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1449 {
1450         struct f2fs_nm_info *nm_i = NM_I(sbi);
1451         struct free_nid *i = NULL;
1452         struct list_head *this;
1453 retry:
1454         if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1455                 return false;
1456
1457         spin_lock(&nm_i->free_nid_list_lock);
1458
1459         /* We should not use stale free nids created by build_free_nids */
1460         if (nm_i->fcnt && !sbi->on_build_free_nids) {
1461                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1462                 list_for_each(this, &nm_i->free_nid_list) {
1463                         i = list_entry(this, struct free_nid, list);
1464                         if (i->state == NID_NEW)
1465                                 break;
1466                 }
1467
1468                 f2fs_bug_on(i->state != NID_NEW);
1469                 *nid = i->nid;
1470                 i->state = NID_ALLOC;
1471                 nm_i->fcnt--;
1472                 spin_unlock(&nm_i->free_nid_list_lock);
1473                 return true;
1474         }
1475         spin_unlock(&nm_i->free_nid_list_lock);
1476
1477         /* Let's scan nat pages and its caches to get free nids */
1478         mutex_lock(&nm_i->build_lock);
1479         sbi->on_build_free_nids = true;
1480         build_free_nids(sbi);
1481         sbi->on_build_free_nids = false;
1482         mutex_unlock(&nm_i->build_lock);
1483         goto retry;
1484 }
1485
1486 /*
1487  * alloc_nid() should be called prior to this function.
1488  */
1489 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1490 {
1491         struct f2fs_nm_info *nm_i = NM_I(sbi);
1492         struct free_nid *i;
1493
1494         spin_lock(&nm_i->free_nid_list_lock);
1495         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1496         f2fs_bug_on(!i || i->state != NID_ALLOC);
1497         __del_from_free_nid_list(i);
1498         spin_unlock(&nm_i->free_nid_list_lock);
1499 }
1500
1501 /*
1502  * alloc_nid() should be called prior to this function.
1503  */
1504 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1505 {
1506         struct f2fs_nm_info *nm_i = NM_I(sbi);
1507         struct free_nid *i;
1508
1509         if (!nid)
1510                 return;
1511
1512         spin_lock(&nm_i->free_nid_list_lock);
1513         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1514         f2fs_bug_on(!i || i->state != NID_ALLOC);
1515         if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1516                 __del_from_free_nid_list(i);
1517         } else {
1518                 i->state = NID_NEW;
1519                 nm_i->fcnt++;
1520         }
1521         spin_unlock(&nm_i->free_nid_list_lock);
1522 }
1523
1524 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1525                 struct f2fs_summary *sum, struct node_info *ni,
1526                 block_t new_blkaddr)
1527 {
1528         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1529         set_node_addr(sbi, ni, new_blkaddr);
1530         clear_node_page_dirty(page);
1531 }
1532
1533 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1534 {
1535         struct address_space *mapping = sbi->node_inode->i_mapping;
1536         struct f2fs_inode *src, *dst;
1537         nid_t ino = ino_of_node(page);
1538         struct node_info old_ni, new_ni;
1539         struct page *ipage;
1540
1541         ipage = grab_cache_page(mapping, ino);
1542         if (!ipage)
1543                 return -ENOMEM;
1544
1545         /* Should not use this inode  from free nid list */
1546         remove_free_nid(NM_I(sbi), ino);
1547
1548         get_node_info(sbi, ino, &old_ni);
1549         SetPageUptodate(ipage);
1550         fill_node_footer(ipage, ino, ino, 0, true);
1551
1552         src = F2FS_INODE(page);
1553         dst = F2FS_INODE(ipage);
1554
1555         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1556         dst->i_size = 0;
1557         dst->i_blocks = cpu_to_le64(1);
1558         dst->i_links = cpu_to_le32(1);
1559         dst->i_xattr_nid = 0;
1560
1561         new_ni = old_ni;
1562         new_ni.ino = ino;
1563
1564         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1565                 WARN_ON(1);
1566         set_node_addr(sbi, &new_ni, NEW_ADDR);
1567         inc_valid_inode_count(sbi);
1568         f2fs_put_page(ipage, 1);
1569         return 0;
1570 }
1571
1572 /*
1573  * ra_sum_pages() merge contiguous pages into one bio and submit.
1574  * these pre-readed pages are linked in pages list.
1575  */
1576 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1577                                 int start, int nrpages)
1578 {
1579         struct page *page;
1580         int page_idx = start;
1581         struct f2fs_io_info fio = {
1582                 .type = META,
1583                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1584         };
1585
1586         for (; page_idx < start + nrpages; page_idx++) {
1587                 /* alloc temporal page for read node summary info*/
1588                 page = alloc_page(GFP_F2FS_ZERO);
1589                 if (!page) {
1590                         struct page *tmp;
1591                         list_for_each_entry_safe(page, tmp, pages, lru) {
1592                                 list_del(&page->lru);
1593                                 unlock_page(page);
1594                                 __free_pages(page, 0);
1595                         }
1596                         return -ENOMEM;
1597                 }
1598
1599                 lock_page(page);
1600                 page->index = page_idx;
1601                 list_add_tail(&page->lru, pages);
1602         }
1603
1604         list_for_each_entry(page, pages, lru)
1605                 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1606
1607         f2fs_submit_merged_bio(sbi, META, READ);
1608         return 0;
1609 }
1610
1611 int restore_node_summary(struct f2fs_sb_info *sbi,
1612                         unsigned int segno, struct f2fs_summary_block *sum)
1613 {
1614         struct f2fs_node *rn;
1615         struct f2fs_summary *sum_entry;
1616         struct page *page, *tmp;
1617         block_t addr;
1618         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1619         int i, last_offset, nrpages, err = 0;
1620         LIST_HEAD(page_list);
1621
1622         /* scan the node segment */
1623         last_offset = sbi->blocks_per_seg;
1624         addr = START_BLOCK(sbi, segno);
1625         sum_entry = &sum->entries[0];
1626
1627         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1628                 nrpages = min(last_offset - i, bio_blocks);
1629
1630                 /* read ahead node pages */
1631                 err = ra_sum_pages(sbi, &page_list, addr, nrpages);
1632                 if (err)
1633                         return err;
1634
1635                 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1636
1637                         lock_page(page);
1638                         if (unlikely(!PageUptodate(page))) {
1639                                 err = -EIO;
1640                         } else {
1641                                 rn = F2FS_NODE(page);
1642                                 sum_entry->nid = rn->footer.nid;
1643                                 sum_entry->version = 0;
1644                                 sum_entry->ofs_in_node = 0;
1645                                 sum_entry++;
1646                         }
1647
1648                         list_del(&page->lru);
1649                         unlock_page(page);
1650                         __free_pages(page, 0);
1651                 }
1652         }
1653         return err;
1654 }
1655
1656 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1657 {
1658         struct f2fs_nm_info *nm_i = NM_I(sbi);
1659         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1660         struct f2fs_summary_block *sum = curseg->sum_blk;
1661         int i;
1662
1663         mutex_lock(&curseg->curseg_mutex);
1664
1665         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1666                 mutex_unlock(&curseg->curseg_mutex);
1667                 return false;
1668         }
1669
1670         for (i = 0; i < nats_in_cursum(sum); i++) {
1671                 struct nat_entry *ne;
1672                 struct f2fs_nat_entry raw_ne;
1673                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1674
1675                 raw_ne = nat_in_journal(sum, i);
1676 retry:
1677                 write_lock(&nm_i->nat_tree_lock);
1678                 ne = __lookup_nat_cache(nm_i, nid);
1679                 if (ne) {
1680                         __set_nat_cache_dirty(nm_i, ne);
1681                         write_unlock(&nm_i->nat_tree_lock);
1682                         continue;
1683                 }
1684                 ne = grab_nat_entry(nm_i, nid);
1685                 if (!ne) {
1686                         write_unlock(&nm_i->nat_tree_lock);
1687                         goto retry;
1688                 }
1689                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1690                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1691                 nat_set_version(ne, raw_ne.version);
1692                 __set_nat_cache_dirty(nm_i, ne);
1693                 write_unlock(&nm_i->nat_tree_lock);
1694         }
1695         update_nats_in_cursum(sum, -i);
1696         mutex_unlock(&curseg->curseg_mutex);
1697         return true;
1698 }
1699
1700 /*
1701  * This function is called during the checkpointing process.
1702  */
1703 void flush_nat_entries(struct f2fs_sb_info *sbi)
1704 {
1705         struct f2fs_nm_info *nm_i = NM_I(sbi);
1706         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1707         struct f2fs_summary_block *sum = curseg->sum_blk;
1708         struct list_head *cur, *n;
1709         struct page *page = NULL;
1710         struct f2fs_nat_block *nat_blk = NULL;
1711         nid_t start_nid = 0, end_nid = 0;
1712         bool flushed;
1713
1714         flushed = flush_nats_in_journal(sbi);
1715
1716         if (!flushed)
1717                 mutex_lock(&curseg->curseg_mutex);
1718
1719         /* 1) flush dirty nat caches */
1720         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1721                 struct nat_entry *ne;
1722                 nid_t nid;
1723                 struct f2fs_nat_entry raw_ne;
1724                 int offset = -1;
1725                 block_t new_blkaddr;
1726
1727                 ne = list_entry(cur, struct nat_entry, list);
1728                 nid = nat_get_nid(ne);
1729
1730                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1731                         continue;
1732                 if (flushed)
1733                         goto to_nat_page;
1734
1735                 /* if there is room for nat enries in curseg->sumpage */
1736                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1737                 if (offset >= 0) {
1738                         raw_ne = nat_in_journal(sum, offset);
1739                         goto flush_now;
1740                 }
1741 to_nat_page:
1742                 if (!page || (start_nid > nid || nid > end_nid)) {
1743                         if (page) {
1744                                 f2fs_put_page(page, 1);
1745                                 page = NULL;
1746                         }
1747                         start_nid = START_NID(nid);
1748                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1749
1750                         /*
1751                          * get nat block with dirty flag, increased reference
1752                          * count, mapped and lock
1753                          */
1754                         page = get_next_nat_page(sbi, start_nid);
1755                         nat_blk = page_address(page);
1756                 }
1757
1758                 f2fs_bug_on(!nat_blk);
1759                 raw_ne = nat_blk->entries[nid - start_nid];
1760 flush_now:
1761                 new_blkaddr = nat_get_blkaddr(ne);
1762
1763                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1764                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1765                 raw_ne.version = nat_get_version(ne);
1766
1767                 if (offset < 0) {
1768                         nat_blk->entries[nid - start_nid] = raw_ne;
1769                 } else {
1770                         nat_in_journal(sum, offset) = raw_ne;
1771                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1772                 }
1773
1774                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1775                                 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1776                         write_lock(&nm_i->nat_tree_lock);
1777                         __del_from_nat_cache(nm_i, ne);
1778                         write_unlock(&nm_i->nat_tree_lock);
1779                 } else {
1780                         write_lock(&nm_i->nat_tree_lock);
1781                         __clear_nat_cache_dirty(nm_i, ne);
1782                         ne->checkpointed = true;
1783                         write_unlock(&nm_i->nat_tree_lock);
1784                 }
1785         }
1786         if (!flushed)
1787                 mutex_unlock(&curseg->curseg_mutex);
1788         f2fs_put_page(page, 1);
1789
1790         /* 2) shrink nat caches if necessary */
1791         try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1792 }
1793
1794 static int init_node_manager(struct f2fs_sb_info *sbi)
1795 {
1796         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1797         struct f2fs_nm_info *nm_i = NM_I(sbi);
1798         unsigned char *version_bitmap;
1799         unsigned int nat_segs, nat_blocks;
1800
1801         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1802
1803         /* segment_count_nat includes pair segment so divide to 2. */
1804         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1805         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1806         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1807         nm_i->fcnt = 0;
1808         nm_i->nat_cnt = 0;
1809
1810         INIT_LIST_HEAD(&nm_i->free_nid_list);
1811         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1812         INIT_LIST_HEAD(&nm_i->nat_entries);
1813         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1814
1815         mutex_init(&nm_i->build_lock);
1816         spin_lock_init(&nm_i->free_nid_list_lock);
1817         rwlock_init(&nm_i->nat_tree_lock);
1818
1819         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1820         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1821         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1822         if (!version_bitmap)
1823                 return -EFAULT;
1824
1825         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1826                                         GFP_KERNEL);
1827         if (!nm_i->nat_bitmap)
1828                 return -ENOMEM;
1829         return 0;
1830 }
1831
1832 int build_node_manager(struct f2fs_sb_info *sbi)
1833 {
1834         int err;
1835
1836         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1837         if (!sbi->nm_info)
1838                 return -ENOMEM;
1839
1840         err = init_node_manager(sbi);
1841         if (err)
1842                 return err;
1843
1844         build_free_nids(sbi);
1845         return 0;
1846 }
1847
1848 void destroy_node_manager(struct f2fs_sb_info *sbi)
1849 {
1850         struct f2fs_nm_info *nm_i = NM_I(sbi);
1851         struct free_nid *i, *next_i;
1852         struct nat_entry *natvec[NATVEC_SIZE];
1853         nid_t nid = 0;
1854         unsigned int found;
1855
1856         if (!nm_i)
1857                 return;
1858
1859         /* destroy free nid list */
1860         spin_lock(&nm_i->free_nid_list_lock);
1861         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1862                 f2fs_bug_on(i->state == NID_ALLOC);
1863                 __del_from_free_nid_list(i);
1864                 nm_i->fcnt--;
1865         }
1866         f2fs_bug_on(nm_i->fcnt);
1867         spin_unlock(&nm_i->free_nid_list_lock);
1868
1869         /* destroy nat cache */
1870         write_lock(&nm_i->nat_tree_lock);
1871         while ((found = __gang_lookup_nat_cache(nm_i,
1872                                         nid, NATVEC_SIZE, natvec))) {
1873                 unsigned idx;
1874                 for (idx = 0; idx < found; idx++) {
1875                         struct nat_entry *e = natvec[idx];
1876                         nid = nat_get_nid(e) + 1;
1877                         __del_from_nat_cache(nm_i, e);
1878                 }
1879         }
1880         f2fs_bug_on(nm_i->nat_cnt);
1881         write_unlock(&nm_i->nat_tree_lock);
1882
1883         kfree(nm_i->nat_bitmap);
1884         sbi->nm_info = NULL;
1885         kfree(nm_i);
1886 }
1887
1888 int __init create_node_manager_caches(void)
1889 {
1890         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1891                         sizeof(struct nat_entry), NULL);
1892         if (!nat_entry_slab)
1893                 return -ENOMEM;
1894
1895         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1896                         sizeof(struct free_nid), NULL);
1897         if (!free_nid_slab) {
1898                 kmem_cache_destroy(nat_entry_slab);
1899                 return -ENOMEM;
1900         }
1901         return 0;
1902 }
1903
1904 void destroy_node_manager_caches(void)
1905 {
1906         kmem_cache_destroy(free_nid_slab);
1907         kmem_cache_destroy(nat_entry_slab);
1908 }