]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
ARM: dts: imx6ul: add support for Ka-Ro electronics TXUL mainboard
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34         unsigned long tmp = 0;
35         int shift = 24, idx = 0;
36
37 #if BITS_PER_LONG == 64
38         shift = 56;
39 #endif
40         while (shift >= 0) {
41                 tmp |= (unsigned long)str[idx++] << shift;
42                 shift -= BITS_PER_BYTE;
43         }
44         return tmp;
45 }
46
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53         int num = 0;
54
55 #if BITS_PER_LONG == 64
56         if ((word & 0xffffffff00000000UL) == 0)
57                 num += 32;
58         else
59                 word >>= 32;
60 #endif
61         if ((word & 0xffff0000) == 0)
62                 num += 16;
63         else
64                 word >>= 16;
65
66         if ((word & 0xff00) == 0)
67                 num += 8;
68         else
69                 word >>= 8;
70
71         if ((word & 0xf0) == 0)
72                 num += 4;
73         else
74                 word >>= 4;
75
76         if ((word & 0xc) == 0)
77                 num += 2;
78         else
79                 word >>= 2;
80
81         if ((word & 0x2) == 0)
82                 num += 1;
83         return num;
84 }
85
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96                         unsigned long size, unsigned long offset)
97 {
98         const unsigned long *p = addr + BIT_WORD(offset);
99         unsigned long result = size;
100         unsigned long tmp;
101
102         if (offset >= size)
103                 return size;
104
105         size -= (offset & ~(BITS_PER_LONG - 1));
106         offset %= BITS_PER_LONG;
107
108         while (1) {
109                 if (*p == 0)
110                         goto pass;
111
112                 tmp = __reverse_ulong((unsigned char *)p);
113
114                 tmp &= ~0UL >> offset;
115                 if (size < BITS_PER_LONG)
116                         tmp &= (~0UL << (BITS_PER_LONG - size));
117                 if (tmp)
118                         goto found;
119 pass:
120                 if (size <= BITS_PER_LONG)
121                         break;
122                 size -= BITS_PER_LONG;
123                 offset = 0;
124                 p++;
125         }
126         return result;
127 found:
128         return result - size + __reverse_ffs(tmp);
129 }
130
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132                         unsigned long size, unsigned long offset)
133 {
134         const unsigned long *p = addr + BIT_WORD(offset);
135         unsigned long result = size;
136         unsigned long tmp;
137
138         if (offset >= size)
139                 return size;
140
141         size -= (offset & ~(BITS_PER_LONG - 1));
142         offset %= BITS_PER_LONG;
143
144         while (1) {
145                 if (*p == ~0UL)
146                         goto pass;
147
148                 tmp = __reverse_ulong((unsigned char *)p);
149
150                 if (offset)
151                         tmp |= ~0UL << (BITS_PER_LONG - offset);
152                 if (size < BITS_PER_LONG)
153                         tmp |= ~0UL >> size;
154                 if (tmp != ~0UL)
155                         goto found;
156 pass:
157                 if (size <= BITS_PER_LONG)
158                         break;
159                 size -= BITS_PER_LONG;
160                 offset = 0;
161                 p++;
162         }
163         return result;
164 found:
165         return result - size + __reverse_ffz(tmp);
166 }
167
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170         struct f2fs_inode_info *fi = F2FS_I(inode);
171         struct inmem_pages *new;
172
173         f2fs_trace_pid(page);
174
175         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176         SetPagePrivate(page);
177
178         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180         /* add atomic page indices to the list */
181         new->page = page;
182         INIT_LIST_HEAD(&new->list);
183
184         /* increase reference count with clean state */
185         mutex_lock(&fi->inmem_lock);
186         get_page(page);
187         list_add_tail(&new->list, &fi->inmem_pages);
188         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189         mutex_unlock(&fi->inmem_lock);
190
191         trace_f2fs_register_inmem_page(page, INMEM);
192 }
193
194 int commit_inmem_pages(struct inode *inode, bool abort)
195 {
196         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197         struct f2fs_inode_info *fi = F2FS_I(inode);
198         struct inmem_pages *cur, *tmp;
199         bool submit_bio = false;
200         struct f2fs_io_info fio = {
201                 .sbi = sbi,
202                 .type = DATA,
203                 .rw = WRITE_SYNC | REQ_PRIO,
204                 .encrypted_page = NULL,
205         };
206         int err = 0;
207
208         /*
209          * The abort is true only when f2fs_evict_inode is called.
210          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
211          * that we don't need to call f2fs_balance_fs.
212          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
213          * inode becomes free by iget_locked in f2fs_iget.
214          */
215         if (!abort) {
216                 f2fs_balance_fs(sbi, true);
217                 f2fs_lock_op(sbi);
218         }
219
220         mutex_lock(&fi->inmem_lock);
221         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
222                 lock_page(cur->page);
223                 if (!abort) {
224                         if (cur->page->mapping == inode->i_mapping) {
225                                 set_page_dirty(cur->page);
226                                 f2fs_wait_on_page_writeback(cur->page, DATA,
227                                                                         true);
228                                 if (clear_page_dirty_for_io(cur->page))
229                                         inode_dec_dirty_pages(inode);
230                                 trace_f2fs_commit_inmem_page(cur->page, INMEM);
231                                 fio.page = cur->page;
232                                 err = do_write_data_page(&fio);
233                                 if (err) {
234                                         unlock_page(cur->page);
235                                         break;
236                                 }
237                                 clear_cold_data(cur->page);
238                                 submit_bio = true;
239                         }
240                 } else {
241                         ClearPageUptodate(cur->page);
242                         trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
243                 }
244                 set_page_private(cur->page, 0);
245                 ClearPagePrivate(cur->page);
246                 f2fs_put_page(cur->page, 1);
247
248                 list_del(&cur->list);
249                 kmem_cache_free(inmem_entry_slab, cur);
250                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
251         }
252         mutex_unlock(&fi->inmem_lock);
253
254         if (!abort) {
255                 f2fs_unlock_op(sbi);
256                 if (submit_bio)
257                         f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0,
258                                                                 DATA, WRITE);
259         }
260         return err;
261 }
262
263 /*
264  * This function balances dirty node and dentry pages.
265  * In addition, it controls garbage collection.
266  */
267 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
268 {
269         if (!need)
270                 return;
271         /*
272          * We should do GC or end up with checkpoint, if there are so many dirty
273          * dir/node pages without enough free segments.
274          */
275         if (has_not_enough_free_secs(sbi, 0)) {
276                 mutex_lock(&sbi->gc_mutex);
277                 f2fs_gc(sbi, false);
278         }
279 }
280
281 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
282 {
283         /* try to shrink extent cache when there is no enough memory */
284         if (!available_free_memory(sbi, EXTENT_CACHE))
285                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
286
287         /* check the # of cached NAT entries */
288         if (!available_free_memory(sbi, NAT_ENTRIES))
289                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
290
291         if (!available_free_memory(sbi, FREE_NIDS))
292                 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
293
294         /* checkpoint is the only way to shrink partial cached entries */
295         if (!available_free_memory(sbi, NAT_ENTRIES) ||
296                         !available_free_memory(sbi, INO_ENTRIES) ||
297                         excess_prefree_segs(sbi) ||
298                         excess_dirty_nats(sbi) ||
299                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
300                 if (test_opt(sbi, DATA_FLUSH))
301                         sync_dirty_inodes(sbi, FILE_INODE);
302                 f2fs_sync_fs(sbi->sb, true);
303                 stat_inc_bg_cp_count(sbi->stat_info);
304         }
305 }
306
307 static int issue_flush_thread(void *data)
308 {
309         struct f2fs_sb_info *sbi = data;
310         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
311         wait_queue_head_t *q = &fcc->flush_wait_queue;
312 repeat:
313         if (kthread_should_stop())
314                 return 0;
315
316         if (!llist_empty(&fcc->issue_list)) {
317                 struct bio *bio;
318                 struct flush_cmd *cmd, *next;
319                 int ret;
320
321                 bio = f2fs_bio_alloc(0);
322
323                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
324                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
325
326                 bio->bi_bdev = sbi->sb->s_bdev;
327                 ret = submit_bio_wait(WRITE_FLUSH, bio);
328
329                 llist_for_each_entry_safe(cmd, next,
330                                           fcc->dispatch_list, llnode) {
331                         cmd->ret = ret;
332                         complete(&cmd->wait);
333                 }
334                 bio_put(bio);
335                 fcc->dispatch_list = NULL;
336         }
337
338         wait_event_interruptible(*q,
339                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
340         goto repeat;
341 }
342
343 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
344 {
345         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
346         struct flush_cmd cmd;
347
348         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
349                                         test_opt(sbi, FLUSH_MERGE));
350
351         if (test_opt(sbi, NOBARRIER))
352                 return 0;
353
354         if (!test_opt(sbi, FLUSH_MERGE)) {
355                 struct bio *bio = f2fs_bio_alloc(0);
356                 int ret;
357
358                 bio->bi_bdev = sbi->sb->s_bdev;
359                 ret = submit_bio_wait(WRITE_FLUSH, bio);
360                 bio_put(bio);
361                 return ret;
362         }
363
364         init_completion(&cmd.wait);
365
366         llist_add(&cmd.llnode, &fcc->issue_list);
367
368         if (!fcc->dispatch_list)
369                 wake_up(&fcc->flush_wait_queue);
370
371         wait_for_completion(&cmd.wait);
372
373         return cmd.ret;
374 }
375
376 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
377 {
378         dev_t dev = sbi->sb->s_bdev->bd_dev;
379         struct flush_cmd_control *fcc;
380         int err = 0;
381
382         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
383         if (!fcc)
384                 return -ENOMEM;
385         init_waitqueue_head(&fcc->flush_wait_queue);
386         init_llist_head(&fcc->issue_list);
387         SM_I(sbi)->cmd_control_info = fcc;
388         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
389                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
390         if (IS_ERR(fcc->f2fs_issue_flush)) {
391                 err = PTR_ERR(fcc->f2fs_issue_flush);
392                 kfree(fcc);
393                 SM_I(sbi)->cmd_control_info = NULL;
394                 return err;
395         }
396
397         return err;
398 }
399
400 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
401 {
402         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
403
404         if (fcc && fcc->f2fs_issue_flush)
405                 kthread_stop(fcc->f2fs_issue_flush);
406         kfree(fcc);
407         SM_I(sbi)->cmd_control_info = NULL;
408 }
409
410 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
411                 enum dirty_type dirty_type)
412 {
413         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
414
415         /* need not be added */
416         if (IS_CURSEG(sbi, segno))
417                 return;
418
419         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
420                 dirty_i->nr_dirty[dirty_type]++;
421
422         if (dirty_type == DIRTY) {
423                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
424                 enum dirty_type t = sentry->type;
425
426                 if (unlikely(t >= DIRTY)) {
427                         f2fs_bug_on(sbi, 1);
428                         return;
429                 }
430                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
431                         dirty_i->nr_dirty[t]++;
432         }
433 }
434
435 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
436                 enum dirty_type dirty_type)
437 {
438         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
439
440         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
441                 dirty_i->nr_dirty[dirty_type]--;
442
443         if (dirty_type == DIRTY) {
444                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
445                 enum dirty_type t = sentry->type;
446
447                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
448                         dirty_i->nr_dirty[t]--;
449
450                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
451                         clear_bit(GET_SECNO(sbi, segno),
452                                                 dirty_i->victim_secmap);
453         }
454 }
455
456 /*
457  * Should not occur error such as -ENOMEM.
458  * Adding dirty entry into seglist is not critical operation.
459  * If a given segment is one of current working segments, it won't be added.
460  */
461 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
462 {
463         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
464         unsigned short valid_blocks;
465
466         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
467                 return;
468
469         mutex_lock(&dirty_i->seglist_lock);
470
471         valid_blocks = get_valid_blocks(sbi, segno, 0);
472
473         if (valid_blocks == 0) {
474                 __locate_dirty_segment(sbi, segno, PRE);
475                 __remove_dirty_segment(sbi, segno, DIRTY);
476         } else if (valid_blocks < sbi->blocks_per_seg) {
477                 __locate_dirty_segment(sbi, segno, DIRTY);
478         } else {
479                 /* Recovery routine with SSR needs this */
480                 __remove_dirty_segment(sbi, segno, DIRTY);
481         }
482
483         mutex_unlock(&dirty_i->seglist_lock);
484 }
485
486 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
487                                 block_t blkstart, block_t blklen)
488 {
489         sector_t start = SECTOR_FROM_BLOCK(blkstart);
490         sector_t len = SECTOR_FROM_BLOCK(blklen);
491         struct seg_entry *se;
492         unsigned int offset;
493         block_t i;
494
495         for (i = blkstart; i < blkstart + blklen; i++) {
496                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
497                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
498
499                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
500                         sbi->discard_blks--;
501         }
502         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
503         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
504 }
505
506 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
507 {
508         int err = -ENOTSUPP;
509
510         if (test_opt(sbi, DISCARD)) {
511                 struct seg_entry *se = get_seg_entry(sbi,
512                                 GET_SEGNO(sbi, blkaddr));
513                 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
514
515                 if (f2fs_test_bit(offset, se->discard_map))
516                         return false;
517
518                 err = f2fs_issue_discard(sbi, blkaddr, 1);
519         }
520
521         if (err) {
522                 update_meta_page(sbi, NULL, blkaddr);
523                 return true;
524         }
525         return false;
526 }
527
528 static void __add_discard_entry(struct f2fs_sb_info *sbi,
529                 struct cp_control *cpc, struct seg_entry *se,
530                 unsigned int start, unsigned int end)
531 {
532         struct list_head *head = &SM_I(sbi)->discard_list;
533         struct discard_entry *new, *last;
534
535         if (!list_empty(head)) {
536                 last = list_last_entry(head, struct discard_entry, list);
537                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
538                                                 last->blkaddr + last->len) {
539                         last->len += end - start;
540                         goto done;
541                 }
542         }
543
544         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
545         INIT_LIST_HEAD(&new->list);
546         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
547         new->len = end - start;
548         list_add_tail(&new->list, head);
549 done:
550         SM_I(sbi)->nr_discards += end - start;
551 }
552
553 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
554 {
555         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
556         int max_blocks = sbi->blocks_per_seg;
557         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
558         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
559         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
560         unsigned long *discard_map = (unsigned long *)se->discard_map;
561         unsigned long *dmap = SIT_I(sbi)->tmp_map;
562         unsigned int start = 0, end = -1;
563         bool force = (cpc->reason == CP_DISCARD);
564         int i;
565
566         if (se->valid_blocks == max_blocks)
567                 return;
568
569         if (!force) {
570                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
571                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
572                         return;
573         }
574
575         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
576         for (i = 0; i < entries; i++)
577                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
578                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
579
580         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
581                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
582                 if (start >= max_blocks)
583                         break;
584
585                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
586                 __add_discard_entry(sbi, cpc, se, start, end);
587         }
588 }
589
590 void release_discard_addrs(struct f2fs_sb_info *sbi)
591 {
592         struct list_head *head = &(SM_I(sbi)->discard_list);
593         struct discard_entry *entry, *this;
594
595         /* drop caches */
596         list_for_each_entry_safe(entry, this, head, list) {
597                 list_del(&entry->list);
598                 kmem_cache_free(discard_entry_slab, entry);
599         }
600 }
601
602 /*
603  * Should call clear_prefree_segments after checkpoint is done.
604  */
605 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
606 {
607         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
608         unsigned int segno;
609
610         mutex_lock(&dirty_i->seglist_lock);
611         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
612                 __set_test_and_free(sbi, segno);
613         mutex_unlock(&dirty_i->seglist_lock);
614 }
615
616 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
617 {
618         struct list_head *head = &(SM_I(sbi)->discard_list);
619         struct discard_entry *entry, *this;
620         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
621         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
622         unsigned int start = 0, end = -1;
623
624         mutex_lock(&dirty_i->seglist_lock);
625
626         while (1) {
627                 int i;
628                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
629                 if (start >= MAIN_SEGS(sbi))
630                         break;
631                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
632                                                                 start + 1);
633
634                 for (i = start; i < end; i++)
635                         clear_bit(i, prefree_map);
636
637                 dirty_i->nr_dirty[PRE] -= end - start;
638
639                 if (!test_opt(sbi, DISCARD))
640                         continue;
641
642                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
643                                 (end - start) << sbi->log_blocks_per_seg);
644         }
645         mutex_unlock(&dirty_i->seglist_lock);
646
647         /* send small discards */
648         list_for_each_entry_safe(entry, this, head, list) {
649                 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
650                         goto skip;
651                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
652                 cpc->trimmed += entry->len;
653 skip:
654                 list_del(&entry->list);
655                 SM_I(sbi)->nr_discards -= entry->len;
656                 kmem_cache_free(discard_entry_slab, entry);
657         }
658 }
659
660 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
661 {
662         struct sit_info *sit_i = SIT_I(sbi);
663
664         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
665                 sit_i->dirty_sentries++;
666                 return false;
667         }
668
669         return true;
670 }
671
672 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
673                                         unsigned int segno, int modified)
674 {
675         struct seg_entry *se = get_seg_entry(sbi, segno);
676         se->type = type;
677         if (modified)
678                 __mark_sit_entry_dirty(sbi, segno);
679 }
680
681 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
682 {
683         struct seg_entry *se;
684         unsigned int segno, offset;
685         long int new_vblocks;
686
687         segno = GET_SEGNO(sbi, blkaddr);
688
689         se = get_seg_entry(sbi, segno);
690         new_vblocks = se->valid_blocks + del;
691         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
692
693         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
694                                 (new_vblocks > sbi->blocks_per_seg)));
695
696         se->valid_blocks = new_vblocks;
697         se->mtime = get_mtime(sbi);
698         SIT_I(sbi)->max_mtime = se->mtime;
699
700         /* Update valid block bitmap */
701         if (del > 0) {
702                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
703                         f2fs_bug_on(sbi, 1);
704                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
705                         sbi->discard_blks--;
706         } else {
707                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
708                         f2fs_bug_on(sbi, 1);
709                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
710                         sbi->discard_blks++;
711         }
712         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
713                 se->ckpt_valid_blocks += del;
714
715         __mark_sit_entry_dirty(sbi, segno);
716
717         /* update total number of valid blocks to be written in ckpt area */
718         SIT_I(sbi)->written_valid_blocks += del;
719
720         if (sbi->segs_per_sec > 1)
721                 get_sec_entry(sbi, segno)->valid_blocks += del;
722 }
723
724 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
725 {
726         update_sit_entry(sbi, new, 1);
727         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
728                 update_sit_entry(sbi, old, -1);
729
730         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
731         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
732 }
733
734 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
735 {
736         unsigned int segno = GET_SEGNO(sbi, addr);
737         struct sit_info *sit_i = SIT_I(sbi);
738
739         f2fs_bug_on(sbi, addr == NULL_ADDR);
740         if (addr == NEW_ADDR)
741                 return;
742
743         /* add it into sit main buffer */
744         mutex_lock(&sit_i->sentry_lock);
745
746         update_sit_entry(sbi, addr, -1);
747
748         /* add it into dirty seglist */
749         locate_dirty_segment(sbi, segno);
750
751         mutex_unlock(&sit_i->sentry_lock);
752 }
753
754 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
755 {
756         struct sit_info *sit_i = SIT_I(sbi);
757         unsigned int segno, offset;
758         struct seg_entry *se;
759         bool is_cp = false;
760
761         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
762                 return true;
763
764         mutex_lock(&sit_i->sentry_lock);
765
766         segno = GET_SEGNO(sbi, blkaddr);
767         se = get_seg_entry(sbi, segno);
768         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
769
770         if (f2fs_test_bit(offset, se->ckpt_valid_map))
771                 is_cp = true;
772
773         mutex_unlock(&sit_i->sentry_lock);
774
775         return is_cp;
776 }
777
778 /*
779  * This function should be resided under the curseg_mutex lock
780  */
781 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
782                                         struct f2fs_summary *sum)
783 {
784         struct curseg_info *curseg = CURSEG_I(sbi, type);
785         void *addr = curseg->sum_blk;
786         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
787         memcpy(addr, sum, sizeof(struct f2fs_summary));
788 }
789
790 /*
791  * Calculate the number of current summary pages for writing
792  */
793 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
794 {
795         int valid_sum_count = 0;
796         int i, sum_in_page;
797
798         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
799                 if (sbi->ckpt->alloc_type[i] == SSR)
800                         valid_sum_count += sbi->blocks_per_seg;
801                 else {
802                         if (for_ra)
803                                 valid_sum_count += le16_to_cpu(
804                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
805                         else
806                                 valid_sum_count += curseg_blkoff(sbi, i);
807                 }
808         }
809
810         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
811                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
812         if (valid_sum_count <= sum_in_page)
813                 return 1;
814         else if ((valid_sum_count - sum_in_page) <=
815                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
816                 return 2;
817         return 3;
818 }
819
820 /*
821  * Caller should put this summary page
822  */
823 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
824 {
825         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
826 }
827
828 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
829 {
830         struct page *page = grab_meta_page(sbi, blk_addr);
831         void *dst = page_address(page);
832
833         if (src)
834                 memcpy(dst, src, PAGE_CACHE_SIZE);
835         else
836                 memset(dst, 0, PAGE_CACHE_SIZE);
837         set_page_dirty(page);
838         f2fs_put_page(page, 1);
839 }
840
841 static void write_sum_page(struct f2fs_sb_info *sbi,
842                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
843 {
844         update_meta_page(sbi, (void *)sum_blk, blk_addr);
845 }
846
847 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
848 {
849         struct curseg_info *curseg = CURSEG_I(sbi, type);
850         unsigned int segno = curseg->segno + 1;
851         struct free_segmap_info *free_i = FREE_I(sbi);
852
853         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
854                 return !test_bit(segno, free_i->free_segmap);
855         return 0;
856 }
857
858 /*
859  * Find a new segment from the free segments bitmap to right order
860  * This function should be returned with success, otherwise BUG
861  */
862 static void get_new_segment(struct f2fs_sb_info *sbi,
863                         unsigned int *newseg, bool new_sec, int dir)
864 {
865         struct free_segmap_info *free_i = FREE_I(sbi);
866         unsigned int segno, secno, zoneno;
867         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
868         unsigned int hint = *newseg / sbi->segs_per_sec;
869         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
870         unsigned int left_start = hint;
871         bool init = true;
872         int go_left = 0;
873         int i;
874
875         spin_lock(&free_i->segmap_lock);
876
877         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
878                 segno = find_next_zero_bit(free_i->free_segmap,
879                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
880                 if (segno < (hint + 1) * sbi->segs_per_sec)
881                         goto got_it;
882         }
883 find_other_zone:
884         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
885         if (secno >= MAIN_SECS(sbi)) {
886                 if (dir == ALLOC_RIGHT) {
887                         secno = find_next_zero_bit(free_i->free_secmap,
888                                                         MAIN_SECS(sbi), 0);
889                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
890                 } else {
891                         go_left = 1;
892                         left_start = hint - 1;
893                 }
894         }
895         if (go_left == 0)
896                 goto skip_left;
897
898         while (test_bit(left_start, free_i->free_secmap)) {
899                 if (left_start > 0) {
900                         left_start--;
901                         continue;
902                 }
903                 left_start = find_next_zero_bit(free_i->free_secmap,
904                                                         MAIN_SECS(sbi), 0);
905                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
906                 break;
907         }
908         secno = left_start;
909 skip_left:
910         hint = secno;
911         segno = secno * sbi->segs_per_sec;
912         zoneno = secno / sbi->secs_per_zone;
913
914         /* give up on finding another zone */
915         if (!init)
916                 goto got_it;
917         if (sbi->secs_per_zone == 1)
918                 goto got_it;
919         if (zoneno == old_zoneno)
920                 goto got_it;
921         if (dir == ALLOC_LEFT) {
922                 if (!go_left && zoneno + 1 >= total_zones)
923                         goto got_it;
924                 if (go_left && zoneno == 0)
925                         goto got_it;
926         }
927         for (i = 0; i < NR_CURSEG_TYPE; i++)
928                 if (CURSEG_I(sbi, i)->zone == zoneno)
929                         break;
930
931         if (i < NR_CURSEG_TYPE) {
932                 /* zone is in user, try another */
933                 if (go_left)
934                         hint = zoneno * sbi->secs_per_zone - 1;
935                 else if (zoneno + 1 >= total_zones)
936                         hint = 0;
937                 else
938                         hint = (zoneno + 1) * sbi->secs_per_zone;
939                 init = false;
940                 goto find_other_zone;
941         }
942 got_it:
943         /* set it as dirty segment in free segmap */
944         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
945         __set_inuse(sbi, segno);
946         *newseg = segno;
947         spin_unlock(&free_i->segmap_lock);
948 }
949
950 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
951 {
952         struct curseg_info *curseg = CURSEG_I(sbi, type);
953         struct summary_footer *sum_footer;
954
955         curseg->segno = curseg->next_segno;
956         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
957         curseg->next_blkoff = 0;
958         curseg->next_segno = NULL_SEGNO;
959
960         sum_footer = &(curseg->sum_blk->footer);
961         memset(sum_footer, 0, sizeof(struct summary_footer));
962         if (IS_DATASEG(type))
963                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
964         if (IS_NODESEG(type))
965                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
966         __set_sit_entry_type(sbi, type, curseg->segno, modified);
967 }
968
969 /*
970  * Allocate a current working segment.
971  * This function always allocates a free segment in LFS manner.
972  */
973 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
974 {
975         struct curseg_info *curseg = CURSEG_I(sbi, type);
976         unsigned int segno = curseg->segno;
977         int dir = ALLOC_LEFT;
978
979         write_sum_page(sbi, curseg->sum_blk,
980                                 GET_SUM_BLOCK(sbi, segno));
981         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
982                 dir = ALLOC_RIGHT;
983
984         if (test_opt(sbi, NOHEAP))
985                 dir = ALLOC_RIGHT;
986
987         get_new_segment(sbi, &segno, new_sec, dir);
988         curseg->next_segno = segno;
989         reset_curseg(sbi, type, 1);
990         curseg->alloc_type = LFS;
991 }
992
993 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
994                         struct curseg_info *seg, block_t start)
995 {
996         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
997         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
998         unsigned long *target_map = SIT_I(sbi)->tmp_map;
999         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1000         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1001         int i, pos;
1002
1003         for (i = 0; i < entries; i++)
1004                 target_map[i] = ckpt_map[i] | cur_map[i];
1005
1006         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1007
1008         seg->next_blkoff = pos;
1009 }
1010
1011 /*
1012  * If a segment is written by LFS manner, next block offset is just obtained
1013  * by increasing the current block offset. However, if a segment is written by
1014  * SSR manner, next block offset obtained by calling __next_free_blkoff
1015  */
1016 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1017                                 struct curseg_info *seg)
1018 {
1019         if (seg->alloc_type == SSR)
1020                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1021         else
1022                 seg->next_blkoff++;
1023 }
1024
1025 /*
1026  * This function always allocates a used segment(from dirty seglist) by SSR
1027  * manner, so it should recover the existing segment information of valid blocks
1028  */
1029 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1030 {
1031         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1032         struct curseg_info *curseg = CURSEG_I(sbi, type);
1033         unsigned int new_segno = curseg->next_segno;
1034         struct f2fs_summary_block *sum_node;
1035         struct page *sum_page;
1036
1037         write_sum_page(sbi, curseg->sum_blk,
1038                                 GET_SUM_BLOCK(sbi, curseg->segno));
1039         __set_test_and_inuse(sbi, new_segno);
1040
1041         mutex_lock(&dirty_i->seglist_lock);
1042         __remove_dirty_segment(sbi, new_segno, PRE);
1043         __remove_dirty_segment(sbi, new_segno, DIRTY);
1044         mutex_unlock(&dirty_i->seglist_lock);
1045
1046         reset_curseg(sbi, type, 1);
1047         curseg->alloc_type = SSR;
1048         __next_free_blkoff(sbi, curseg, 0);
1049
1050         if (reuse) {
1051                 sum_page = get_sum_page(sbi, new_segno);
1052                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1053                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1054                 f2fs_put_page(sum_page, 1);
1055         }
1056 }
1057
1058 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1059 {
1060         struct curseg_info *curseg = CURSEG_I(sbi, type);
1061         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1062
1063         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1064                 return v_ops->get_victim(sbi,
1065                                 &(curseg)->next_segno, BG_GC, type, SSR);
1066
1067         /* For data segments, let's do SSR more intensively */
1068         for (; type >= CURSEG_HOT_DATA; type--)
1069                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1070                                                 BG_GC, type, SSR))
1071                         return 1;
1072         return 0;
1073 }
1074
1075 /*
1076  * flush out current segment and replace it with new segment
1077  * This function should be returned with success, otherwise BUG
1078  */
1079 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1080                                                 int type, bool force)
1081 {
1082         struct curseg_info *curseg = CURSEG_I(sbi, type);
1083
1084         if (force)
1085                 new_curseg(sbi, type, true);
1086         else if (type == CURSEG_WARM_NODE)
1087                 new_curseg(sbi, type, false);
1088         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1089                 new_curseg(sbi, type, false);
1090         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1091                 change_curseg(sbi, type, true);
1092         else
1093                 new_curseg(sbi, type, false);
1094
1095         stat_inc_seg_type(sbi, curseg);
1096 }
1097
1098 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1099 {
1100         struct curseg_info *curseg = CURSEG_I(sbi, type);
1101         unsigned int old_segno;
1102
1103         old_segno = curseg->segno;
1104         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1105         locate_dirty_segment(sbi, old_segno);
1106 }
1107
1108 void allocate_new_segments(struct f2fs_sb_info *sbi)
1109 {
1110         int i;
1111
1112         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1113                 __allocate_new_segments(sbi, i);
1114 }
1115
1116 static const struct segment_allocation default_salloc_ops = {
1117         .allocate_segment = allocate_segment_by_default,
1118 };
1119
1120 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1121 {
1122         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1123         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1124         unsigned int start_segno, end_segno;
1125         struct cp_control cpc;
1126         int err = 0;
1127
1128         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1129                 return -EINVAL;
1130
1131         cpc.trimmed = 0;
1132         if (end <= MAIN_BLKADDR(sbi))
1133                 goto out;
1134
1135         /* start/end segment number in main_area */
1136         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1137         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1138                                                 GET_SEGNO(sbi, end);
1139         cpc.reason = CP_DISCARD;
1140         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1141
1142         /* do checkpoint to issue discard commands safely */
1143         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1144                 cpc.trim_start = start_segno;
1145
1146                 if (sbi->discard_blks == 0)
1147                         break;
1148                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1149                         cpc.trim_end = end_segno;
1150                 else
1151                         cpc.trim_end = min_t(unsigned int,
1152                                 rounddown(start_segno +
1153                                 BATCHED_TRIM_SEGMENTS(sbi),
1154                                 sbi->segs_per_sec) - 1, end_segno);
1155
1156                 mutex_lock(&sbi->gc_mutex);
1157                 err = write_checkpoint(sbi, &cpc);
1158                 mutex_unlock(&sbi->gc_mutex);
1159         }
1160 out:
1161         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1162         return err;
1163 }
1164
1165 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1166 {
1167         struct curseg_info *curseg = CURSEG_I(sbi, type);
1168         if (curseg->next_blkoff < sbi->blocks_per_seg)
1169                 return true;
1170         return false;
1171 }
1172
1173 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1174 {
1175         if (p_type == DATA)
1176                 return CURSEG_HOT_DATA;
1177         else
1178                 return CURSEG_HOT_NODE;
1179 }
1180
1181 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1182 {
1183         if (p_type == DATA) {
1184                 struct inode *inode = page->mapping->host;
1185
1186                 if (S_ISDIR(inode->i_mode))
1187                         return CURSEG_HOT_DATA;
1188                 else
1189                         return CURSEG_COLD_DATA;
1190         } else {
1191                 if (IS_DNODE(page) && is_cold_node(page))
1192                         return CURSEG_WARM_NODE;
1193                 else
1194                         return CURSEG_COLD_NODE;
1195         }
1196 }
1197
1198 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1199 {
1200         if (p_type == DATA) {
1201                 struct inode *inode = page->mapping->host;
1202
1203                 if (S_ISDIR(inode->i_mode))
1204                         return CURSEG_HOT_DATA;
1205                 else if (is_cold_data(page) || file_is_cold(inode))
1206                         return CURSEG_COLD_DATA;
1207                 else
1208                         return CURSEG_WARM_DATA;
1209         } else {
1210                 if (IS_DNODE(page))
1211                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1212                                                 CURSEG_HOT_NODE;
1213                 else
1214                         return CURSEG_COLD_NODE;
1215         }
1216 }
1217
1218 static int __get_segment_type(struct page *page, enum page_type p_type)
1219 {
1220         switch (F2FS_P_SB(page)->active_logs) {
1221         case 2:
1222                 return __get_segment_type_2(page, p_type);
1223         case 4:
1224                 return __get_segment_type_4(page, p_type);
1225         }
1226         /* NR_CURSEG_TYPE(6) logs by default */
1227         f2fs_bug_on(F2FS_P_SB(page),
1228                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1229         return __get_segment_type_6(page, p_type);
1230 }
1231
1232 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1233                 block_t old_blkaddr, block_t *new_blkaddr,
1234                 struct f2fs_summary *sum, int type)
1235 {
1236         struct sit_info *sit_i = SIT_I(sbi);
1237         struct curseg_info *curseg;
1238         bool direct_io = (type == CURSEG_DIRECT_IO);
1239
1240         type = direct_io ? CURSEG_WARM_DATA : type;
1241
1242         curseg = CURSEG_I(sbi, type);
1243
1244         mutex_lock(&curseg->curseg_mutex);
1245         mutex_lock(&sit_i->sentry_lock);
1246
1247         /* direct_io'ed data is aligned to the segment for better performance */
1248         if (direct_io && curseg->next_blkoff &&
1249                                 !has_not_enough_free_secs(sbi, 0))
1250                 __allocate_new_segments(sbi, type);
1251
1252         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1253
1254         /*
1255          * __add_sum_entry should be resided under the curseg_mutex
1256          * because, this function updates a summary entry in the
1257          * current summary block.
1258          */
1259         __add_sum_entry(sbi, type, sum);
1260
1261         __refresh_next_blkoff(sbi, curseg);
1262
1263         stat_inc_block_count(sbi, curseg);
1264
1265         if (!__has_curseg_space(sbi, type))
1266                 sit_i->s_ops->allocate_segment(sbi, type, false);
1267         /*
1268          * SIT information should be updated before segment allocation,
1269          * since SSR needs latest valid block information.
1270          */
1271         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1272
1273         mutex_unlock(&sit_i->sentry_lock);
1274
1275         if (page && IS_NODESEG(type))
1276                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1277
1278         mutex_unlock(&curseg->curseg_mutex);
1279 }
1280
1281 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1282 {
1283         int type = __get_segment_type(fio->page, fio->type);
1284
1285         allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1286                                         &fio->blk_addr, sum, type);
1287
1288         /* writeout dirty page into bdev */
1289         f2fs_submit_page_mbio(fio);
1290 }
1291
1292 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1293 {
1294         struct f2fs_io_info fio = {
1295                 .sbi = sbi,
1296                 .type = META,
1297                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1298                 .blk_addr = page->index,
1299                 .page = page,
1300                 .encrypted_page = NULL,
1301         };
1302
1303         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1304                 fio.rw &= ~REQ_META;
1305
1306         set_page_writeback(page);
1307         f2fs_submit_page_mbio(&fio);
1308 }
1309
1310 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1311 {
1312         struct f2fs_summary sum;
1313
1314         set_summary(&sum, nid, 0, 0);
1315         do_write_page(&sum, fio);
1316 }
1317
1318 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1319 {
1320         struct f2fs_sb_info *sbi = fio->sbi;
1321         struct f2fs_summary sum;
1322         struct node_info ni;
1323
1324         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1325         get_node_info(sbi, dn->nid, &ni);
1326         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1327         do_write_page(&sum, fio);
1328         dn->data_blkaddr = fio->blk_addr;
1329 }
1330
1331 void rewrite_data_page(struct f2fs_io_info *fio)
1332 {
1333         stat_inc_inplace_blocks(fio->sbi);
1334         f2fs_submit_page_mbio(fio);
1335 }
1336
1337 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1338                                 struct f2fs_summary *sum,
1339                                 block_t old_blkaddr, block_t new_blkaddr,
1340                                 bool recover_curseg)
1341 {
1342         struct sit_info *sit_i = SIT_I(sbi);
1343         struct curseg_info *curseg;
1344         unsigned int segno, old_cursegno;
1345         struct seg_entry *se;
1346         int type;
1347         unsigned short old_blkoff;
1348
1349         segno = GET_SEGNO(sbi, new_blkaddr);
1350         se = get_seg_entry(sbi, segno);
1351         type = se->type;
1352
1353         if (!recover_curseg) {
1354                 /* for recovery flow */
1355                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1356                         if (old_blkaddr == NULL_ADDR)
1357                                 type = CURSEG_COLD_DATA;
1358                         else
1359                                 type = CURSEG_WARM_DATA;
1360                 }
1361         } else {
1362                 if (!IS_CURSEG(sbi, segno))
1363                         type = CURSEG_WARM_DATA;
1364         }
1365
1366         curseg = CURSEG_I(sbi, type);
1367
1368         mutex_lock(&curseg->curseg_mutex);
1369         mutex_lock(&sit_i->sentry_lock);
1370
1371         old_cursegno = curseg->segno;
1372         old_blkoff = curseg->next_blkoff;
1373
1374         /* change the current segment */
1375         if (segno != curseg->segno) {
1376                 curseg->next_segno = segno;
1377                 change_curseg(sbi, type, true);
1378         }
1379
1380         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1381         __add_sum_entry(sbi, type, sum);
1382
1383         if (!recover_curseg)
1384                 update_sit_entry(sbi, new_blkaddr, 1);
1385         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1386                 update_sit_entry(sbi, old_blkaddr, -1);
1387
1388         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1389         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1390
1391         locate_dirty_segment(sbi, old_cursegno);
1392
1393         if (recover_curseg) {
1394                 if (old_cursegno != curseg->segno) {
1395                         curseg->next_segno = old_cursegno;
1396                         change_curseg(sbi, type, true);
1397                 }
1398                 curseg->next_blkoff = old_blkoff;
1399         }
1400
1401         mutex_unlock(&sit_i->sentry_lock);
1402         mutex_unlock(&curseg->curseg_mutex);
1403 }
1404
1405 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1406                                 block_t old_addr, block_t new_addr,
1407                                 unsigned char version, bool recover_curseg)
1408 {
1409         struct f2fs_summary sum;
1410
1411         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1412
1413         __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1414
1415         dn->data_blkaddr = new_addr;
1416         set_data_blkaddr(dn);
1417         f2fs_update_extent_cache(dn);
1418 }
1419
1420 void f2fs_wait_on_page_writeback(struct page *page,
1421                                 enum page_type type, bool ordered)
1422 {
1423         if (PageWriteback(page)) {
1424                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1425
1426                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1427                 if (ordered)
1428                         wait_on_page_writeback(page);
1429                 else
1430                         wait_for_stable_page(page);
1431         }
1432 }
1433
1434 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1435                                                         block_t blkaddr)
1436 {
1437         struct page *cpage;
1438
1439         if (blkaddr == NEW_ADDR)
1440                 return;
1441
1442         f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1443
1444         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1445         if (cpage) {
1446                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1447                 f2fs_put_page(cpage, 1);
1448         }
1449 }
1450
1451 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1452 {
1453         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1454         struct curseg_info *seg_i;
1455         unsigned char *kaddr;
1456         struct page *page;
1457         block_t start;
1458         int i, j, offset;
1459
1460         start = start_sum_block(sbi);
1461
1462         page = get_meta_page(sbi, start++);
1463         kaddr = (unsigned char *)page_address(page);
1464
1465         /* Step 1: restore nat cache */
1466         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1467         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1468
1469         /* Step 2: restore sit cache */
1470         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1471         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1472                                                 SUM_JOURNAL_SIZE);
1473         offset = 2 * SUM_JOURNAL_SIZE;
1474
1475         /* Step 3: restore summary entries */
1476         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1477                 unsigned short blk_off;
1478                 unsigned int segno;
1479
1480                 seg_i = CURSEG_I(sbi, i);
1481                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1482                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1483                 seg_i->next_segno = segno;
1484                 reset_curseg(sbi, i, 0);
1485                 seg_i->alloc_type = ckpt->alloc_type[i];
1486                 seg_i->next_blkoff = blk_off;
1487
1488                 if (seg_i->alloc_type == SSR)
1489                         blk_off = sbi->blocks_per_seg;
1490
1491                 for (j = 0; j < blk_off; j++) {
1492                         struct f2fs_summary *s;
1493                         s = (struct f2fs_summary *)(kaddr + offset);
1494                         seg_i->sum_blk->entries[j] = *s;
1495                         offset += SUMMARY_SIZE;
1496                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1497                                                 SUM_FOOTER_SIZE)
1498                                 continue;
1499
1500                         f2fs_put_page(page, 1);
1501                         page = NULL;
1502
1503                         page = get_meta_page(sbi, start++);
1504                         kaddr = (unsigned char *)page_address(page);
1505                         offset = 0;
1506                 }
1507         }
1508         f2fs_put_page(page, 1);
1509         return 0;
1510 }
1511
1512 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1513 {
1514         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1515         struct f2fs_summary_block *sum;
1516         struct curseg_info *curseg;
1517         struct page *new;
1518         unsigned short blk_off;
1519         unsigned int segno = 0;
1520         block_t blk_addr = 0;
1521
1522         /* get segment number and block addr */
1523         if (IS_DATASEG(type)) {
1524                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1525                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1526                                                         CURSEG_HOT_DATA]);
1527                 if (__exist_node_summaries(sbi))
1528                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1529                 else
1530                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1531         } else {
1532                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1533                                                         CURSEG_HOT_NODE]);
1534                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1535                                                         CURSEG_HOT_NODE]);
1536                 if (__exist_node_summaries(sbi))
1537                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1538                                                         type - CURSEG_HOT_NODE);
1539                 else
1540                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1541         }
1542
1543         new = get_meta_page(sbi, blk_addr);
1544         sum = (struct f2fs_summary_block *)page_address(new);
1545
1546         if (IS_NODESEG(type)) {
1547                 if (__exist_node_summaries(sbi)) {
1548                         struct f2fs_summary *ns = &sum->entries[0];
1549                         int i;
1550                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1551                                 ns->version = 0;
1552                                 ns->ofs_in_node = 0;
1553                         }
1554                 } else {
1555                         int err;
1556
1557                         err = restore_node_summary(sbi, segno, sum);
1558                         if (err) {
1559                                 f2fs_put_page(new, 1);
1560                                 return err;
1561                         }
1562                 }
1563         }
1564
1565         /* set uncompleted segment to curseg */
1566         curseg = CURSEG_I(sbi, type);
1567         mutex_lock(&curseg->curseg_mutex);
1568         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1569         curseg->next_segno = segno;
1570         reset_curseg(sbi, type, 0);
1571         curseg->alloc_type = ckpt->alloc_type[type];
1572         curseg->next_blkoff = blk_off;
1573         mutex_unlock(&curseg->curseg_mutex);
1574         f2fs_put_page(new, 1);
1575         return 0;
1576 }
1577
1578 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1579 {
1580         int type = CURSEG_HOT_DATA;
1581         int err;
1582
1583         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1584                 int npages = npages_for_summary_flush(sbi, true);
1585
1586                 if (npages >= 2)
1587                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1588                                                         META_CP, true);
1589
1590                 /* restore for compacted data summary */
1591                 if (read_compacted_summaries(sbi))
1592                         return -EINVAL;
1593                 type = CURSEG_HOT_NODE;
1594         }
1595
1596         if (__exist_node_summaries(sbi))
1597                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1598                                         NR_CURSEG_TYPE - type, META_CP, true);
1599
1600         for (; type <= CURSEG_COLD_NODE; type++) {
1601                 err = read_normal_summaries(sbi, type);
1602                 if (err)
1603                         return err;
1604         }
1605
1606         return 0;
1607 }
1608
1609 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1610 {
1611         struct page *page;
1612         unsigned char *kaddr;
1613         struct f2fs_summary *summary;
1614         struct curseg_info *seg_i;
1615         int written_size = 0;
1616         int i, j;
1617
1618         page = grab_meta_page(sbi, blkaddr++);
1619         kaddr = (unsigned char *)page_address(page);
1620
1621         /* Step 1: write nat cache */
1622         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1623         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1624         written_size += SUM_JOURNAL_SIZE;
1625
1626         /* Step 2: write sit cache */
1627         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1628         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1629                                                 SUM_JOURNAL_SIZE);
1630         written_size += SUM_JOURNAL_SIZE;
1631
1632         /* Step 3: write summary entries */
1633         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1634                 unsigned short blkoff;
1635                 seg_i = CURSEG_I(sbi, i);
1636                 if (sbi->ckpt->alloc_type[i] == SSR)
1637                         blkoff = sbi->blocks_per_seg;
1638                 else
1639                         blkoff = curseg_blkoff(sbi, i);
1640
1641                 for (j = 0; j < blkoff; j++) {
1642                         if (!page) {
1643                                 page = grab_meta_page(sbi, blkaddr++);
1644                                 kaddr = (unsigned char *)page_address(page);
1645                                 written_size = 0;
1646                         }
1647                         summary = (struct f2fs_summary *)(kaddr + written_size);
1648                         *summary = seg_i->sum_blk->entries[j];
1649                         written_size += SUMMARY_SIZE;
1650
1651                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1652                                                         SUM_FOOTER_SIZE)
1653                                 continue;
1654
1655                         set_page_dirty(page);
1656                         f2fs_put_page(page, 1);
1657                         page = NULL;
1658                 }
1659         }
1660         if (page) {
1661                 set_page_dirty(page);
1662                 f2fs_put_page(page, 1);
1663         }
1664 }
1665
1666 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1667                                         block_t blkaddr, int type)
1668 {
1669         int i, end;
1670         if (IS_DATASEG(type))
1671                 end = type + NR_CURSEG_DATA_TYPE;
1672         else
1673                 end = type + NR_CURSEG_NODE_TYPE;
1674
1675         for (i = type; i < end; i++) {
1676                 struct curseg_info *sum = CURSEG_I(sbi, i);
1677                 mutex_lock(&sum->curseg_mutex);
1678                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1679                 mutex_unlock(&sum->curseg_mutex);
1680         }
1681 }
1682
1683 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1684 {
1685         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1686                 write_compacted_summaries(sbi, start_blk);
1687         else
1688                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1689 }
1690
1691 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1692 {
1693         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1694 }
1695
1696 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1697                                         unsigned int val, int alloc)
1698 {
1699         int i;
1700
1701         if (type == NAT_JOURNAL) {
1702                 for (i = 0; i < nats_in_cursum(sum); i++) {
1703                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1704                                 return i;
1705                 }
1706                 if (alloc && __has_cursum_space(sum, 1, NAT_JOURNAL))
1707                         return update_nats_in_cursum(sum, 1);
1708         } else if (type == SIT_JOURNAL) {
1709                 for (i = 0; i < sits_in_cursum(sum); i++)
1710                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1711                                 return i;
1712                 if (alloc && __has_cursum_space(sum, 1, SIT_JOURNAL))
1713                         return update_sits_in_cursum(sum, 1);
1714         }
1715         return -1;
1716 }
1717
1718 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1719                                         unsigned int segno)
1720 {
1721         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1722 }
1723
1724 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1725                                         unsigned int start)
1726 {
1727         struct sit_info *sit_i = SIT_I(sbi);
1728         struct page *src_page, *dst_page;
1729         pgoff_t src_off, dst_off;
1730         void *src_addr, *dst_addr;
1731
1732         src_off = current_sit_addr(sbi, start);
1733         dst_off = next_sit_addr(sbi, src_off);
1734
1735         /* get current sit block page without lock */
1736         src_page = get_meta_page(sbi, src_off);
1737         dst_page = grab_meta_page(sbi, dst_off);
1738         f2fs_bug_on(sbi, PageDirty(src_page));
1739
1740         src_addr = page_address(src_page);
1741         dst_addr = page_address(dst_page);
1742         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1743
1744         set_page_dirty(dst_page);
1745         f2fs_put_page(src_page, 1);
1746
1747         set_to_next_sit(sit_i, start);
1748
1749         return dst_page;
1750 }
1751
1752 static struct sit_entry_set *grab_sit_entry_set(void)
1753 {
1754         struct sit_entry_set *ses =
1755                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1756
1757         ses->entry_cnt = 0;
1758         INIT_LIST_HEAD(&ses->set_list);
1759         return ses;
1760 }
1761
1762 static void release_sit_entry_set(struct sit_entry_set *ses)
1763 {
1764         list_del(&ses->set_list);
1765         kmem_cache_free(sit_entry_set_slab, ses);
1766 }
1767
1768 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1769                                                 struct list_head *head)
1770 {
1771         struct sit_entry_set *next = ses;
1772
1773         if (list_is_last(&ses->set_list, head))
1774                 return;
1775
1776         list_for_each_entry_continue(next, head, set_list)
1777                 if (ses->entry_cnt <= next->entry_cnt)
1778                         break;
1779
1780         list_move_tail(&ses->set_list, &next->set_list);
1781 }
1782
1783 static void add_sit_entry(unsigned int segno, struct list_head *head)
1784 {
1785         struct sit_entry_set *ses;
1786         unsigned int start_segno = START_SEGNO(segno);
1787
1788         list_for_each_entry(ses, head, set_list) {
1789                 if (ses->start_segno == start_segno) {
1790                         ses->entry_cnt++;
1791                         adjust_sit_entry_set(ses, head);
1792                         return;
1793                 }
1794         }
1795
1796         ses = grab_sit_entry_set();
1797
1798         ses->start_segno = start_segno;
1799         ses->entry_cnt++;
1800         list_add(&ses->set_list, head);
1801 }
1802
1803 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1804 {
1805         struct f2fs_sm_info *sm_info = SM_I(sbi);
1806         struct list_head *set_list = &sm_info->sit_entry_set;
1807         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1808         unsigned int segno;
1809
1810         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1811                 add_sit_entry(segno, set_list);
1812 }
1813
1814 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1815 {
1816         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1817         struct f2fs_summary_block *sum = curseg->sum_blk;
1818         int i;
1819
1820         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1821                 unsigned int segno;
1822                 bool dirtied;
1823
1824                 segno = le32_to_cpu(segno_in_journal(sum, i));
1825                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1826
1827                 if (!dirtied)
1828                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1829         }
1830         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1831 }
1832
1833 /*
1834  * CP calls this function, which flushes SIT entries including sit_journal,
1835  * and moves prefree segs to free segs.
1836  */
1837 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1838 {
1839         struct sit_info *sit_i = SIT_I(sbi);
1840         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1841         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1842         struct f2fs_summary_block *sum = curseg->sum_blk;
1843         struct sit_entry_set *ses, *tmp;
1844         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1845         bool to_journal = true;
1846         struct seg_entry *se;
1847
1848         mutex_lock(&curseg->curseg_mutex);
1849         mutex_lock(&sit_i->sentry_lock);
1850
1851         if (!sit_i->dirty_sentries)
1852                 goto out;
1853
1854         /*
1855          * add and account sit entries of dirty bitmap in sit entry
1856          * set temporarily
1857          */
1858         add_sits_in_set(sbi);
1859
1860         /*
1861          * if there are no enough space in journal to store dirty sit
1862          * entries, remove all entries from journal and add and account
1863          * them in sit entry set.
1864          */
1865         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1866                 remove_sits_in_journal(sbi);
1867
1868         /*
1869          * there are two steps to flush sit entries:
1870          * #1, flush sit entries to journal in current cold data summary block.
1871          * #2, flush sit entries to sit page.
1872          */
1873         list_for_each_entry_safe(ses, tmp, head, set_list) {
1874                 struct page *page = NULL;
1875                 struct f2fs_sit_block *raw_sit = NULL;
1876                 unsigned int start_segno = ses->start_segno;
1877                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1878                                                 (unsigned long)MAIN_SEGS(sbi));
1879                 unsigned int segno = start_segno;
1880
1881                 if (to_journal &&
1882                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1883                         to_journal = false;
1884
1885                 if (!to_journal) {
1886                         page = get_next_sit_page(sbi, start_segno);
1887                         raw_sit = page_address(page);
1888                 }
1889
1890                 /* flush dirty sit entries in region of current sit set */
1891                 for_each_set_bit_from(segno, bitmap, end) {
1892                         int offset, sit_offset;
1893
1894                         se = get_seg_entry(sbi, segno);
1895
1896                         /* add discard candidates */
1897                         if (cpc->reason != CP_DISCARD) {
1898                                 cpc->trim_start = segno;
1899                                 add_discard_addrs(sbi, cpc);
1900                         }
1901
1902                         if (to_journal) {
1903                                 offset = lookup_journal_in_cursum(sum,
1904                                                         SIT_JOURNAL, segno, 1);
1905                                 f2fs_bug_on(sbi, offset < 0);
1906                                 segno_in_journal(sum, offset) =
1907                                                         cpu_to_le32(segno);
1908                                 seg_info_to_raw_sit(se,
1909                                                 &sit_in_journal(sum, offset));
1910                         } else {
1911                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1912                                 seg_info_to_raw_sit(se,
1913                                                 &raw_sit->entries[sit_offset]);
1914                         }
1915
1916                         __clear_bit(segno, bitmap);
1917                         sit_i->dirty_sentries--;
1918                         ses->entry_cnt--;
1919                 }
1920
1921                 if (!to_journal)
1922                         f2fs_put_page(page, 1);
1923
1924                 f2fs_bug_on(sbi, ses->entry_cnt);
1925                 release_sit_entry_set(ses);
1926         }
1927
1928         f2fs_bug_on(sbi, !list_empty(head));
1929         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1930 out:
1931         if (cpc->reason == CP_DISCARD) {
1932                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1933                         add_discard_addrs(sbi, cpc);
1934         }
1935         mutex_unlock(&sit_i->sentry_lock);
1936         mutex_unlock(&curseg->curseg_mutex);
1937
1938         set_prefree_as_free_segments(sbi);
1939 }
1940
1941 static int build_sit_info(struct f2fs_sb_info *sbi)
1942 {
1943         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1944         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1945         struct sit_info *sit_i;
1946         unsigned int sit_segs, start;
1947         char *src_bitmap, *dst_bitmap;
1948         unsigned int bitmap_size;
1949
1950         /* allocate memory for SIT information */
1951         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1952         if (!sit_i)
1953                 return -ENOMEM;
1954
1955         SM_I(sbi)->sit_info = sit_i;
1956
1957         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
1958                                         sizeof(struct seg_entry), GFP_KERNEL);
1959         if (!sit_i->sentries)
1960                 return -ENOMEM;
1961
1962         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1963         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
1964         if (!sit_i->dirty_sentries_bitmap)
1965                 return -ENOMEM;
1966
1967         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1968                 sit_i->sentries[start].cur_valid_map
1969                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1970                 sit_i->sentries[start].ckpt_valid_map
1971                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1972                 sit_i->sentries[start].discard_map
1973                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1974                 if (!sit_i->sentries[start].cur_valid_map ||
1975                                 !sit_i->sentries[start].ckpt_valid_map ||
1976                                 !sit_i->sentries[start].discard_map)
1977                         return -ENOMEM;
1978         }
1979
1980         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1981         if (!sit_i->tmp_map)
1982                 return -ENOMEM;
1983
1984         if (sbi->segs_per_sec > 1) {
1985                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
1986                                         sizeof(struct sec_entry), GFP_KERNEL);
1987                 if (!sit_i->sec_entries)
1988                         return -ENOMEM;
1989         }
1990
1991         /* get information related with SIT */
1992         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1993
1994         /* setup SIT bitmap from ckeckpoint pack */
1995         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1996         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1997
1998         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1999         if (!dst_bitmap)
2000                 return -ENOMEM;
2001
2002         /* init SIT information */
2003         sit_i->s_ops = &default_salloc_ops;
2004
2005         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2006         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2007         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2008         sit_i->sit_bitmap = dst_bitmap;
2009         sit_i->bitmap_size = bitmap_size;
2010         sit_i->dirty_sentries = 0;
2011         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2012         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2013         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2014         mutex_init(&sit_i->sentry_lock);
2015         return 0;
2016 }
2017
2018 static int build_free_segmap(struct f2fs_sb_info *sbi)
2019 {
2020         struct free_segmap_info *free_i;
2021         unsigned int bitmap_size, sec_bitmap_size;
2022
2023         /* allocate memory for free segmap information */
2024         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2025         if (!free_i)
2026                 return -ENOMEM;
2027
2028         SM_I(sbi)->free_info = free_i;
2029
2030         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2031         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2032         if (!free_i->free_segmap)
2033                 return -ENOMEM;
2034
2035         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2036         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2037         if (!free_i->free_secmap)
2038                 return -ENOMEM;
2039
2040         /* set all segments as dirty temporarily */
2041         memset(free_i->free_segmap, 0xff, bitmap_size);
2042         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2043
2044         /* init free segmap information */
2045         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2046         free_i->free_segments = 0;
2047         free_i->free_sections = 0;
2048         spin_lock_init(&free_i->segmap_lock);
2049         return 0;
2050 }
2051
2052 static int build_curseg(struct f2fs_sb_info *sbi)
2053 {
2054         struct curseg_info *array;
2055         int i;
2056
2057         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2058         if (!array)
2059                 return -ENOMEM;
2060
2061         SM_I(sbi)->curseg_array = array;
2062
2063         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2064                 mutex_init(&array[i].curseg_mutex);
2065                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2066                 if (!array[i].sum_blk)
2067                         return -ENOMEM;
2068                 array[i].segno = NULL_SEGNO;
2069                 array[i].next_blkoff = 0;
2070         }
2071         return restore_curseg_summaries(sbi);
2072 }
2073
2074 static void build_sit_entries(struct f2fs_sb_info *sbi)
2075 {
2076         struct sit_info *sit_i = SIT_I(sbi);
2077         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2078         struct f2fs_summary_block *sum = curseg->sum_blk;
2079         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2080         unsigned int i, start, end;
2081         unsigned int readed, start_blk = 0;
2082         int nrpages = MAX_BIO_BLOCKS(sbi);
2083
2084         do {
2085                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2086
2087                 start = start_blk * sit_i->sents_per_block;
2088                 end = (start_blk + readed) * sit_i->sents_per_block;
2089
2090                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2091                         struct seg_entry *se = &sit_i->sentries[start];
2092                         struct f2fs_sit_block *sit_blk;
2093                         struct f2fs_sit_entry sit;
2094                         struct page *page;
2095
2096                         mutex_lock(&curseg->curseg_mutex);
2097                         for (i = 0; i < sits_in_cursum(sum); i++) {
2098                                 if (le32_to_cpu(segno_in_journal(sum, i))
2099                                                                 == start) {
2100                                         sit = sit_in_journal(sum, i);
2101                                         mutex_unlock(&curseg->curseg_mutex);
2102                                         goto got_it;
2103                                 }
2104                         }
2105                         mutex_unlock(&curseg->curseg_mutex);
2106
2107                         page = get_current_sit_page(sbi, start);
2108                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2109                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2110                         f2fs_put_page(page, 1);
2111 got_it:
2112                         check_block_count(sbi, start, &sit);
2113                         seg_info_from_raw_sit(se, &sit);
2114
2115                         /* build discard map only one time */
2116                         memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2117                         sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2118
2119                         if (sbi->segs_per_sec > 1) {
2120                                 struct sec_entry *e = get_sec_entry(sbi, start);
2121                                 e->valid_blocks += se->valid_blocks;
2122                         }
2123                 }
2124                 start_blk += readed;
2125         } while (start_blk < sit_blk_cnt);
2126 }
2127
2128 static void init_free_segmap(struct f2fs_sb_info *sbi)
2129 {
2130         unsigned int start;
2131         int type;
2132
2133         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2134                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2135                 if (!sentry->valid_blocks)
2136                         __set_free(sbi, start);
2137         }
2138
2139         /* set use the current segments */
2140         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2141                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2142                 __set_test_and_inuse(sbi, curseg_t->segno);
2143         }
2144 }
2145
2146 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2147 {
2148         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2149         struct free_segmap_info *free_i = FREE_I(sbi);
2150         unsigned int segno = 0, offset = 0;
2151         unsigned short valid_blocks;
2152
2153         while (1) {
2154                 /* find dirty segment based on free segmap */
2155                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2156                 if (segno >= MAIN_SEGS(sbi))
2157                         break;
2158                 offset = segno + 1;
2159                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2160                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2161                         continue;
2162                 if (valid_blocks > sbi->blocks_per_seg) {
2163                         f2fs_bug_on(sbi, 1);
2164                         continue;
2165                 }
2166                 mutex_lock(&dirty_i->seglist_lock);
2167                 __locate_dirty_segment(sbi, segno, DIRTY);
2168                 mutex_unlock(&dirty_i->seglist_lock);
2169         }
2170 }
2171
2172 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2173 {
2174         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2175         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2176
2177         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2178         if (!dirty_i->victim_secmap)
2179                 return -ENOMEM;
2180         return 0;
2181 }
2182
2183 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2184 {
2185         struct dirty_seglist_info *dirty_i;
2186         unsigned int bitmap_size, i;
2187
2188         /* allocate memory for dirty segments list information */
2189         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2190         if (!dirty_i)
2191                 return -ENOMEM;
2192
2193         SM_I(sbi)->dirty_info = dirty_i;
2194         mutex_init(&dirty_i->seglist_lock);
2195
2196         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2197
2198         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2199                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2200                 if (!dirty_i->dirty_segmap[i])
2201                         return -ENOMEM;
2202         }
2203
2204         init_dirty_segmap(sbi);
2205         return init_victim_secmap(sbi);
2206 }
2207
2208 /*
2209  * Update min, max modified time for cost-benefit GC algorithm
2210  */
2211 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2212 {
2213         struct sit_info *sit_i = SIT_I(sbi);
2214         unsigned int segno;
2215
2216         mutex_lock(&sit_i->sentry_lock);
2217
2218         sit_i->min_mtime = LLONG_MAX;
2219
2220         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2221                 unsigned int i;
2222                 unsigned long long mtime = 0;
2223
2224                 for (i = 0; i < sbi->segs_per_sec; i++)
2225                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2226
2227                 mtime = div_u64(mtime, sbi->segs_per_sec);
2228
2229                 if (sit_i->min_mtime > mtime)
2230                         sit_i->min_mtime = mtime;
2231         }
2232         sit_i->max_mtime = get_mtime(sbi);
2233         mutex_unlock(&sit_i->sentry_lock);
2234 }
2235
2236 int build_segment_manager(struct f2fs_sb_info *sbi)
2237 {
2238         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2239         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2240         struct f2fs_sm_info *sm_info;
2241         int err;
2242
2243         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2244         if (!sm_info)
2245                 return -ENOMEM;
2246
2247         /* init sm info */
2248         sbi->sm_info = sm_info;
2249         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2250         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2251         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2252         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2253         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2254         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2255         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2256         sm_info->rec_prefree_segments = sm_info->main_segments *
2257                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2258         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2259         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2260         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2261
2262         INIT_LIST_HEAD(&sm_info->discard_list);
2263         sm_info->nr_discards = 0;
2264         sm_info->max_discards = 0;
2265
2266         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2267
2268         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2269
2270         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2271                 err = create_flush_cmd_control(sbi);
2272                 if (err)
2273                         return err;
2274         }
2275
2276         err = build_sit_info(sbi);
2277         if (err)
2278                 return err;
2279         err = build_free_segmap(sbi);
2280         if (err)
2281                 return err;
2282         err = build_curseg(sbi);
2283         if (err)
2284                 return err;
2285
2286         /* reinit free segmap based on SIT */
2287         build_sit_entries(sbi);
2288
2289         init_free_segmap(sbi);
2290         err = build_dirty_segmap(sbi);
2291         if (err)
2292                 return err;
2293
2294         init_min_max_mtime(sbi);
2295         return 0;
2296 }
2297
2298 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2299                 enum dirty_type dirty_type)
2300 {
2301         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2302
2303         mutex_lock(&dirty_i->seglist_lock);
2304         kvfree(dirty_i->dirty_segmap[dirty_type]);
2305         dirty_i->nr_dirty[dirty_type] = 0;
2306         mutex_unlock(&dirty_i->seglist_lock);
2307 }
2308
2309 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2310 {
2311         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2312         kvfree(dirty_i->victim_secmap);
2313 }
2314
2315 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2316 {
2317         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2318         int i;
2319
2320         if (!dirty_i)
2321                 return;
2322
2323         /* discard pre-free/dirty segments list */
2324         for (i = 0; i < NR_DIRTY_TYPE; i++)
2325                 discard_dirty_segmap(sbi, i);
2326
2327         destroy_victim_secmap(sbi);
2328         SM_I(sbi)->dirty_info = NULL;
2329         kfree(dirty_i);
2330 }
2331
2332 static void destroy_curseg(struct f2fs_sb_info *sbi)
2333 {
2334         struct curseg_info *array = SM_I(sbi)->curseg_array;
2335         int i;
2336
2337         if (!array)
2338                 return;
2339         SM_I(sbi)->curseg_array = NULL;
2340         for (i = 0; i < NR_CURSEG_TYPE; i++)
2341                 kfree(array[i].sum_blk);
2342         kfree(array);
2343 }
2344
2345 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2346 {
2347         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2348         if (!free_i)
2349                 return;
2350         SM_I(sbi)->free_info = NULL;
2351         kvfree(free_i->free_segmap);
2352         kvfree(free_i->free_secmap);
2353         kfree(free_i);
2354 }
2355
2356 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2357 {
2358         struct sit_info *sit_i = SIT_I(sbi);
2359         unsigned int start;
2360
2361         if (!sit_i)
2362                 return;
2363
2364         if (sit_i->sentries) {
2365                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2366                         kfree(sit_i->sentries[start].cur_valid_map);
2367                         kfree(sit_i->sentries[start].ckpt_valid_map);
2368                         kfree(sit_i->sentries[start].discard_map);
2369                 }
2370         }
2371         kfree(sit_i->tmp_map);
2372
2373         kvfree(sit_i->sentries);
2374         kvfree(sit_i->sec_entries);
2375         kvfree(sit_i->dirty_sentries_bitmap);
2376
2377         SM_I(sbi)->sit_info = NULL;
2378         kfree(sit_i->sit_bitmap);
2379         kfree(sit_i);
2380 }
2381
2382 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2383 {
2384         struct f2fs_sm_info *sm_info = SM_I(sbi);
2385
2386         if (!sm_info)
2387                 return;
2388         destroy_flush_cmd_control(sbi);
2389         destroy_dirty_segmap(sbi);
2390         destroy_curseg(sbi);
2391         destroy_free_segmap(sbi);
2392         destroy_sit_info(sbi);
2393         sbi->sm_info = NULL;
2394         kfree(sm_info);
2395 }
2396
2397 int __init create_segment_manager_caches(void)
2398 {
2399         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2400                         sizeof(struct discard_entry));
2401         if (!discard_entry_slab)
2402                 goto fail;
2403
2404         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2405                         sizeof(struct sit_entry_set));
2406         if (!sit_entry_set_slab)
2407                 goto destory_discard_entry;
2408
2409         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2410                         sizeof(struct inmem_pages));
2411         if (!inmem_entry_slab)
2412                 goto destroy_sit_entry_set;
2413         return 0;
2414
2415 destroy_sit_entry_set:
2416         kmem_cache_destroy(sit_entry_set_slab);
2417 destory_discard_entry:
2418         kmem_cache_destroy(discard_entry_slab);
2419 fail:
2420         return -ENOMEM;
2421 }
2422
2423 void destroy_segment_manager_caches(void)
2424 {
2425         kmem_cache_destroy(sit_entry_set_slab);
2426         kmem_cache_destroy(discard_entry_slab);
2427         kmem_cache_destroy(inmem_entry_slab);
2428 }