]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
f2fs: convert inc/dec_valid_node_count to inc/dec one count
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26
27 static void clear_node_page_dirty(struct page *page)
28 {
29         struct address_space *mapping = page->mapping;
30         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31         unsigned int long flags;
32
33         if (PageDirty(page)) {
34                 spin_lock_irqsave(&mapping->tree_lock, flags);
35                 radix_tree_tag_clear(&mapping->page_tree,
36                                 page_index(page),
37                                 PAGECACHE_TAG_DIRTY);
38                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40                 clear_page_dirty_for_io(page);
41                 dec_page_count(sbi, F2FS_DIRTY_NODES);
42         }
43         ClearPageUptodate(page);
44 }
45
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48         pgoff_t index = current_nat_addr(sbi, nid);
49         return get_meta_page(sbi, index);
50 }
51
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54         struct page *src_page;
55         struct page *dst_page;
56         pgoff_t src_off;
57         pgoff_t dst_off;
58         void *src_addr;
59         void *dst_addr;
60         struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62         src_off = current_nat_addr(sbi, nid);
63         dst_off = next_nat_addr(sbi, src_off);
64
65         /* get current nat block page with lock */
66         src_page = get_meta_page(sbi, src_off);
67
68         /* Dirty src_page means that it is already the new target NAT page. */
69         if (PageDirty(src_page))
70                 return src_page;
71
72         dst_page = grab_meta_page(sbi, dst_off);
73
74         src_addr = page_address(src_page);
75         dst_addr = page_address(dst_page);
76         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77         set_page_dirty(dst_page);
78         f2fs_put_page(src_page, 1);
79
80         set_to_next_nat(nm_i, nid);
81
82         return dst_page;
83 }
84
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90         struct address_space *mapping = sbi->meta_inode->i_mapping;
91         struct f2fs_nm_info *nm_i = NM_I(sbi);
92         struct blk_plug plug;
93         struct page *page;
94         pgoff_t index;
95         int i;
96
97         blk_start_plug(&plug);
98
99         for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100                 if (nid >= nm_i->max_nid)
101                         nid = 0;
102                 index = current_nat_addr(sbi, nid);
103
104                 page = grab_cache_page(mapping, index);
105                 if (!page)
106                         continue;
107                 if (PageUptodate(page)) {
108                         f2fs_put_page(page, 1);
109                         continue;
110                 }
111                 if (f2fs_readpage(sbi, page, index, READ))
112                         continue;
113
114                 f2fs_put_page(page, 0);
115         }
116         blk_finish_plug(&plug);
117 }
118
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121         return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125                 nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132         list_del(&e->list);
133         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134         nm_i->nat_cnt--;
135         kmem_cache_free(nat_entry_slab, e);
136 }
137
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct f2fs_nm_info *nm_i = NM_I(sbi);
141         struct nat_entry *e;
142         int is_cp = 1;
143
144         read_lock(&nm_i->nat_tree_lock);
145         e = __lookup_nat_cache(nm_i, nid);
146         if (e && !e->checkpointed)
147                 is_cp = 0;
148         read_unlock(&nm_i->nat_tree_lock);
149         return is_cp;
150 }
151
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154         struct nat_entry *new;
155
156         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157         if (!new)
158                 return NULL;
159         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160                 kmem_cache_free(nat_entry_slab, new);
161                 return NULL;
162         }
163         memset(new, 0, sizeof(struct nat_entry));
164         nat_set_nid(new, nid);
165         list_add_tail(&new->list, &nm_i->nat_entries);
166         nm_i->nat_cnt++;
167         return new;
168 }
169
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171                                                 struct f2fs_nat_entry *ne)
172 {
173         struct nat_entry *e;
174 retry:
175         write_lock(&nm_i->nat_tree_lock);
176         e = __lookup_nat_cache(nm_i, nid);
177         if (!e) {
178                 e = grab_nat_entry(nm_i, nid);
179                 if (!e) {
180                         write_unlock(&nm_i->nat_tree_lock);
181                         goto retry;
182                 }
183                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184                 nat_set_ino(e, le32_to_cpu(ne->ino));
185                 nat_set_version(e, ne->version);
186                 e->checkpointed = true;
187         }
188         write_unlock(&nm_i->nat_tree_lock);
189 }
190
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192                         block_t new_blkaddr)
193 {
194         struct f2fs_nm_info *nm_i = NM_I(sbi);
195         struct nat_entry *e;
196 retry:
197         write_lock(&nm_i->nat_tree_lock);
198         e = __lookup_nat_cache(nm_i, ni->nid);
199         if (!e) {
200                 e = grab_nat_entry(nm_i, ni->nid);
201                 if (!e) {
202                         write_unlock(&nm_i->nat_tree_lock);
203                         goto retry;
204                 }
205                 e->ni = *ni;
206                 e->checkpointed = true;
207                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
208         } else if (new_blkaddr == NEW_ADDR) {
209                 /*
210                  * when nid is reallocated,
211                  * previous nat entry can be remained in nat cache.
212                  * So, reinitialize it with new information.
213                  */
214                 e->ni = *ni;
215                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
216         }
217
218         if (new_blkaddr == NEW_ADDR)
219                 e->checkpointed = false;
220
221         /* sanity check */
222         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
223         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
224                         new_blkaddr == NULL_ADDR);
225         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
226                         new_blkaddr == NEW_ADDR);
227         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
228                         nat_get_blkaddr(e) != NULL_ADDR &&
229                         new_blkaddr == NEW_ADDR);
230
231         /* increament version no as node is removed */
232         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233                 unsigned char version = nat_get_version(e);
234                 nat_set_version(e, inc_node_version(version));
235         }
236
237         /* change address */
238         nat_set_blkaddr(e, new_blkaddr);
239         __set_nat_cache_dirty(nm_i, e);
240         write_unlock(&nm_i->nat_tree_lock);
241 }
242
243 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245         struct f2fs_nm_info *nm_i = NM_I(sbi);
246
247         if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248                 return 0;
249
250         write_lock(&nm_i->nat_tree_lock);
251         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252                 struct nat_entry *ne;
253                 ne = list_first_entry(&nm_i->nat_entries,
254                                         struct nat_entry, list);
255                 __del_from_nat_cache(nm_i, ne);
256                 nr_shrink--;
257         }
258         write_unlock(&nm_i->nat_tree_lock);
259         return nr_shrink;
260 }
261
262 /*
263  * This function returns always success
264  */
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267         struct f2fs_nm_info *nm_i = NM_I(sbi);
268         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269         struct f2fs_summary_block *sum = curseg->sum_blk;
270         nid_t start_nid = START_NID(nid);
271         struct f2fs_nat_block *nat_blk;
272         struct page *page = NULL;
273         struct f2fs_nat_entry ne;
274         struct nat_entry *e;
275         int i;
276
277         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278         ni->nid = nid;
279
280         /* Check nat cache */
281         read_lock(&nm_i->nat_tree_lock);
282         e = __lookup_nat_cache(nm_i, nid);
283         if (e) {
284                 ni->ino = nat_get_ino(e);
285                 ni->blk_addr = nat_get_blkaddr(e);
286                 ni->version = nat_get_version(e);
287         }
288         read_unlock(&nm_i->nat_tree_lock);
289         if (e)
290                 return;
291
292         /* Check current segment summary */
293         mutex_lock(&curseg->curseg_mutex);
294         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295         if (i >= 0) {
296                 ne = nat_in_journal(sum, i);
297                 node_info_from_raw_nat(ni, &ne);
298         }
299         mutex_unlock(&curseg->curseg_mutex);
300         if (i >= 0)
301                 goto cache;
302
303         /* Fill node_info from nat page */
304         page = get_current_nat_page(sbi, start_nid);
305         nat_blk = (struct f2fs_nat_block *)page_address(page);
306         ne = nat_blk->entries[nid - start_nid];
307         node_info_from_raw_nat(ni, &ne);
308         f2fs_put_page(page, 1);
309 cache:
310         /* cache nat entry */
311         cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
318 static int get_node_path(struct f2fs_inode_info *fi, long block,
319                                 int offset[4], unsigned int noffset[4])
320 {
321         const long direct_index = ADDRS_PER_INODE(fi);
322         const long direct_blks = ADDRS_PER_BLOCK;
323         const long dptrs_per_blk = NIDS_PER_BLOCK;
324         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
326         int n = 0;
327         int level = 0;
328
329         noffset[0] = 0;
330
331         if (block < direct_index) {
332                 offset[n] = block;
333                 goto got;
334         }
335         block -= direct_index;
336         if (block < direct_blks) {
337                 offset[n++] = NODE_DIR1_BLOCK;
338                 noffset[n] = 1;
339                 offset[n] = block;
340                 level = 1;
341                 goto got;
342         }
343         block -= direct_blks;
344         if (block < direct_blks) {
345                 offset[n++] = NODE_DIR2_BLOCK;
346                 noffset[n] = 2;
347                 offset[n] = block;
348                 level = 1;
349                 goto got;
350         }
351         block -= direct_blks;
352         if (block < indirect_blks) {
353                 offset[n++] = NODE_IND1_BLOCK;
354                 noffset[n] = 3;
355                 offset[n++] = block / direct_blks;
356                 noffset[n] = 4 + offset[n - 1];
357                 offset[n] = block % direct_blks;
358                 level = 2;
359                 goto got;
360         }
361         block -= indirect_blks;
362         if (block < indirect_blks) {
363                 offset[n++] = NODE_IND2_BLOCK;
364                 noffset[n] = 4 + dptrs_per_blk;
365                 offset[n++] = block / direct_blks;
366                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
367                 offset[n] = block % direct_blks;
368                 level = 2;
369                 goto got;
370         }
371         block -= indirect_blks;
372         if (block < dindirect_blks) {
373                 offset[n++] = NODE_DIND_BLOCK;
374                 noffset[n] = 5 + (dptrs_per_blk * 2);
375                 offset[n++] = block / indirect_blks;
376                 noffset[n] = 6 + (dptrs_per_blk * 2) +
377                               offset[n - 1] * (dptrs_per_blk + 1);
378                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
379                 noffset[n] = 7 + (dptrs_per_blk * 2) +
380                               offset[n - 2] * (dptrs_per_blk + 1) +
381                               offset[n - 1];
382                 offset[n] = block % direct_blks;
383                 level = 3;
384                 goto got;
385         } else {
386                 BUG();
387         }
388 got:
389         return level;
390 }
391
392 /*
393  * Caller should call f2fs_put_dnode(dn).
394  * Also, it should grab and release a mutex by calling mutex_lock_op() and
395  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396  * In the case of RDONLY_NODE, we don't need to care about mutex.
397  */
398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
399 {
400         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401         struct page *npage[4];
402         struct page *parent;
403         int offset[4];
404         unsigned int noffset[4];
405         nid_t nids[4];
406         int level, i;
407         int err = 0;
408
409         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
410
411         nids[0] = dn->inode->i_ino;
412         npage[0] = dn->inode_page;
413
414         if (!npage[0]) {
415                 npage[0] = get_node_page(sbi, nids[0]);
416                 if (IS_ERR(npage[0]))
417                         return PTR_ERR(npage[0]);
418         }
419         parent = npage[0];
420         if (level != 0)
421                 nids[1] = get_nid(parent, offset[0], true);
422         dn->inode_page = npage[0];
423         dn->inode_page_locked = true;
424
425         /* get indirect or direct nodes */
426         for (i = 1; i <= level; i++) {
427                 bool done = false;
428
429                 if (!nids[i] && mode == ALLOC_NODE) {
430                         /* alloc new node */
431                         if (!alloc_nid(sbi, &(nids[i]))) {
432                                 err = -ENOSPC;
433                                 goto release_pages;
434                         }
435
436                         dn->nid = nids[i];
437                         npage[i] = new_node_page(dn, noffset[i], NULL);
438                         if (IS_ERR(npage[i])) {
439                                 alloc_nid_failed(sbi, nids[i]);
440                                 err = PTR_ERR(npage[i]);
441                                 goto release_pages;
442                         }
443
444                         set_nid(parent, offset[i - 1], nids[i], i == 1);
445                         alloc_nid_done(sbi, nids[i]);
446                         done = true;
447                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
448                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
449                         if (IS_ERR(npage[i])) {
450                                 err = PTR_ERR(npage[i]);
451                                 goto release_pages;
452                         }
453                         done = true;
454                 }
455                 if (i == 1) {
456                         dn->inode_page_locked = false;
457                         unlock_page(parent);
458                 } else {
459                         f2fs_put_page(parent, 1);
460                 }
461
462                 if (!done) {
463                         npage[i] = get_node_page(sbi, nids[i]);
464                         if (IS_ERR(npage[i])) {
465                                 err = PTR_ERR(npage[i]);
466                                 f2fs_put_page(npage[0], 0);
467                                 goto release_out;
468                         }
469                 }
470                 if (i < level) {
471                         parent = npage[i];
472                         nids[i + 1] = get_nid(parent, offset[i], false);
473                 }
474         }
475         dn->nid = nids[level];
476         dn->ofs_in_node = offset[level];
477         dn->node_page = npage[level];
478         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
479         return 0;
480
481 release_pages:
482         f2fs_put_page(parent, 1);
483         if (i > 1)
484                 f2fs_put_page(npage[0], 0);
485 release_out:
486         dn->inode_page = NULL;
487         dn->node_page = NULL;
488         return err;
489 }
490
491 static void truncate_node(struct dnode_of_data *dn)
492 {
493         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494         struct node_info ni;
495
496         get_node_info(sbi, dn->nid, &ni);
497         if (dn->inode->i_blocks == 0) {
498                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
499                 goto invalidate;
500         }
501         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
502
503         /* Deallocate node address */
504         invalidate_blocks(sbi, ni.blk_addr);
505         dec_valid_node_count(sbi, dn->inode);
506         set_node_addr(sbi, &ni, NULL_ADDR);
507
508         if (dn->nid == dn->inode->i_ino) {
509                 remove_orphan_inode(sbi, dn->nid);
510                 dec_valid_inode_count(sbi);
511         } else {
512                 sync_inode_page(dn);
513         }
514 invalidate:
515         clear_node_page_dirty(dn->node_page);
516         F2FS_SET_SB_DIRT(sbi);
517
518         f2fs_put_page(dn->node_page, 1);
519         dn->node_page = NULL;
520         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
521 }
522
523 static int truncate_dnode(struct dnode_of_data *dn)
524 {
525         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
526         struct page *page;
527
528         if (dn->nid == 0)
529                 return 1;
530
531         /* get direct node */
532         page = get_node_page(sbi, dn->nid);
533         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
534                 return 1;
535         else if (IS_ERR(page))
536                 return PTR_ERR(page);
537
538         /* Make dnode_of_data for parameter */
539         dn->node_page = page;
540         dn->ofs_in_node = 0;
541         truncate_data_blocks(dn);
542         truncate_node(dn);
543         return 1;
544 }
545
546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
547                                                 int ofs, int depth)
548 {
549         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550         struct dnode_of_data rdn = *dn;
551         struct page *page;
552         struct f2fs_node *rn;
553         nid_t child_nid;
554         unsigned int child_nofs;
555         int freed = 0;
556         int i, ret;
557
558         if (dn->nid == 0)
559                 return NIDS_PER_BLOCK + 1;
560
561         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
562
563         page = get_node_page(sbi, dn->nid);
564         if (IS_ERR(page)) {
565                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
566                 return PTR_ERR(page);
567         }
568
569         rn = F2FS_NODE(page);
570         if (depth < 3) {
571                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572                         child_nid = le32_to_cpu(rn->in.nid[i]);
573                         if (child_nid == 0)
574                                 continue;
575                         rdn.nid = child_nid;
576                         ret = truncate_dnode(&rdn);
577                         if (ret < 0)
578                                 goto out_err;
579                         set_nid(page, i, 0, false);
580                 }
581         } else {
582                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584                         child_nid = le32_to_cpu(rn->in.nid[i]);
585                         if (child_nid == 0) {
586                                 child_nofs += NIDS_PER_BLOCK + 1;
587                                 continue;
588                         }
589                         rdn.nid = child_nid;
590                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591                         if (ret == (NIDS_PER_BLOCK + 1)) {
592                                 set_nid(page, i, 0, false);
593                                 child_nofs += ret;
594                         } else if (ret < 0 && ret != -ENOENT) {
595                                 goto out_err;
596                         }
597                 }
598                 freed = child_nofs;
599         }
600
601         if (!ofs) {
602                 /* remove current indirect node */
603                 dn->node_page = page;
604                 truncate_node(dn);
605                 freed++;
606         } else {
607                 f2fs_put_page(page, 1);
608         }
609         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
610         return freed;
611
612 out_err:
613         f2fs_put_page(page, 1);
614         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
615         return ret;
616 }
617
618 static int truncate_partial_nodes(struct dnode_of_data *dn,
619                         struct f2fs_inode *ri, int *offset, int depth)
620 {
621         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622         struct page *pages[2];
623         nid_t nid[3];
624         nid_t child_nid;
625         int err = 0;
626         int i;
627         int idx = depth - 2;
628
629         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
630         if (!nid[0])
631                 return 0;
632
633         /* get indirect nodes in the path */
634         for (i = 0; i < depth - 1; i++) {
635                 /* refernece count'll be increased */
636                 pages[i] = get_node_page(sbi, nid[i]);
637                 if (IS_ERR(pages[i])) {
638                         depth = i + 1;
639                         err = PTR_ERR(pages[i]);
640                         goto fail;
641                 }
642                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
643         }
644
645         /* free direct nodes linked to a partial indirect node */
646         for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647                 child_nid = get_nid(pages[idx], i, false);
648                 if (!child_nid)
649                         continue;
650                 dn->nid = child_nid;
651                 err = truncate_dnode(dn);
652                 if (err < 0)
653                         goto fail;
654                 set_nid(pages[idx], i, 0, false);
655         }
656
657         if (offset[depth - 1] == 0) {
658                 dn->node_page = pages[idx];
659                 dn->nid = nid[idx];
660                 truncate_node(dn);
661         } else {
662                 f2fs_put_page(pages[idx], 1);
663         }
664         offset[idx]++;
665         offset[depth - 1] = 0;
666 fail:
667         for (i = depth - 3; i >= 0; i--)
668                 f2fs_put_page(pages[i], 1);
669
670         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
671
672         return err;
673 }
674
675 /*
676  * All the block addresses of data and nodes should be nullified.
677  */
678 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
679 {
680         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681         struct address_space *node_mapping = sbi->node_inode->i_mapping;
682         int err = 0, cont = 1;
683         int level, offset[4], noffset[4];
684         unsigned int nofs = 0;
685         struct f2fs_node *rn;
686         struct dnode_of_data dn;
687         struct page *page;
688
689         trace_f2fs_truncate_inode_blocks_enter(inode, from);
690
691         level = get_node_path(F2FS_I(inode), from, offset, noffset);
692 restart:
693         page = get_node_page(sbi, inode->i_ino);
694         if (IS_ERR(page)) {
695                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
696                 return PTR_ERR(page);
697         }
698
699         set_new_dnode(&dn, inode, page, NULL, 0);
700         unlock_page(page);
701
702         rn = F2FS_NODE(page);
703         switch (level) {
704         case 0:
705         case 1:
706                 nofs = noffset[1];
707                 break;
708         case 2:
709                 nofs = noffset[1];
710                 if (!offset[level - 1])
711                         goto skip_partial;
712                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713                 if (err < 0 && err != -ENOENT)
714                         goto fail;
715                 nofs += 1 + NIDS_PER_BLOCK;
716                 break;
717         case 3:
718                 nofs = 5 + 2 * NIDS_PER_BLOCK;
719                 if (!offset[level - 1])
720                         goto skip_partial;
721                 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722                 if (err < 0 && err != -ENOENT)
723                         goto fail;
724                 break;
725         default:
726                 BUG();
727         }
728
729 skip_partial:
730         while (cont) {
731                 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
732                 switch (offset[0]) {
733                 case NODE_DIR1_BLOCK:
734                 case NODE_DIR2_BLOCK:
735                         err = truncate_dnode(&dn);
736                         break;
737
738                 case NODE_IND1_BLOCK:
739                 case NODE_IND2_BLOCK:
740                         err = truncate_nodes(&dn, nofs, offset[1], 2);
741                         break;
742
743                 case NODE_DIND_BLOCK:
744                         err = truncate_nodes(&dn, nofs, offset[1], 3);
745                         cont = 0;
746                         break;
747
748                 default:
749                         BUG();
750                 }
751                 if (err < 0 && err != -ENOENT)
752                         goto fail;
753                 if (offset[1] == 0 &&
754                                 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
755                         lock_page(page);
756                         if (page->mapping != node_mapping) {
757                                 f2fs_put_page(page, 1);
758                                 goto restart;
759                         }
760                         wait_on_page_writeback(page);
761                         rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762                         set_page_dirty(page);
763                         unlock_page(page);
764                 }
765                 offset[1] = 0;
766                 offset[0]++;
767                 nofs += err;
768         }
769 fail:
770         f2fs_put_page(page, 0);
771         trace_f2fs_truncate_inode_blocks_exit(inode, err);
772         return err > 0 ? 0 : err;
773 }
774
775 int truncate_xattr_node(struct inode *inode, struct page *page)
776 {
777         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778         nid_t nid = F2FS_I(inode)->i_xattr_nid;
779         struct dnode_of_data dn;
780         struct page *npage;
781
782         if (!nid)
783                 return 0;
784
785         npage = get_node_page(sbi, nid);
786         if (IS_ERR(npage))
787                 return PTR_ERR(npage);
788
789         F2FS_I(inode)->i_xattr_nid = 0;
790
791         /* need to do checkpoint during fsync */
792         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
793
794         set_new_dnode(&dn, inode, page, npage, nid);
795
796         if (page)
797                 dn.inode_page_locked = 1;
798         truncate_node(&dn);
799         return 0;
800 }
801
802 /*
803  * Caller should grab and release a mutex by calling mutex_lock_op() and
804  * mutex_unlock_op().
805  */
806 void remove_inode_page(struct inode *inode)
807 {
808         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
809         struct page *page;
810         nid_t ino = inode->i_ino;
811         struct dnode_of_data dn;
812
813         page = get_node_page(sbi, ino);
814         if (IS_ERR(page))
815                 return;
816
817         if (truncate_xattr_node(inode, page)) {
818                 f2fs_put_page(page, 1);
819                 return;
820         }
821         /* 0 is possible, after f2fs_new_inode() is failed */
822         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
823         set_new_dnode(&dn, inode, page, page, ino);
824         truncate_node(&dn);
825 }
826
827 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
828 {
829         struct dnode_of_data dn;
830
831         /* allocate inode page for new inode */
832         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
833
834         /* caller should f2fs_put_page(page, 1); */
835         return new_node_page(&dn, 0, NULL);
836 }
837
838 struct page *new_node_page(struct dnode_of_data *dn,
839                                 unsigned int ofs, struct page *ipage)
840 {
841         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
842         struct address_space *mapping = sbi->node_inode->i_mapping;
843         struct node_info old_ni, new_ni;
844         struct page *page;
845         int err;
846
847         if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
848                 return ERR_PTR(-EPERM);
849
850         page = grab_cache_page(mapping, dn->nid);
851         if (!page)
852                 return ERR_PTR(-ENOMEM);
853
854         if (!inc_valid_node_count(sbi, dn->inode)) {
855                 err = -ENOSPC;
856                 goto fail;
857         }
858
859         get_node_info(sbi, dn->nid, &old_ni);
860
861         /* Reinitialize old_ni with new node page */
862         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
863         new_ni = old_ni;
864         new_ni.ino = dn->inode->i_ino;
865         set_node_addr(sbi, &new_ni, NEW_ADDR);
866
867         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
868         set_cold_node(dn->inode, page);
869         SetPageUptodate(page);
870         set_page_dirty(page);
871
872         if (ofs == XATTR_NODE_OFFSET)
873                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
874
875         dn->node_page = page;
876         if (ipage)
877                 update_inode(dn->inode, ipage);
878         else
879                 sync_inode_page(dn);
880         if (ofs == 0)
881                 inc_valid_inode_count(sbi);
882
883         return page;
884
885 fail:
886         clear_node_page_dirty(page);
887         f2fs_put_page(page, 1);
888         return ERR_PTR(err);
889 }
890
891 /*
892  * Caller should do after getting the following values.
893  * 0: f2fs_put_page(page, 0)
894  * LOCKED_PAGE: f2fs_put_page(page, 1)
895  * error: nothing
896  */
897 static int read_node_page(struct page *page, int type)
898 {
899         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
900         struct node_info ni;
901
902         get_node_info(sbi, page->index, &ni);
903
904         if (ni.blk_addr == NULL_ADDR) {
905                 f2fs_put_page(page, 1);
906                 return -ENOENT;
907         }
908
909         if (PageUptodate(page))
910                 return LOCKED_PAGE;
911
912         return f2fs_readpage(sbi, page, ni.blk_addr, type);
913 }
914
915 /*
916  * Readahead a node page
917  */
918 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
919 {
920         struct address_space *mapping = sbi->node_inode->i_mapping;
921         struct page *apage;
922         int err;
923
924         apage = find_get_page(mapping, nid);
925         if (apage && PageUptodate(apage)) {
926                 f2fs_put_page(apage, 0);
927                 return;
928         }
929         f2fs_put_page(apage, 0);
930
931         apage = grab_cache_page(mapping, nid);
932         if (!apage)
933                 return;
934
935         err = read_node_page(apage, READA);
936         if (err == 0)
937                 f2fs_put_page(apage, 0);
938         else if (err == LOCKED_PAGE)
939                 f2fs_put_page(apage, 1);
940 }
941
942 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
943 {
944         struct address_space *mapping = sbi->node_inode->i_mapping;
945         struct page *page;
946         int err;
947 repeat:
948         page = grab_cache_page(mapping, nid);
949         if (!page)
950                 return ERR_PTR(-ENOMEM);
951
952         err = read_node_page(page, READ_SYNC);
953         if (err < 0)
954                 return ERR_PTR(err);
955         else if (err == LOCKED_PAGE)
956                 goto got_it;
957
958         lock_page(page);
959         if (!PageUptodate(page)) {
960                 f2fs_put_page(page, 1);
961                 return ERR_PTR(-EIO);
962         }
963         if (page->mapping != mapping) {
964                 f2fs_put_page(page, 1);
965                 goto repeat;
966         }
967 got_it:
968         f2fs_bug_on(nid != nid_of_node(page));
969         mark_page_accessed(page);
970         return page;
971 }
972
973 /*
974  * Return a locked page for the desired node page.
975  * And, readahead MAX_RA_NODE number of node pages.
976  */
977 struct page *get_node_page_ra(struct page *parent, int start)
978 {
979         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
980         struct address_space *mapping = sbi->node_inode->i_mapping;
981         struct blk_plug plug;
982         struct page *page;
983         int err, i, end;
984         nid_t nid;
985
986         /* First, try getting the desired direct node. */
987         nid = get_nid(parent, start, false);
988         if (!nid)
989                 return ERR_PTR(-ENOENT);
990 repeat:
991         page = grab_cache_page(mapping, nid);
992         if (!page)
993                 return ERR_PTR(-ENOMEM);
994
995         err = read_node_page(page, READ_SYNC);
996         if (err < 0)
997                 return ERR_PTR(err);
998         else if (err == LOCKED_PAGE)
999                 goto page_hit;
1000
1001         blk_start_plug(&plug);
1002
1003         /* Then, try readahead for siblings of the desired node */
1004         end = start + MAX_RA_NODE;
1005         end = min(end, NIDS_PER_BLOCK);
1006         for (i = start + 1; i < end; i++) {
1007                 nid = get_nid(parent, i, false);
1008                 if (!nid)
1009                         continue;
1010                 ra_node_page(sbi, nid);
1011         }
1012
1013         blk_finish_plug(&plug);
1014
1015         lock_page(page);
1016         if (page->mapping != mapping) {
1017                 f2fs_put_page(page, 1);
1018                 goto repeat;
1019         }
1020 page_hit:
1021         if (!PageUptodate(page)) {
1022                 f2fs_put_page(page, 1);
1023                 return ERR_PTR(-EIO);
1024         }
1025         mark_page_accessed(page);
1026         return page;
1027 }
1028
1029 void sync_inode_page(struct dnode_of_data *dn)
1030 {
1031         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032                 update_inode(dn->inode, dn->node_page);
1033         } else if (dn->inode_page) {
1034                 if (!dn->inode_page_locked)
1035                         lock_page(dn->inode_page);
1036                 update_inode(dn->inode, dn->inode_page);
1037                 if (!dn->inode_page_locked)
1038                         unlock_page(dn->inode_page);
1039         } else {
1040                 update_inode_page(dn->inode);
1041         }
1042 }
1043
1044 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045                                         struct writeback_control *wbc)
1046 {
1047         struct address_space *mapping = sbi->node_inode->i_mapping;
1048         pgoff_t index, end;
1049         struct pagevec pvec;
1050         int step = ino ? 2 : 0;
1051         int nwritten = 0, wrote = 0;
1052
1053         pagevec_init(&pvec, 0);
1054
1055 next_step:
1056         index = 0;
1057         end = LONG_MAX;
1058
1059         while (index <= end) {
1060                 int i, nr_pages;
1061                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1062                                 PAGECACHE_TAG_DIRTY,
1063                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1064                 if (nr_pages == 0)
1065                         break;
1066
1067                 for (i = 0; i < nr_pages; i++) {
1068                         struct page *page = pvec.pages[i];
1069
1070                         /*
1071                          * flushing sequence with step:
1072                          * 0. indirect nodes
1073                          * 1. dentry dnodes
1074                          * 2. file dnodes
1075                          */
1076                         if (step == 0 && IS_DNODE(page))
1077                                 continue;
1078                         if (step == 1 && (!IS_DNODE(page) ||
1079                                                 is_cold_node(page)))
1080                                 continue;
1081                         if (step == 2 && (!IS_DNODE(page) ||
1082                                                 !is_cold_node(page)))
1083                                 continue;
1084
1085                         /*
1086                          * If an fsync mode,
1087                          * we should not skip writing node pages.
1088                          */
1089                         if (ino && ino_of_node(page) == ino)
1090                                 lock_page(page);
1091                         else if (!trylock_page(page))
1092                                 continue;
1093
1094                         if (unlikely(page->mapping != mapping)) {
1095 continue_unlock:
1096                                 unlock_page(page);
1097                                 continue;
1098                         }
1099                         if (ino && ino_of_node(page) != ino)
1100                                 goto continue_unlock;
1101
1102                         if (!PageDirty(page)) {
1103                                 /* someone wrote it for us */
1104                                 goto continue_unlock;
1105                         }
1106
1107                         if (!clear_page_dirty_for_io(page))
1108                                 goto continue_unlock;
1109
1110                         /* called by fsync() */
1111                         if (ino && IS_DNODE(page)) {
1112                                 int mark = !is_checkpointed_node(sbi, ino);
1113                                 set_fsync_mark(page, 1);
1114                                 if (IS_INODE(page))
1115                                         set_dentry_mark(page, mark);
1116                                 nwritten++;
1117                         } else {
1118                                 set_fsync_mark(page, 0);
1119                                 set_dentry_mark(page, 0);
1120                         }
1121                         mapping->a_ops->writepage(page, wbc);
1122                         wrote++;
1123
1124                         if (--wbc->nr_to_write == 0)
1125                                 break;
1126                 }
1127                 pagevec_release(&pvec);
1128                 cond_resched();
1129
1130                 if (wbc->nr_to_write == 0) {
1131                         step = 2;
1132                         break;
1133                 }
1134         }
1135
1136         if (step < 2) {
1137                 step++;
1138                 goto next_step;
1139         }
1140
1141         if (wrote)
1142                 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1143
1144         return nwritten;
1145 }
1146
1147 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1148 {
1149         struct address_space *mapping = sbi->node_inode->i_mapping;
1150         pgoff_t index = 0, end = LONG_MAX;
1151         struct pagevec pvec;
1152         int nr_pages;
1153         int ret2 = 0, ret = 0;
1154
1155         pagevec_init(&pvec, 0);
1156         while ((index <= end) &&
1157                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1158                         PAGECACHE_TAG_WRITEBACK,
1159                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
1160                 unsigned i;
1161
1162                 for (i = 0; i < nr_pages; i++) {
1163                         struct page *page = pvec.pages[i];
1164
1165                         /* until radix tree lookup accepts end_index */
1166                         if (page->index > end)
1167                                 continue;
1168
1169                         if (ino && ino_of_node(page) == ino) {
1170                                 wait_on_page_writeback(page);
1171                                 if (TestClearPageError(page))
1172                                         ret = -EIO;
1173                         }
1174                 }
1175                 pagevec_release(&pvec);
1176                 cond_resched();
1177         }
1178
1179         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
1180                 ret2 = -ENOSPC;
1181         if (test_and_clear_bit(AS_EIO, &mapping->flags))
1182                 ret2 = -EIO;
1183         if (!ret)
1184                 ret = ret2;
1185         return ret;
1186 }
1187
1188 static int f2fs_write_node_page(struct page *page,
1189                                 struct writeback_control *wbc)
1190 {
1191         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1192         nid_t nid;
1193         block_t new_addr;
1194         struct node_info ni;
1195
1196         if (sbi->por_doing)
1197                 goto redirty_out;
1198
1199         wait_on_page_writeback(page);
1200
1201         /* get old block addr of this node page */
1202         nid = nid_of_node(page);
1203         f2fs_bug_on(page->index != nid);
1204
1205         get_node_info(sbi, nid, &ni);
1206
1207         /* This page is already truncated */
1208         if (ni.blk_addr == NULL_ADDR) {
1209                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1210                 unlock_page(page);
1211                 return 0;
1212         }
1213
1214         if (wbc->for_reclaim)
1215                 goto redirty_out;
1216
1217         mutex_lock(&sbi->node_write);
1218         set_page_writeback(page);
1219         write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1220         set_node_addr(sbi, &ni, new_addr);
1221         dec_page_count(sbi, F2FS_DIRTY_NODES);
1222         mutex_unlock(&sbi->node_write);
1223         unlock_page(page);
1224         return 0;
1225
1226 redirty_out:
1227         dec_page_count(sbi, F2FS_DIRTY_NODES);
1228         wbc->pages_skipped++;
1229         set_page_dirty(page);
1230         return AOP_WRITEPAGE_ACTIVATE;
1231 }
1232
1233 /*
1234  * It is very important to gather dirty pages and write at once, so that we can
1235  * submit a big bio without interfering other data writes.
1236  * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1237  */
1238 #define COLLECT_DIRTY_NODES     1536
1239 static int f2fs_write_node_pages(struct address_space *mapping,
1240                             struct writeback_control *wbc)
1241 {
1242         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1243         long nr_to_write = wbc->nr_to_write;
1244
1245         /* balancing f2fs's metadata in background */
1246         f2fs_balance_fs_bg(sbi);
1247
1248         /* collect a number of dirty node pages and write together */
1249         if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1250                 return 0;
1251
1252         /* if mounting is failed, skip writing node pages */
1253         wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1254         sync_node_pages(sbi, 0, wbc);
1255         wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1256                                                 wbc->nr_to_write);
1257         return 0;
1258 }
1259
1260 static int f2fs_set_node_page_dirty(struct page *page)
1261 {
1262         struct address_space *mapping = page->mapping;
1263         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1264
1265         trace_f2fs_set_page_dirty(page, NODE);
1266
1267         SetPageUptodate(page);
1268         if (!PageDirty(page)) {
1269                 __set_page_dirty_nobuffers(page);
1270                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1271                 SetPagePrivate(page);
1272                 return 1;
1273         }
1274         return 0;
1275 }
1276
1277 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1278                                       unsigned int length)
1279 {
1280         struct inode *inode = page->mapping->host;
1281         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1282         if (PageDirty(page))
1283                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1284         ClearPagePrivate(page);
1285 }
1286
1287 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1288 {
1289         ClearPagePrivate(page);
1290         return 1;
1291 }
1292
1293 /*
1294  * Structure of the f2fs node operations
1295  */
1296 const struct address_space_operations f2fs_node_aops = {
1297         .writepage      = f2fs_write_node_page,
1298         .writepages     = f2fs_write_node_pages,
1299         .set_page_dirty = f2fs_set_node_page_dirty,
1300         .invalidatepage = f2fs_invalidate_node_page,
1301         .releasepage    = f2fs_release_node_page,
1302 };
1303
1304 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1305 {
1306         struct list_head *this;
1307         struct free_nid *i;
1308         list_for_each(this, head) {
1309                 i = list_entry(this, struct free_nid, list);
1310                 if (i->nid == n)
1311                         return i;
1312         }
1313         return NULL;
1314 }
1315
1316 static void __del_from_free_nid_list(struct free_nid *i)
1317 {
1318         list_del(&i->list);
1319         kmem_cache_free(free_nid_slab, i);
1320 }
1321
1322 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1323 {
1324         struct free_nid *i;
1325         struct nat_entry *ne;
1326         bool allocated = false;
1327
1328         if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1329                 return -1;
1330
1331         /* 0 nid should not be used */
1332         if (nid == 0)
1333                 return 0;
1334
1335         if (build) {
1336                 /* do not add allocated nids */
1337                 read_lock(&nm_i->nat_tree_lock);
1338                 ne = __lookup_nat_cache(nm_i, nid);
1339                 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1340                         allocated = true;
1341                 read_unlock(&nm_i->nat_tree_lock);
1342                 if (allocated)
1343                         return 0;
1344         }
1345
1346         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1347         i->nid = nid;
1348         i->state = NID_NEW;
1349
1350         spin_lock(&nm_i->free_nid_list_lock);
1351         if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1352                 spin_unlock(&nm_i->free_nid_list_lock);
1353                 kmem_cache_free(free_nid_slab, i);
1354                 return 0;
1355         }
1356         list_add_tail(&i->list, &nm_i->free_nid_list);
1357         nm_i->fcnt++;
1358         spin_unlock(&nm_i->free_nid_list_lock);
1359         return 1;
1360 }
1361
1362 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1363 {
1364         struct free_nid *i;
1365         spin_lock(&nm_i->free_nid_list_lock);
1366         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1367         if (i && i->state == NID_NEW) {
1368                 __del_from_free_nid_list(i);
1369                 nm_i->fcnt--;
1370         }
1371         spin_unlock(&nm_i->free_nid_list_lock);
1372 }
1373
1374 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1375                         struct page *nat_page, nid_t start_nid)
1376 {
1377         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1378         block_t blk_addr;
1379         int i;
1380
1381         i = start_nid % NAT_ENTRY_PER_BLOCK;
1382
1383         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1384
1385                 if (start_nid >= nm_i->max_nid)
1386                         break;
1387
1388                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1389                 f2fs_bug_on(blk_addr == NEW_ADDR);
1390                 if (blk_addr == NULL_ADDR) {
1391                         if (add_free_nid(nm_i, start_nid, true) < 0)
1392                                 break;
1393                 }
1394         }
1395 }
1396
1397 static void build_free_nids(struct f2fs_sb_info *sbi)
1398 {
1399         struct f2fs_nm_info *nm_i = NM_I(sbi);
1400         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1401         struct f2fs_summary_block *sum = curseg->sum_blk;
1402         int i = 0;
1403         nid_t nid = nm_i->next_scan_nid;
1404
1405         /* Enough entries */
1406         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1407                 return;
1408
1409         /* readahead nat pages to be scanned */
1410         ra_nat_pages(sbi, nid);
1411
1412         while (1) {
1413                 struct page *page = get_current_nat_page(sbi, nid);
1414
1415                 scan_nat_page(nm_i, page, nid);
1416                 f2fs_put_page(page, 1);
1417
1418                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1419                 if (nid >= nm_i->max_nid)
1420                         nid = 0;
1421
1422                 if (i++ == FREE_NID_PAGES)
1423                         break;
1424         }
1425
1426         /* go to the next free nat pages to find free nids abundantly */
1427         nm_i->next_scan_nid = nid;
1428
1429         /* find free nids from current sum_pages */
1430         mutex_lock(&curseg->curseg_mutex);
1431         for (i = 0; i < nats_in_cursum(sum); i++) {
1432                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1433                 nid = le32_to_cpu(nid_in_journal(sum, i));
1434                 if (addr == NULL_ADDR)
1435                         add_free_nid(nm_i, nid, true);
1436                 else
1437                         remove_free_nid(nm_i, nid);
1438         }
1439         mutex_unlock(&curseg->curseg_mutex);
1440 }
1441
1442 /*
1443  * If this function returns success, caller can obtain a new nid
1444  * from second parameter of this function.
1445  * The returned nid could be used ino as well as nid when inode is created.
1446  */
1447 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1448 {
1449         struct f2fs_nm_info *nm_i = NM_I(sbi);
1450         struct free_nid *i = NULL;
1451         struct list_head *this;
1452 retry:
1453         if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1454                 return false;
1455
1456         spin_lock(&nm_i->free_nid_list_lock);
1457
1458         /* We should not use stale free nids created by build_free_nids */
1459         if (nm_i->fcnt && !sbi->on_build_free_nids) {
1460                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1461                 list_for_each(this, &nm_i->free_nid_list) {
1462                         i = list_entry(this, struct free_nid, list);
1463                         if (i->state == NID_NEW)
1464                                 break;
1465                 }
1466
1467                 f2fs_bug_on(i->state != NID_NEW);
1468                 *nid = i->nid;
1469                 i->state = NID_ALLOC;
1470                 nm_i->fcnt--;
1471                 spin_unlock(&nm_i->free_nid_list_lock);
1472                 return true;
1473         }
1474         spin_unlock(&nm_i->free_nid_list_lock);
1475
1476         /* Let's scan nat pages and its caches to get free nids */
1477         mutex_lock(&nm_i->build_lock);
1478         sbi->on_build_free_nids = true;
1479         build_free_nids(sbi);
1480         sbi->on_build_free_nids = false;
1481         mutex_unlock(&nm_i->build_lock);
1482         goto retry;
1483 }
1484
1485 /*
1486  * alloc_nid() should be called prior to this function.
1487  */
1488 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1489 {
1490         struct f2fs_nm_info *nm_i = NM_I(sbi);
1491         struct free_nid *i;
1492
1493         spin_lock(&nm_i->free_nid_list_lock);
1494         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1495         f2fs_bug_on(!i || i->state != NID_ALLOC);
1496         __del_from_free_nid_list(i);
1497         spin_unlock(&nm_i->free_nid_list_lock);
1498 }
1499
1500 /*
1501  * alloc_nid() should be called prior to this function.
1502  */
1503 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504 {
1505         struct f2fs_nm_info *nm_i = NM_I(sbi);
1506         struct free_nid *i;
1507
1508         if (!nid)
1509                 return;
1510
1511         spin_lock(&nm_i->free_nid_list_lock);
1512         i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1513         f2fs_bug_on(!i || i->state != NID_ALLOC);
1514         if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1515                 __del_from_free_nid_list(i);
1516         } else {
1517                 i->state = NID_NEW;
1518                 nm_i->fcnt++;
1519         }
1520         spin_unlock(&nm_i->free_nid_list_lock);
1521 }
1522
1523 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1524                 struct f2fs_summary *sum, struct node_info *ni,
1525                 block_t new_blkaddr)
1526 {
1527         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1528         set_node_addr(sbi, ni, new_blkaddr);
1529         clear_node_page_dirty(page);
1530 }
1531
1532 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1533 {
1534         struct address_space *mapping = sbi->node_inode->i_mapping;
1535         struct f2fs_node *src, *dst;
1536         nid_t ino = ino_of_node(page);
1537         struct node_info old_ni, new_ni;
1538         struct page *ipage;
1539
1540         ipage = grab_cache_page(mapping, ino);
1541         if (!ipage)
1542                 return -ENOMEM;
1543
1544         /* Should not use this inode  from free nid list */
1545         remove_free_nid(NM_I(sbi), ino);
1546
1547         get_node_info(sbi, ino, &old_ni);
1548         SetPageUptodate(ipage);
1549         fill_node_footer(ipage, ino, ino, 0, true);
1550
1551         src = F2FS_NODE(page);
1552         dst = F2FS_NODE(ipage);
1553
1554         memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1555         dst->i.i_size = 0;
1556         dst->i.i_blocks = cpu_to_le64(1);
1557         dst->i.i_links = cpu_to_le32(1);
1558         dst->i.i_xattr_nid = 0;
1559
1560         new_ni = old_ni;
1561         new_ni.ino = ino;
1562
1563         if (!inc_valid_node_count(sbi, NULL))
1564                 WARN_ON(1);
1565         set_node_addr(sbi, &new_ni, NEW_ADDR);
1566         inc_valid_inode_count(sbi);
1567         f2fs_put_page(ipage, 1);
1568         return 0;
1569 }
1570
1571 int restore_node_summary(struct f2fs_sb_info *sbi,
1572                         unsigned int segno, struct f2fs_summary_block *sum)
1573 {
1574         struct f2fs_node *rn;
1575         struct f2fs_summary *sum_entry;
1576         struct page *page;
1577         block_t addr;
1578         int i, last_offset;
1579
1580         /* alloc temporal page for read node */
1581         page = alloc_page(GFP_NOFS | __GFP_ZERO);
1582         if (!page)
1583                 return -ENOMEM;
1584         lock_page(page);
1585
1586         /* scan the node segment */
1587         last_offset = sbi->blocks_per_seg;
1588         addr = START_BLOCK(sbi, segno);
1589         sum_entry = &sum->entries[0];
1590
1591         for (i = 0; i < last_offset; i++, sum_entry++) {
1592                 /*
1593                  * In order to read next node page,
1594                  * we must clear PageUptodate flag.
1595                  */
1596                 ClearPageUptodate(page);
1597
1598                 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1599                         goto out;
1600
1601                 lock_page(page);
1602                 rn = F2FS_NODE(page);
1603                 sum_entry->nid = rn->footer.nid;
1604                 sum_entry->version = 0;
1605                 sum_entry->ofs_in_node = 0;
1606                 addr++;
1607         }
1608         unlock_page(page);
1609 out:
1610         __free_pages(page, 0);
1611         return 0;
1612 }
1613
1614 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1615 {
1616         struct f2fs_nm_info *nm_i = NM_I(sbi);
1617         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1618         struct f2fs_summary_block *sum = curseg->sum_blk;
1619         int i;
1620
1621         mutex_lock(&curseg->curseg_mutex);
1622
1623         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1624                 mutex_unlock(&curseg->curseg_mutex);
1625                 return false;
1626         }
1627
1628         for (i = 0; i < nats_in_cursum(sum); i++) {
1629                 struct nat_entry *ne;
1630                 struct f2fs_nat_entry raw_ne;
1631                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1632
1633                 raw_ne = nat_in_journal(sum, i);
1634 retry:
1635                 write_lock(&nm_i->nat_tree_lock);
1636                 ne = __lookup_nat_cache(nm_i, nid);
1637                 if (ne) {
1638                         __set_nat_cache_dirty(nm_i, ne);
1639                         write_unlock(&nm_i->nat_tree_lock);
1640                         continue;
1641                 }
1642                 ne = grab_nat_entry(nm_i, nid);
1643                 if (!ne) {
1644                         write_unlock(&nm_i->nat_tree_lock);
1645                         goto retry;
1646                 }
1647                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1648                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1649                 nat_set_version(ne, raw_ne.version);
1650                 __set_nat_cache_dirty(nm_i, ne);
1651                 write_unlock(&nm_i->nat_tree_lock);
1652         }
1653         update_nats_in_cursum(sum, -i);
1654         mutex_unlock(&curseg->curseg_mutex);
1655         return true;
1656 }
1657
1658 /*
1659  * This function is called during the checkpointing process.
1660  */
1661 void flush_nat_entries(struct f2fs_sb_info *sbi)
1662 {
1663         struct f2fs_nm_info *nm_i = NM_I(sbi);
1664         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1665         struct f2fs_summary_block *sum = curseg->sum_blk;
1666         struct list_head *cur, *n;
1667         struct page *page = NULL;
1668         struct f2fs_nat_block *nat_blk = NULL;
1669         nid_t start_nid = 0, end_nid = 0;
1670         bool flushed;
1671
1672         flushed = flush_nats_in_journal(sbi);
1673
1674         if (!flushed)
1675                 mutex_lock(&curseg->curseg_mutex);
1676
1677         /* 1) flush dirty nat caches */
1678         list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1679                 struct nat_entry *ne;
1680                 nid_t nid;
1681                 struct f2fs_nat_entry raw_ne;
1682                 int offset = -1;
1683                 block_t new_blkaddr;
1684
1685                 ne = list_entry(cur, struct nat_entry, list);
1686                 nid = nat_get_nid(ne);
1687
1688                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1689                         continue;
1690                 if (flushed)
1691                         goto to_nat_page;
1692
1693                 /* if there is room for nat enries in curseg->sumpage */
1694                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1695                 if (offset >= 0) {
1696                         raw_ne = nat_in_journal(sum, offset);
1697                         goto flush_now;
1698                 }
1699 to_nat_page:
1700                 if (!page || (start_nid > nid || nid > end_nid)) {
1701                         if (page) {
1702                                 f2fs_put_page(page, 1);
1703                                 page = NULL;
1704                         }
1705                         start_nid = START_NID(nid);
1706                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1707
1708                         /*
1709                          * get nat block with dirty flag, increased reference
1710                          * count, mapped and lock
1711                          */
1712                         page = get_next_nat_page(sbi, start_nid);
1713                         nat_blk = page_address(page);
1714                 }
1715
1716                 f2fs_bug_on(!nat_blk);
1717                 raw_ne = nat_blk->entries[nid - start_nid];
1718 flush_now:
1719                 new_blkaddr = nat_get_blkaddr(ne);
1720
1721                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1722                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1723                 raw_ne.version = nat_get_version(ne);
1724
1725                 if (offset < 0) {
1726                         nat_blk->entries[nid - start_nid] = raw_ne;
1727                 } else {
1728                         nat_in_journal(sum, offset) = raw_ne;
1729                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1730                 }
1731
1732                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1733                                 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1734                         write_lock(&nm_i->nat_tree_lock);
1735                         __del_from_nat_cache(nm_i, ne);
1736                         write_unlock(&nm_i->nat_tree_lock);
1737                 } else {
1738                         write_lock(&nm_i->nat_tree_lock);
1739                         __clear_nat_cache_dirty(nm_i, ne);
1740                         ne->checkpointed = true;
1741                         write_unlock(&nm_i->nat_tree_lock);
1742                 }
1743         }
1744         if (!flushed)
1745                 mutex_unlock(&curseg->curseg_mutex);
1746         f2fs_put_page(page, 1);
1747
1748         /* 2) shrink nat caches if necessary */
1749         try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1750 }
1751
1752 static int init_node_manager(struct f2fs_sb_info *sbi)
1753 {
1754         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1755         struct f2fs_nm_info *nm_i = NM_I(sbi);
1756         unsigned char *version_bitmap;
1757         unsigned int nat_segs, nat_blocks;
1758
1759         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1760
1761         /* segment_count_nat includes pair segment so divide to 2. */
1762         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1763         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1764         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1765         nm_i->fcnt = 0;
1766         nm_i->nat_cnt = 0;
1767
1768         INIT_LIST_HEAD(&nm_i->free_nid_list);
1769         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1770         INIT_LIST_HEAD(&nm_i->nat_entries);
1771         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1772
1773         mutex_init(&nm_i->build_lock);
1774         spin_lock_init(&nm_i->free_nid_list_lock);
1775         rwlock_init(&nm_i->nat_tree_lock);
1776
1777         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1778         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1779         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1780         if (!version_bitmap)
1781                 return -EFAULT;
1782
1783         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1784                                         GFP_KERNEL);
1785         if (!nm_i->nat_bitmap)
1786                 return -ENOMEM;
1787         return 0;
1788 }
1789
1790 int build_node_manager(struct f2fs_sb_info *sbi)
1791 {
1792         int err;
1793
1794         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1795         if (!sbi->nm_info)
1796                 return -ENOMEM;
1797
1798         err = init_node_manager(sbi);
1799         if (err)
1800                 return err;
1801
1802         build_free_nids(sbi);
1803         return 0;
1804 }
1805
1806 void destroy_node_manager(struct f2fs_sb_info *sbi)
1807 {
1808         struct f2fs_nm_info *nm_i = NM_I(sbi);
1809         struct free_nid *i, *next_i;
1810         struct nat_entry *natvec[NATVEC_SIZE];
1811         nid_t nid = 0;
1812         unsigned int found;
1813
1814         if (!nm_i)
1815                 return;
1816
1817         /* destroy free nid list */
1818         spin_lock(&nm_i->free_nid_list_lock);
1819         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1820                 f2fs_bug_on(i->state == NID_ALLOC);
1821                 __del_from_free_nid_list(i);
1822                 nm_i->fcnt--;
1823         }
1824         f2fs_bug_on(nm_i->fcnt);
1825         spin_unlock(&nm_i->free_nid_list_lock);
1826
1827         /* destroy nat cache */
1828         write_lock(&nm_i->nat_tree_lock);
1829         while ((found = __gang_lookup_nat_cache(nm_i,
1830                                         nid, NATVEC_SIZE, natvec))) {
1831                 unsigned idx;
1832                 for (idx = 0; idx < found; idx++) {
1833                         struct nat_entry *e = natvec[idx];
1834                         nid = nat_get_nid(e) + 1;
1835                         __del_from_nat_cache(nm_i, e);
1836                 }
1837         }
1838         f2fs_bug_on(nm_i->nat_cnt);
1839         write_unlock(&nm_i->nat_tree_lock);
1840
1841         kfree(nm_i->nat_bitmap);
1842         sbi->nm_info = NULL;
1843         kfree(nm_i);
1844 }
1845
1846 int __init create_node_manager_caches(void)
1847 {
1848         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1849                         sizeof(struct nat_entry), NULL);
1850         if (!nat_entry_slab)
1851                 return -ENOMEM;
1852
1853         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1854                         sizeof(struct free_nid), NULL);
1855         if (!free_nid_slab) {
1856                 kmem_cache_destroy(nat_entry_slab);
1857                 return -ENOMEM;
1858         }
1859         return 0;
1860 }
1861
1862 void destroy_node_manager_caches(void)
1863 {
1864         kmem_cache_destroy(free_nid_slab);
1865         kmem_cache_destroy(nat_entry_slab);
1866 }