]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
f7e73b2afe68169ae33dac522392caf24d821705
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171         struct f2fs_inode_info *fi = F2FS_I(inode);
172         struct inmem_pages *new;
173
174         f2fs_trace_pid(page);
175
176         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177         SetPagePrivate(page);
178
179         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181         /* add atomic page indices to the list */
182         new->page = page;
183         INIT_LIST_HEAD(&new->list);
184
185         /* increase reference count with clean state */
186         mutex_lock(&fi->inmem_lock);
187         get_page(page);
188         list_add_tail(&new->list, &fi->inmem_pages);
189         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190         mutex_unlock(&fi->inmem_lock);
191
192         trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196                                 struct list_head *head, bool drop, bool recover)
197 {
198         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199         struct inmem_pages *cur, *tmp;
200         int err = 0;
201
202         list_for_each_entry_safe(cur, tmp, head, list) {
203                 struct page *page = cur->page;
204
205                 if (drop)
206                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208                 lock_page(page);
209
210                 if (recover) {
211                         struct dnode_of_data dn;
212                         struct node_info ni;
213
214                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216                         set_new_dnode(&dn, inode, NULL, NULL, 0);
217                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218                                 err = -EAGAIN;
219                                 goto next;
220                         }
221                         get_node_info(sbi, dn.nid, &ni);
222                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223                                         cur->old_addr, ni.version, true, true);
224                         f2fs_put_dnode(&dn);
225                 }
226 next:
227                 /* we don't need to invalidate this in the sccessful status */
228                 if (drop || recover)
229                         ClearPageUptodate(page);
230                 set_page_private(page, 0);
231                 ClearPagePrivate(page);
232                 f2fs_put_page(page, 1);
233
234                 list_del(&cur->list);
235                 kmem_cache_free(inmem_entry_slab, cur);
236                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237         }
238         return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243         struct f2fs_inode_info *fi = F2FS_I(inode);
244
245         clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247         mutex_lock(&fi->inmem_lock);
248         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249         mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253                                         struct list_head *revoke_list)
254 {
255         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256         struct f2fs_inode_info *fi = F2FS_I(inode);
257         struct inmem_pages *cur, *tmp;
258         struct f2fs_io_info fio = {
259                 .sbi = sbi,
260                 .type = DATA,
261                 .op = REQ_OP_WRITE,
262                 .op_flags = WRITE_SYNC | REQ_PRIO,
263                 .encrypted_page = NULL,
264         };
265         bool submit_bio = false;
266         int err = 0;
267
268         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269                 struct page *page = cur->page;
270
271                 lock_page(page);
272                 if (page->mapping == inode->i_mapping) {
273                         trace_f2fs_commit_inmem_page(page, INMEM);
274
275                         set_page_dirty(page);
276                         f2fs_wait_on_page_writeback(page, DATA, true);
277                         if (clear_page_dirty_for_io(page)) {
278                                 inode_dec_dirty_pages(inode);
279                                 remove_dirty_inode(inode);
280                         }
281
282                         fio.page = page;
283                         err = do_write_data_page(&fio);
284                         if (err) {
285                                 unlock_page(page);
286                                 break;
287                         }
288
289                         /* record old blkaddr for revoking */
290                         cur->old_addr = fio.old_blkaddr;
291
292                         clear_cold_data(page);
293                         submit_bio = true;
294                 }
295                 unlock_page(page);
296                 list_move_tail(&cur->list, revoke_list);
297         }
298
299         if (submit_bio)
300                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
301
302         if (!err)
303                 __revoke_inmem_pages(inode, revoke_list, false, false);
304
305         return err;
306 }
307
308 int commit_inmem_pages(struct inode *inode)
309 {
310         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311         struct f2fs_inode_info *fi = F2FS_I(inode);
312         struct list_head revoke_list;
313         int err;
314
315         INIT_LIST_HEAD(&revoke_list);
316         f2fs_balance_fs(sbi, true);
317         f2fs_lock_op(sbi);
318
319         mutex_lock(&fi->inmem_lock);
320         err = __commit_inmem_pages(inode, &revoke_list);
321         if (err) {
322                 int ret;
323                 /*
324                  * try to revoke all committed pages, but still we could fail
325                  * due to no memory or other reason, if that happened, EAGAIN
326                  * will be returned, which means in such case, transaction is
327                  * already not integrity, caller should use journal to do the
328                  * recovery or rewrite & commit last transaction. For other
329                  * error number, revoking was done by filesystem itself.
330                  */
331                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
332                 if (ret)
333                         err = ret;
334
335                 /* drop all uncommitted pages */
336                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
337         }
338         mutex_unlock(&fi->inmem_lock);
339
340         f2fs_unlock_op(sbi);
341         return err;
342 }
343
344 /*
345  * This function balances dirty node and dentry pages.
346  * In addition, it controls garbage collection.
347  */
348 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
349 {
350 #ifdef CONFIG_F2FS_FAULT_INJECTION
351         if (time_to_inject(sbi, FAULT_CHECKPOINT))
352                 f2fs_stop_checkpoint(sbi, false);
353 #endif
354
355         if (!need)
356                 return;
357
358         /* balance_fs_bg is able to be pending */
359         if (excess_cached_nats(sbi))
360                 f2fs_balance_fs_bg(sbi);
361
362         /*
363          * We should do GC or end up with checkpoint, if there are so many dirty
364          * dir/node pages without enough free segments.
365          */
366         if (has_not_enough_free_secs(sbi, 0, 0)) {
367                 mutex_lock(&sbi->gc_mutex);
368                 f2fs_gc(sbi, false);
369         }
370 }
371
372 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
373 {
374         /* try to shrink extent cache when there is no enough memory */
375         if (!available_free_memory(sbi, EXTENT_CACHE))
376                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
377
378         /* check the # of cached NAT entries */
379         if (!available_free_memory(sbi, NAT_ENTRIES))
380                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
381
382         if (!available_free_memory(sbi, FREE_NIDS))
383                 try_to_free_nids(sbi, MAX_FREE_NIDS);
384         else
385                 build_free_nids(sbi);
386
387         /* checkpoint is the only way to shrink partial cached entries */
388         if (!available_free_memory(sbi, NAT_ENTRIES) ||
389                         !available_free_memory(sbi, INO_ENTRIES) ||
390                         excess_prefree_segs(sbi) ||
391                         excess_dirty_nats(sbi) ||
392                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
393                 if (test_opt(sbi, DATA_FLUSH)) {
394                         struct blk_plug plug;
395
396                         blk_start_plug(&plug);
397                         sync_dirty_inodes(sbi, FILE_INODE);
398                         blk_finish_plug(&plug);
399                 }
400                 f2fs_sync_fs(sbi->sb, true);
401                 stat_inc_bg_cp_count(sbi->stat_info);
402         }
403 }
404
405 static int issue_flush_thread(void *data)
406 {
407         struct f2fs_sb_info *sbi = data;
408         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
409         wait_queue_head_t *q = &fcc->flush_wait_queue;
410 repeat:
411         if (kthread_should_stop())
412                 return 0;
413
414         if (!llist_empty(&fcc->issue_list)) {
415                 struct bio *bio;
416                 struct flush_cmd *cmd, *next;
417                 int ret;
418
419                 bio = f2fs_bio_alloc(0);
420
421                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
422                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
423
424                 bio->bi_bdev = sbi->sb->s_bdev;
425                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
426                 ret = submit_bio_wait(bio);
427
428                 llist_for_each_entry_safe(cmd, next,
429                                           fcc->dispatch_list, llnode) {
430                         cmd->ret = ret;
431                         complete(&cmd->wait);
432                 }
433                 bio_put(bio);
434                 fcc->dispatch_list = NULL;
435         }
436
437         wait_event_interruptible(*q,
438                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
439         goto repeat;
440 }
441
442 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
443 {
444         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
445         struct flush_cmd cmd;
446
447         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
448                                         test_opt(sbi, FLUSH_MERGE));
449
450         if (test_opt(sbi, NOBARRIER))
451                 return 0;
452
453         if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
454                 struct bio *bio = f2fs_bio_alloc(0);
455                 int ret;
456
457                 atomic_inc(&fcc->submit_flush);
458                 bio->bi_bdev = sbi->sb->s_bdev;
459                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
460                 ret = submit_bio_wait(bio);
461                 atomic_dec(&fcc->submit_flush);
462                 bio_put(bio);
463                 return ret;
464         }
465
466         init_completion(&cmd.wait);
467
468         atomic_inc(&fcc->submit_flush);
469         llist_add(&cmd.llnode, &fcc->issue_list);
470
471         if (!fcc->dispatch_list)
472                 wake_up(&fcc->flush_wait_queue);
473
474         wait_for_completion(&cmd.wait);
475         atomic_dec(&fcc->submit_flush);
476
477         return cmd.ret;
478 }
479
480 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
481 {
482         dev_t dev = sbi->sb->s_bdev->bd_dev;
483         struct flush_cmd_control *fcc;
484         int err = 0;
485
486         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
487         if (!fcc)
488                 return -ENOMEM;
489         atomic_set(&fcc->submit_flush, 0);
490         init_waitqueue_head(&fcc->flush_wait_queue);
491         init_llist_head(&fcc->issue_list);
492         SM_I(sbi)->cmd_control_info = fcc;
493         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
494                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
495         if (IS_ERR(fcc->f2fs_issue_flush)) {
496                 err = PTR_ERR(fcc->f2fs_issue_flush);
497                 kfree(fcc);
498                 SM_I(sbi)->cmd_control_info = NULL;
499                 return err;
500         }
501
502         return err;
503 }
504
505 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
506 {
507         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
508
509         if (fcc && fcc->f2fs_issue_flush)
510                 kthread_stop(fcc->f2fs_issue_flush);
511         kfree(fcc);
512         SM_I(sbi)->cmd_control_info = NULL;
513 }
514
515 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
516                 enum dirty_type dirty_type)
517 {
518         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
519
520         /* need not be added */
521         if (IS_CURSEG(sbi, segno))
522                 return;
523
524         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
525                 dirty_i->nr_dirty[dirty_type]++;
526
527         if (dirty_type == DIRTY) {
528                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
529                 enum dirty_type t = sentry->type;
530
531                 if (unlikely(t >= DIRTY)) {
532                         f2fs_bug_on(sbi, 1);
533                         return;
534                 }
535                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
536                         dirty_i->nr_dirty[t]++;
537         }
538 }
539
540 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
541                 enum dirty_type dirty_type)
542 {
543         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
544
545         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
546                 dirty_i->nr_dirty[dirty_type]--;
547
548         if (dirty_type == DIRTY) {
549                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
550                 enum dirty_type t = sentry->type;
551
552                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
553                         dirty_i->nr_dirty[t]--;
554
555                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
556                         clear_bit(GET_SECNO(sbi, segno),
557                                                 dirty_i->victim_secmap);
558         }
559 }
560
561 /*
562  * Should not occur error such as -ENOMEM.
563  * Adding dirty entry into seglist is not critical operation.
564  * If a given segment is one of current working segments, it won't be added.
565  */
566 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
567 {
568         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
569         unsigned short valid_blocks;
570
571         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
572                 return;
573
574         mutex_lock(&dirty_i->seglist_lock);
575
576         valid_blocks = get_valid_blocks(sbi, segno, 0);
577
578         if (valid_blocks == 0) {
579                 __locate_dirty_segment(sbi, segno, PRE);
580                 __remove_dirty_segment(sbi, segno, DIRTY);
581         } else if (valid_blocks < sbi->blocks_per_seg) {
582                 __locate_dirty_segment(sbi, segno, DIRTY);
583         } else {
584                 /* Recovery routine with SSR needs this */
585                 __remove_dirty_segment(sbi, segno, DIRTY);
586         }
587
588         mutex_unlock(&dirty_i->seglist_lock);
589 }
590
591 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
592                                                         struct bio *bio)
593 {
594         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
595         struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
596
597         INIT_LIST_HEAD(&be->list);
598         be->bio = bio;
599         init_completion(&be->event);
600         list_add_tail(&be->list, wait_list);
601
602         return be;
603 }
604
605 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
606 {
607         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
608         struct bio_entry *be, *tmp;
609
610         list_for_each_entry_safe(be, tmp, wait_list, list) {
611                 struct bio *bio = be->bio;
612                 int err;
613
614                 wait_for_completion_io(&be->event);
615                 err = be->error;
616                 if (err == -EOPNOTSUPP)
617                         err = 0;
618
619                 if (err)
620                         f2fs_msg(sbi->sb, KERN_INFO,
621                                 "Issue discard failed, ret: %d", err);
622
623                 bio_put(bio);
624                 list_del(&be->list);
625                 kmem_cache_free(bio_entry_slab, be);
626         }
627 }
628
629 static void f2fs_submit_bio_wait_endio(struct bio *bio)
630 {
631         struct bio_entry *be = (struct bio_entry *)bio->bi_private;
632
633         be->error = bio->bi_error;
634         complete(&be->event);
635 }
636
637 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
638 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
639                 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
640 {
641         struct block_device *bdev = sbi->sb->s_bdev;
642         struct bio *bio = NULL;
643         int err;
644
645         err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
646                         &bio);
647         if (!err && bio) {
648                 struct bio_entry *be = __add_bio_entry(sbi, bio);
649
650                 bio->bi_private = be;
651                 bio->bi_end_io = f2fs_submit_bio_wait_endio;
652                 bio->bi_opf |= REQ_SYNC;
653                 submit_bio(bio);
654         }
655
656         return err;
657 }
658
659 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
660                                 block_t blkstart, block_t blklen)
661 {
662         sector_t start = SECTOR_FROM_BLOCK(blkstart);
663         sector_t len = SECTOR_FROM_BLOCK(blklen);
664         struct seg_entry *se;
665         unsigned int offset;
666         block_t i;
667
668         for (i = blkstart; i < blkstart + blklen; i++) {
669                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
670                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
671
672                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
673                         sbi->discard_blks--;
674         }
675         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
676         return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
677 }
678
679 static void __add_discard_entry(struct f2fs_sb_info *sbi,
680                 struct cp_control *cpc, struct seg_entry *se,
681                 unsigned int start, unsigned int end)
682 {
683         struct list_head *head = &SM_I(sbi)->discard_list;
684         struct discard_entry *new, *last;
685
686         if (!list_empty(head)) {
687                 last = list_last_entry(head, struct discard_entry, list);
688                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
689                                                 last->blkaddr + last->len) {
690                         last->len += end - start;
691                         goto done;
692                 }
693         }
694
695         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
696         INIT_LIST_HEAD(&new->list);
697         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
698         new->len = end - start;
699         list_add_tail(&new->list, head);
700 done:
701         SM_I(sbi)->nr_discards += end - start;
702 }
703
704 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
705 {
706         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
707         int max_blocks = sbi->blocks_per_seg;
708         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
709         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
710         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
711         unsigned long *discard_map = (unsigned long *)se->discard_map;
712         unsigned long *dmap = SIT_I(sbi)->tmp_map;
713         unsigned int start = 0, end = -1;
714         bool force = (cpc->reason == CP_DISCARD);
715         int i;
716
717         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
718                 return;
719
720         if (!force) {
721                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
722                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
723                         return;
724         }
725
726         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
727         for (i = 0; i < entries; i++)
728                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
729                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
730
731         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
732                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
733                 if (start >= max_blocks)
734                         break;
735
736                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
737                 if (force && start && end != max_blocks
738                                         && (end - start) < cpc->trim_minlen)
739                         continue;
740
741                 __add_discard_entry(sbi, cpc, se, start, end);
742         }
743 }
744
745 void release_discard_addrs(struct f2fs_sb_info *sbi)
746 {
747         struct list_head *head = &(SM_I(sbi)->discard_list);
748         struct discard_entry *entry, *this;
749
750         /* drop caches */
751         list_for_each_entry_safe(entry, this, head, list) {
752                 list_del(&entry->list);
753                 kmem_cache_free(discard_entry_slab, entry);
754         }
755 }
756
757 /*
758  * Should call clear_prefree_segments after checkpoint is done.
759  */
760 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
761 {
762         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
763         unsigned int segno;
764
765         mutex_lock(&dirty_i->seglist_lock);
766         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
767                 __set_test_and_free(sbi, segno);
768         mutex_unlock(&dirty_i->seglist_lock);
769 }
770
771 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
772 {
773         struct list_head *head = &(SM_I(sbi)->discard_list);
774         struct discard_entry *entry, *this;
775         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
776         struct blk_plug plug;
777         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
778         unsigned int start = 0, end = -1;
779         unsigned int secno, start_segno;
780         bool force = (cpc->reason == CP_DISCARD);
781
782         blk_start_plug(&plug);
783
784         mutex_lock(&dirty_i->seglist_lock);
785
786         while (1) {
787                 int i;
788                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
789                 if (start >= MAIN_SEGS(sbi))
790                         break;
791                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
792                                                                 start + 1);
793
794                 for (i = start; i < end; i++)
795                         clear_bit(i, prefree_map);
796
797                 dirty_i->nr_dirty[PRE] -= end - start;
798
799                 if (force || !test_opt(sbi, DISCARD))
800                         continue;
801
802                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
803                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
804                                 (end - start) << sbi->log_blocks_per_seg);
805                         continue;
806                 }
807 next:
808                 secno = GET_SECNO(sbi, start);
809                 start_segno = secno * sbi->segs_per_sec;
810                 if (!IS_CURSEC(sbi, secno) &&
811                         !get_valid_blocks(sbi, start, sbi->segs_per_sec))
812                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
813                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
814
815                 start = start_segno + sbi->segs_per_sec;
816                 if (start < end)
817                         goto next;
818         }
819         mutex_unlock(&dirty_i->seglist_lock);
820
821         /* send small discards */
822         list_for_each_entry_safe(entry, this, head, list) {
823                 if (force && entry->len < cpc->trim_minlen)
824                         goto skip;
825                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
826                 cpc->trimmed += entry->len;
827 skip:
828                 list_del(&entry->list);
829                 SM_I(sbi)->nr_discards -= entry->len;
830                 kmem_cache_free(discard_entry_slab, entry);
831         }
832
833         blk_finish_plug(&plug);
834 }
835
836 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
837 {
838         struct sit_info *sit_i = SIT_I(sbi);
839
840         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
841                 sit_i->dirty_sentries++;
842                 return false;
843         }
844
845         return true;
846 }
847
848 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
849                                         unsigned int segno, int modified)
850 {
851         struct seg_entry *se = get_seg_entry(sbi, segno);
852         se->type = type;
853         if (modified)
854                 __mark_sit_entry_dirty(sbi, segno);
855 }
856
857 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
858 {
859         struct seg_entry *se;
860         unsigned int segno, offset;
861         long int new_vblocks;
862
863         segno = GET_SEGNO(sbi, blkaddr);
864
865         se = get_seg_entry(sbi, segno);
866         new_vblocks = se->valid_blocks + del;
867         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
868
869         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
870                                 (new_vblocks > sbi->blocks_per_seg)));
871
872         se->valid_blocks = new_vblocks;
873         se->mtime = get_mtime(sbi);
874         SIT_I(sbi)->max_mtime = se->mtime;
875
876         /* Update valid block bitmap */
877         if (del > 0) {
878                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
879                         f2fs_bug_on(sbi, 1);
880                 if (f2fs_discard_en(sbi) &&
881                         !f2fs_test_and_set_bit(offset, se->discard_map))
882                         sbi->discard_blks--;
883         } else {
884                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
885                         f2fs_bug_on(sbi, 1);
886                 if (f2fs_discard_en(sbi) &&
887                         f2fs_test_and_clear_bit(offset, se->discard_map))
888                         sbi->discard_blks++;
889         }
890         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
891                 se->ckpt_valid_blocks += del;
892
893         __mark_sit_entry_dirty(sbi, segno);
894
895         /* update total number of valid blocks to be written in ckpt area */
896         SIT_I(sbi)->written_valid_blocks += del;
897
898         if (sbi->segs_per_sec > 1)
899                 get_sec_entry(sbi, segno)->valid_blocks += del;
900 }
901
902 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
903 {
904         update_sit_entry(sbi, new, 1);
905         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
906                 update_sit_entry(sbi, old, -1);
907
908         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
909         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
910 }
911
912 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
913 {
914         unsigned int segno = GET_SEGNO(sbi, addr);
915         struct sit_info *sit_i = SIT_I(sbi);
916
917         f2fs_bug_on(sbi, addr == NULL_ADDR);
918         if (addr == NEW_ADDR)
919                 return;
920
921         /* add it into sit main buffer */
922         mutex_lock(&sit_i->sentry_lock);
923
924         update_sit_entry(sbi, addr, -1);
925
926         /* add it into dirty seglist */
927         locate_dirty_segment(sbi, segno);
928
929         mutex_unlock(&sit_i->sentry_lock);
930 }
931
932 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
933 {
934         struct sit_info *sit_i = SIT_I(sbi);
935         unsigned int segno, offset;
936         struct seg_entry *se;
937         bool is_cp = false;
938
939         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
940                 return true;
941
942         mutex_lock(&sit_i->sentry_lock);
943
944         segno = GET_SEGNO(sbi, blkaddr);
945         se = get_seg_entry(sbi, segno);
946         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
947
948         if (f2fs_test_bit(offset, se->ckpt_valid_map))
949                 is_cp = true;
950
951         mutex_unlock(&sit_i->sentry_lock);
952
953         return is_cp;
954 }
955
956 /*
957  * This function should be resided under the curseg_mutex lock
958  */
959 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
960                                         struct f2fs_summary *sum)
961 {
962         struct curseg_info *curseg = CURSEG_I(sbi, type);
963         void *addr = curseg->sum_blk;
964         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
965         memcpy(addr, sum, sizeof(struct f2fs_summary));
966 }
967
968 /*
969  * Calculate the number of current summary pages for writing
970  */
971 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
972 {
973         int valid_sum_count = 0;
974         int i, sum_in_page;
975
976         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
977                 if (sbi->ckpt->alloc_type[i] == SSR)
978                         valid_sum_count += sbi->blocks_per_seg;
979                 else {
980                         if (for_ra)
981                                 valid_sum_count += le16_to_cpu(
982                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
983                         else
984                                 valid_sum_count += curseg_blkoff(sbi, i);
985                 }
986         }
987
988         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
989                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
990         if (valid_sum_count <= sum_in_page)
991                 return 1;
992         else if ((valid_sum_count - sum_in_page) <=
993                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
994                 return 2;
995         return 3;
996 }
997
998 /*
999  * Caller should put this summary page
1000  */
1001 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1002 {
1003         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1004 }
1005
1006 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1007 {
1008         struct page *page = grab_meta_page(sbi, blk_addr);
1009         void *dst = page_address(page);
1010
1011         if (src)
1012                 memcpy(dst, src, PAGE_SIZE);
1013         else
1014                 memset(dst, 0, PAGE_SIZE);
1015         set_page_dirty(page);
1016         f2fs_put_page(page, 1);
1017 }
1018
1019 static void write_sum_page(struct f2fs_sb_info *sbi,
1020                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
1021 {
1022         update_meta_page(sbi, (void *)sum_blk, blk_addr);
1023 }
1024
1025 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1026                                                 int type, block_t blk_addr)
1027 {
1028         struct curseg_info *curseg = CURSEG_I(sbi, type);
1029         struct page *page = grab_meta_page(sbi, blk_addr);
1030         struct f2fs_summary_block *src = curseg->sum_blk;
1031         struct f2fs_summary_block *dst;
1032
1033         dst = (struct f2fs_summary_block *)page_address(page);
1034
1035         mutex_lock(&curseg->curseg_mutex);
1036
1037         down_read(&curseg->journal_rwsem);
1038         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1039         up_read(&curseg->journal_rwsem);
1040
1041         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1042         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1043
1044         mutex_unlock(&curseg->curseg_mutex);
1045
1046         set_page_dirty(page);
1047         f2fs_put_page(page, 1);
1048 }
1049
1050 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1051 {
1052         struct curseg_info *curseg = CURSEG_I(sbi, type);
1053         unsigned int segno = curseg->segno + 1;
1054         struct free_segmap_info *free_i = FREE_I(sbi);
1055
1056         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1057                 return !test_bit(segno, free_i->free_segmap);
1058         return 0;
1059 }
1060
1061 /*
1062  * Find a new segment from the free segments bitmap to right order
1063  * This function should be returned with success, otherwise BUG
1064  */
1065 static void get_new_segment(struct f2fs_sb_info *sbi,
1066                         unsigned int *newseg, bool new_sec, int dir)
1067 {
1068         struct free_segmap_info *free_i = FREE_I(sbi);
1069         unsigned int segno, secno, zoneno;
1070         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1071         unsigned int hint = *newseg / sbi->segs_per_sec;
1072         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1073         unsigned int left_start = hint;
1074         bool init = true;
1075         int go_left = 0;
1076         int i;
1077
1078         spin_lock(&free_i->segmap_lock);
1079
1080         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1081                 segno = find_next_zero_bit(free_i->free_segmap,
1082                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1083                 if (segno < (hint + 1) * sbi->segs_per_sec)
1084                         goto got_it;
1085         }
1086 find_other_zone:
1087         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1088         if (secno >= MAIN_SECS(sbi)) {
1089                 if (dir == ALLOC_RIGHT) {
1090                         secno = find_next_zero_bit(free_i->free_secmap,
1091                                                         MAIN_SECS(sbi), 0);
1092                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1093                 } else {
1094                         go_left = 1;
1095                         left_start = hint - 1;
1096                 }
1097         }
1098         if (go_left == 0)
1099                 goto skip_left;
1100
1101         while (test_bit(left_start, free_i->free_secmap)) {
1102                 if (left_start > 0) {
1103                         left_start--;
1104                         continue;
1105                 }
1106                 left_start = find_next_zero_bit(free_i->free_secmap,
1107                                                         MAIN_SECS(sbi), 0);
1108                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1109                 break;
1110         }
1111         secno = left_start;
1112 skip_left:
1113         hint = secno;
1114         segno = secno * sbi->segs_per_sec;
1115         zoneno = secno / sbi->secs_per_zone;
1116
1117         /* give up on finding another zone */
1118         if (!init)
1119                 goto got_it;
1120         if (sbi->secs_per_zone == 1)
1121                 goto got_it;
1122         if (zoneno == old_zoneno)
1123                 goto got_it;
1124         if (dir == ALLOC_LEFT) {
1125                 if (!go_left && zoneno + 1 >= total_zones)
1126                         goto got_it;
1127                 if (go_left && zoneno == 0)
1128                         goto got_it;
1129         }
1130         for (i = 0; i < NR_CURSEG_TYPE; i++)
1131                 if (CURSEG_I(sbi, i)->zone == zoneno)
1132                         break;
1133
1134         if (i < NR_CURSEG_TYPE) {
1135                 /* zone is in user, try another */
1136                 if (go_left)
1137                         hint = zoneno * sbi->secs_per_zone - 1;
1138                 else if (zoneno + 1 >= total_zones)
1139                         hint = 0;
1140                 else
1141                         hint = (zoneno + 1) * sbi->secs_per_zone;
1142                 init = false;
1143                 goto find_other_zone;
1144         }
1145 got_it:
1146         /* set it as dirty segment in free segmap */
1147         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1148         __set_inuse(sbi, segno);
1149         *newseg = segno;
1150         spin_unlock(&free_i->segmap_lock);
1151 }
1152
1153 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1154 {
1155         struct curseg_info *curseg = CURSEG_I(sbi, type);
1156         struct summary_footer *sum_footer;
1157
1158         curseg->segno = curseg->next_segno;
1159         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1160         curseg->next_blkoff = 0;
1161         curseg->next_segno = NULL_SEGNO;
1162
1163         sum_footer = &(curseg->sum_blk->footer);
1164         memset(sum_footer, 0, sizeof(struct summary_footer));
1165         if (IS_DATASEG(type))
1166                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1167         if (IS_NODESEG(type))
1168                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1169         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1170 }
1171
1172 /*
1173  * Allocate a current working segment.
1174  * This function always allocates a free segment in LFS manner.
1175  */
1176 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1177 {
1178         struct curseg_info *curseg = CURSEG_I(sbi, type);
1179         unsigned int segno = curseg->segno;
1180         int dir = ALLOC_LEFT;
1181
1182         write_sum_page(sbi, curseg->sum_blk,
1183                                 GET_SUM_BLOCK(sbi, segno));
1184         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1185                 dir = ALLOC_RIGHT;
1186
1187         if (test_opt(sbi, NOHEAP))
1188                 dir = ALLOC_RIGHT;
1189
1190         get_new_segment(sbi, &segno, new_sec, dir);
1191         curseg->next_segno = segno;
1192         reset_curseg(sbi, type, 1);
1193         curseg->alloc_type = LFS;
1194 }
1195
1196 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1197                         struct curseg_info *seg, block_t start)
1198 {
1199         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1200         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1201         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1202         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1203         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1204         int i, pos;
1205
1206         for (i = 0; i < entries; i++)
1207                 target_map[i] = ckpt_map[i] | cur_map[i];
1208
1209         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1210
1211         seg->next_blkoff = pos;
1212 }
1213
1214 /*
1215  * If a segment is written by LFS manner, next block offset is just obtained
1216  * by increasing the current block offset. However, if a segment is written by
1217  * SSR manner, next block offset obtained by calling __next_free_blkoff
1218  */
1219 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1220                                 struct curseg_info *seg)
1221 {
1222         if (seg->alloc_type == SSR)
1223                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1224         else
1225                 seg->next_blkoff++;
1226 }
1227
1228 /*
1229  * This function always allocates a used segment(from dirty seglist) by SSR
1230  * manner, so it should recover the existing segment information of valid blocks
1231  */
1232 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1233 {
1234         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1235         struct curseg_info *curseg = CURSEG_I(sbi, type);
1236         unsigned int new_segno = curseg->next_segno;
1237         struct f2fs_summary_block *sum_node;
1238         struct page *sum_page;
1239
1240         write_sum_page(sbi, curseg->sum_blk,
1241                                 GET_SUM_BLOCK(sbi, curseg->segno));
1242         __set_test_and_inuse(sbi, new_segno);
1243
1244         mutex_lock(&dirty_i->seglist_lock);
1245         __remove_dirty_segment(sbi, new_segno, PRE);
1246         __remove_dirty_segment(sbi, new_segno, DIRTY);
1247         mutex_unlock(&dirty_i->seglist_lock);
1248
1249         reset_curseg(sbi, type, 1);
1250         curseg->alloc_type = SSR;
1251         __next_free_blkoff(sbi, curseg, 0);
1252
1253         if (reuse) {
1254                 sum_page = get_sum_page(sbi, new_segno);
1255                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1256                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1257                 f2fs_put_page(sum_page, 1);
1258         }
1259 }
1260
1261 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1262 {
1263         struct curseg_info *curseg = CURSEG_I(sbi, type);
1264         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1265
1266         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1267                 return v_ops->get_victim(sbi,
1268                                 &(curseg)->next_segno, BG_GC, type, SSR);
1269
1270         /* For data segments, let's do SSR more intensively */
1271         for (; type >= CURSEG_HOT_DATA; type--)
1272                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1273                                                 BG_GC, type, SSR))
1274                         return 1;
1275         return 0;
1276 }
1277
1278 /*
1279  * flush out current segment and replace it with new segment
1280  * This function should be returned with success, otherwise BUG
1281  */
1282 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1283                                                 int type, bool force)
1284 {
1285         struct curseg_info *curseg = CURSEG_I(sbi, type);
1286
1287         if (force)
1288                 new_curseg(sbi, type, true);
1289         else if (type == CURSEG_WARM_NODE)
1290                 new_curseg(sbi, type, false);
1291         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1292                 new_curseg(sbi, type, false);
1293         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1294                 change_curseg(sbi, type, true);
1295         else
1296                 new_curseg(sbi, type, false);
1297
1298         stat_inc_seg_type(sbi, curseg);
1299 }
1300
1301 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1302 {
1303         struct curseg_info *curseg = CURSEG_I(sbi, type);
1304         unsigned int old_segno;
1305
1306         old_segno = curseg->segno;
1307         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1308         locate_dirty_segment(sbi, old_segno);
1309 }
1310
1311 void allocate_new_segments(struct f2fs_sb_info *sbi)
1312 {
1313         int i;
1314
1315         if (test_opt(sbi, LFS))
1316                 return;
1317
1318         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1319                 __allocate_new_segments(sbi, i);
1320 }
1321
1322 static const struct segment_allocation default_salloc_ops = {
1323         .allocate_segment = allocate_segment_by_default,
1324 };
1325
1326 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1327 {
1328         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1329         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1330         unsigned int start_segno, end_segno;
1331         struct cp_control cpc;
1332         int err = 0;
1333
1334         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1335                 return -EINVAL;
1336
1337         cpc.trimmed = 0;
1338         if (end <= MAIN_BLKADDR(sbi))
1339                 goto out;
1340
1341         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1342                 f2fs_msg(sbi->sb, KERN_WARNING,
1343                         "Found FS corruption, run fsck to fix.");
1344                 goto out;
1345         }
1346
1347         /* start/end segment number in main_area */
1348         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1349         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1350                                                 GET_SEGNO(sbi, end);
1351         cpc.reason = CP_DISCARD;
1352         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1353
1354         /* do checkpoint to issue discard commands safely */
1355         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1356                 cpc.trim_start = start_segno;
1357
1358                 if (sbi->discard_blks == 0)
1359                         break;
1360                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1361                         cpc.trim_end = end_segno;
1362                 else
1363                         cpc.trim_end = min_t(unsigned int,
1364                                 rounddown(start_segno +
1365                                 BATCHED_TRIM_SEGMENTS(sbi),
1366                                 sbi->segs_per_sec) - 1, end_segno);
1367
1368                 mutex_lock(&sbi->gc_mutex);
1369                 err = write_checkpoint(sbi, &cpc);
1370                 mutex_unlock(&sbi->gc_mutex);
1371                 if (err)
1372                         break;
1373
1374                 schedule();
1375         }
1376 out:
1377         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1378         return err;
1379 }
1380
1381 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1382 {
1383         struct curseg_info *curseg = CURSEG_I(sbi, type);
1384         if (curseg->next_blkoff < sbi->blocks_per_seg)
1385                 return true;
1386         return false;
1387 }
1388
1389 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1390 {
1391         if (p_type == DATA)
1392                 return CURSEG_HOT_DATA;
1393         else
1394                 return CURSEG_HOT_NODE;
1395 }
1396
1397 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1398 {
1399         if (p_type == DATA) {
1400                 struct inode *inode = page->mapping->host;
1401
1402                 if (S_ISDIR(inode->i_mode))
1403                         return CURSEG_HOT_DATA;
1404                 else
1405                         return CURSEG_COLD_DATA;
1406         } else {
1407                 if (IS_DNODE(page) && is_cold_node(page))
1408                         return CURSEG_WARM_NODE;
1409                 else
1410                         return CURSEG_COLD_NODE;
1411         }
1412 }
1413
1414 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1415 {
1416         if (p_type == DATA) {
1417                 struct inode *inode = page->mapping->host;
1418
1419                 if (S_ISDIR(inode->i_mode))
1420                         return CURSEG_HOT_DATA;
1421                 else if (is_cold_data(page) || file_is_cold(inode))
1422                         return CURSEG_COLD_DATA;
1423                 else
1424                         return CURSEG_WARM_DATA;
1425         } else {
1426                 if (IS_DNODE(page))
1427                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1428                                                 CURSEG_HOT_NODE;
1429                 else
1430                         return CURSEG_COLD_NODE;
1431         }
1432 }
1433
1434 static int __get_segment_type(struct page *page, enum page_type p_type)
1435 {
1436         switch (F2FS_P_SB(page)->active_logs) {
1437         case 2:
1438                 return __get_segment_type_2(page, p_type);
1439         case 4:
1440                 return __get_segment_type_4(page, p_type);
1441         }
1442         /* NR_CURSEG_TYPE(6) logs by default */
1443         f2fs_bug_on(F2FS_P_SB(page),
1444                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1445         return __get_segment_type_6(page, p_type);
1446 }
1447
1448 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1449                 block_t old_blkaddr, block_t *new_blkaddr,
1450                 struct f2fs_summary *sum, int type)
1451 {
1452         struct sit_info *sit_i = SIT_I(sbi);
1453         struct curseg_info *curseg;
1454         bool direct_io = (type == CURSEG_DIRECT_IO);
1455
1456         type = direct_io ? CURSEG_WARM_DATA : type;
1457
1458         curseg = CURSEG_I(sbi, type);
1459
1460         mutex_lock(&curseg->curseg_mutex);
1461         mutex_lock(&sit_i->sentry_lock);
1462
1463         /* direct_io'ed data is aligned to the segment for better performance */
1464         if (direct_io && curseg->next_blkoff &&
1465                                 !has_not_enough_free_secs(sbi, 0, 0))
1466                 __allocate_new_segments(sbi, type);
1467
1468         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1469
1470         /*
1471          * __add_sum_entry should be resided under the curseg_mutex
1472          * because, this function updates a summary entry in the
1473          * current summary block.
1474          */
1475         __add_sum_entry(sbi, type, sum);
1476
1477         __refresh_next_blkoff(sbi, curseg);
1478
1479         stat_inc_block_count(sbi, curseg);
1480
1481         if (!__has_curseg_space(sbi, type))
1482                 sit_i->s_ops->allocate_segment(sbi, type, false);
1483         /*
1484          * SIT information should be updated before segment allocation,
1485          * since SSR needs latest valid block information.
1486          */
1487         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1488
1489         mutex_unlock(&sit_i->sentry_lock);
1490
1491         if (page && IS_NODESEG(type))
1492                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1493
1494         mutex_unlock(&curseg->curseg_mutex);
1495 }
1496
1497 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1498 {
1499         int type = __get_segment_type(fio->page, fio->type);
1500
1501         if (fio->type == NODE || fio->type == DATA)
1502                 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1503
1504         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1505                                         &fio->new_blkaddr, sum, type);
1506
1507         /* writeout dirty page into bdev */
1508         f2fs_submit_page_mbio(fio);
1509
1510         if (fio->type == NODE || fio->type == DATA)
1511                 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1512 }
1513
1514 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1515 {
1516         struct f2fs_io_info fio = {
1517                 .sbi = sbi,
1518                 .type = META,
1519                 .op = REQ_OP_WRITE,
1520                 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1521                 .old_blkaddr = page->index,
1522                 .new_blkaddr = page->index,
1523                 .page = page,
1524                 .encrypted_page = NULL,
1525         };
1526
1527         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1528                 fio.op_flags &= ~REQ_META;
1529
1530         set_page_writeback(page);
1531         f2fs_submit_page_mbio(&fio);
1532 }
1533
1534 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1535 {
1536         struct f2fs_summary sum;
1537
1538         set_summary(&sum, nid, 0, 0);
1539         do_write_page(&sum, fio);
1540 }
1541
1542 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1543 {
1544         struct f2fs_sb_info *sbi = fio->sbi;
1545         struct f2fs_summary sum;
1546         struct node_info ni;
1547
1548         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1549         get_node_info(sbi, dn->nid, &ni);
1550         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1551         do_write_page(&sum, fio);
1552         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1553 }
1554
1555 void rewrite_data_page(struct f2fs_io_info *fio)
1556 {
1557         fio->new_blkaddr = fio->old_blkaddr;
1558         stat_inc_inplace_blocks(fio->sbi);
1559         f2fs_submit_page_mbio(fio);
1560 }
1561
1562 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1563                                 block_t old_blkaddr, block_t new_blkaddr,
1564                                 bool recover_curseg, bool recover_newaddr)
1565 {
1566         struct sit_info *sit_i = SIT_I(sbi);
1567         struct curseg_info *curseg;
1568         unsigned int segno, old_cursegno;
1569         struct seg_entry *se;
1570         int type;
1571         unsigned short old_blkoff;
1572
1573         segno = GET_SEGNO(sbi, new_blkaddr);
1574         se = get_seg_entry(sbi, segno);
1575         type = se->type;
1576
1577         if (!recover_curseg) {
1578                 /* for recovery flow */
1579                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1580                         if (old_blkaddr == NULL_ADDR)
1581                                 type = CURSEG_COLD_DATA;
1582                         else
1583                                 type = CURSEG_WARM_DATA;
1584                 }
1585         } else {
1586                 if (!IS_CURSEG(sbi, segno))
1587                         type = CURSEG_WARM_DATA;
1588         }
1589
1590         curseg = CURSEG_I(sbi, type);
1591
1592         mutex_lock(&curseg->curseg_mutex);
1593         mutex_lock(&sit_i->sentry_lock);
1594
1595         old_cursegno = curseg->segno;
1596         old_blkoff = curseg->next_blkoff;
1597
1598         /* change the current segment */
1599         if (segno != curseg->segno) {
1600                 curseg->next_segno = segno;
1601                 change_curseg(sbi, type, true);
1602         }
1603
1604         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1605         __add_sum_entry(sbi, type, sum);
1606
1607         if (!recover_curseg || recover_newaddr)
1608                 update_sit_entry(sbi, new_blkaddr, 1);
1609         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1610                 update_sit_entry(sbi, old_blkaddr, -1);
1611
1612         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1613         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1614
1615         locate_dirty_segment(sbi, old_cursegno);
1616
1617         if (recover_curseg) {
1618                 if (old_cursegno != curseg->segno) {
1619                         curseg->next_segno = old_cursegno;
1620                         change_curseg(sbi, type, true);
1621                 }
1622                 curseg->next_blkoff = old_blkoff;
1623         }
1624
1625         mutex_unlock(&sit_i->sentry_lock);
1626         mutex_unlock(&curseg->curseg_mutex);
1627 }
1628
1629 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1630                                 block_t old_addr, block_t new_addr,
1631                                 unsigned char version, bool recover_curseg,
1632                                 bool recover_newaddr)
1633 {
1634         struct f2fs_summary sum;
1635
1636         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1637
1638         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1639                                         recover_curseg, recover_newaddr);
1640
1641         f2fs_update_data_blkaddr(dn, new_addr);
1642 }
1643
1644 void f2fs_wait_on_page_writeback(struct page *page,
1645                                 enum page_type type, bool ordered)
1646 {
1647         if (PageWriteback(page)) {
1648                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1649
1650                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1651                 if (ordered)
1652                         wait_on_page_writeback(page);
1653                 else
1654                         wait_for_stable_page(page);
1655         }
1656 }
1657
1658 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1659                                                         block_t blkaddr)
1660 {
1661         struct page *cpage;
1662
1663         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1664                 return;
1665
1666         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1667         if (cpage) {
1668                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1669                 f2fs_put_page(cpage, 1);
1670         }
1671 }
1672
1673 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1674 {
1675         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1676         struct curseg_info *seg_i;
1677         unsigned char *kaddr;
1678         struct page *page;
1679         block_t start;
1680         int i, j, offset;
1681
1682         start = start_sum_block(sbi);
1683
1684         page = get_meta_page(sbi, start++);
1685         kaddr = (unsigned char *)page_address(page);
1686
1687         /* Step 1: restore nat cache */
1688         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1689         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1690
1691         /* Step 2: restore sit cache */
1692         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1693         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1694         offset = 2 * SUM_JOURNAL_SIZE;
1695
1696         /* Step 3: restore summary entries */
1697         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1698                 unsigned short blk_off;
1699                 unsigned int segno;
1700
1701                 seg_i = CURSEG_I(sbi, i);
1702                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1703                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1704                 seg_i->next_segno = segno;
1705                 reset_curseg(sbi, i, 0);
1706                 seg_i->alloc_type = ckpt->alloc_type[i];
1707                 seg_i->next_blkoff = blk_off;
1708
1709                 if (seg_i->alloc_type == SSR)
1710                         blk_off = sbi->blocks_per_seg;
1711
1712                 for (j = 0; j < blk_off; j++) {
1713                         struct f2fs_summary *s;
1714                         s = (struct f2fs_summary *)(kaddr + offset);
1715                         seg_i->sum_blk->entries[j] = *s;
1716                         offset += SUMMARY_SIZE;
1717                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1718                                                 SUM_FOOTER_SIZE)
1719                                 continue;
1720
1721                         f2fs_put_page(page, 1);
1722                         page = NULL;
1723
1724                         page = get_meta_page(sbi, start++);
1725                         kaddr = (unsigned char *)page_address(page);
1726                         offset = 0;
1727                 }
1728         }
1729         f2fs_put_page(page, 1);
1730         return 0;
1731 }
1732
1733 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1734 {
1735         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1736         struct f2fs_summary_block *sum;
1737         struct curseg_info *curseg;
1738         struct page *new;
1739         unsigned short blk_off;
1740         unsigned int segno = 0;
1741         block_t blk_addr = 0;
1742
1743         /* get segment number and block addr */
1744         if (IS_DATASEG(type)) {
1745                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1746                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1747                                                         CURSEG_HOT_DATA]);
1748                 if (__exist_node_summaries(sbi))
1749                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1750                 else
1751                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1752         } else {
1753                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1754                                                         CURSEG_HOT_NODE]);
1755                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1756                                                         CURSEG_HOT_NODE]);
1757                 if (__exist_node_summaries(sbi))
1758                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1759                                                         type - CURSEG_HOT_NODE);
1760                 else
1761                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1762         }
1763
1764         new = get_meta_page(sbi, blk_addr);
1765         sum = (struct f2fs_summary_block *)page_address(new);
1766
1767         if (IS_NODESEG(type)) {
1768                 if (__exist_node_summaries(sbi)) {
1769                         struct f2fs_summary *ns = &sum->entries[0];
1770                         int i;
1771                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1772                                 ns->version = 0;
1773                                 ns->ofs_in_node = 0;
1774                         }
1775                 } else {
1776                         int err;
1777
1778                         err = restore_node_summary(sbi, segno, sum);
1779                         if (err) {
1780                                 f2fs_put_page(new, 1);
1781                                 return err;
1782                         }
1783                 }
1784         }
1785
1786         /* set uncompleted segment to curseg */
1787         curseg = CURSEG_I(sbi, type);
1788         mutex_lock(&curseg->curseg_mutex);
1789
1790         /* update journal info */
1791         down_write(&curseg->journal_rwsem);
1792         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1793         up_write(&curseg->journal_rwsem);
1794
1795         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1796         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1797         curseg->next_segno = segno;
1798         reset_curseg(sbi, type, 0);
1799         curseg->alloc_type = ckpt->alloc_type[type];
1800         curseg->next_blkoff = blk_off;
1801         mutex_unlock(&curseg->curseg_mutex);
1802         f2fs_put_page(new, 1);
1803         return 0;
1804 }
1805
1806 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1807 {
1808         int type = CURSEG_HOT_DATA;
1809         int err;
1810
1811         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1812                 int npages = npages_for_summary_flush(sbi, true);
1813
1814                 if (npages >= 2)
1815                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1816                                                         META_CP, true);
1817
1818                 /* restore for compacted data summary */
1819                 if (read_compacted_summaries(sbi))
1820                         return -EINVAL;
1821                 type = CURSEG_HOT_NODE;
1822         }
1823
1824         if (__exist_node_summaries(sbi))
1825                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1826                                         NR_CURSEG_TYPE - type, META_CP, true);
1827
1828         for (; type <= CURSEG_COLD_NODE; type++) {
1829                 err = read_normal_summaries(sbi, type);
1830                 if (err)
1831                         return err;
1832         }
1833
1834         return 0;
1835 }
1836
1837 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1838 {
1839         struct page *page;
1840         unsigned char *kaddr;
1841         struct f2fs_summary *summary;
1842         struct curseg_info *seg_i;
1843         int written_size = 0;
1844         int i, j;
1845
1846         page = grab_meta_page(sbi, blkaddr++);
1847         kaddr = (unsigned char *)page_address(page);
1848
1849         /* Step 1: write nat cache */
1850         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1851         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1852         written_size += SUM_JOURNAL_SIZE;
1853
1854         /* Step 2: write sit cache */
1855         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1856         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1857         written_size += SUM_JOURNAL_SIZE;
1858
1859         /* Step 3: write summary entries */
1860         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1861                 unsigned short blkoff;
1862                 seg_i = CURSEG_I(sbi, i);
1863                 if (sbi->ckpt->alloc_type[i] == SSR)
1864                         blkoff = sbi->blocks_per_seg;
1865                 else
1866                         blkoff = curseg_blkoff(sbi, i);
1867
1868                 for (j = 0; j < blkoff; j++) {
1869                         if (!page) {
1870                                 page = grab_meta_page(sbi, blkaddr++);
1871                                 kaddr = (unsigned char *)page_address(page);
1872                                 written_size = 0;
1873                         }
1874                         summary = (struct f2fs_summary *)(kaddr + written_size);
1875                         *summary = seg_i->sum_blk->entries[j];
1876                         written_size += SUMMARY_SIZE;
1877
1878                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1879                                                         SUM_FOOTER_SIZE)
1880                                 continue;
1881
1882                         set_page_dirty(page);
1883                         f2fs_put_page(page, 1);
1884                         page = NULL;
1885                 }
1886         }
1887         if (page) {
1888                 set_page_dirty(page);
1889                 f2fs_put_page(page, 1);
1890         }
1891 }
1892
1893 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1894                                         block_t blkaddr, int type)
1895 {
1896         int i, end;
1897         if (IS_DATASEG(type))
1898                 end = type + NR_CURSEG_DATA_TYPE;
1899         else
1900                 end = type + NR_CURSEG_NODE_TYPE;
1901
1902         for (i = type; i < end; i++)
1903                 write_current_sum_page(sbi, i, blkaddr + (i - type));
1904 }
1905
1906 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1907 {
1908         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1909                 write_compacted_summaries(sbi, start_blk);
1910         else
1911                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1912 }
1913
1914 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1915 {
1916         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1917 }
1918
1919 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1920                                         unsigned int val, int alloc)
1921 {
1922         int i;
1923
1924         if (type == NAT_JOURNAL) {
1925                 for (i = 0; i < nats_in_cursum(journal); i++) {
1926                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1927                                 return i;
1928                 }
1929                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1930                         return update_nats_in_cursum(journal, 1);
1931         } else if (type == SIT_JOURNAL) {
1932                 for (i = 0; i < sits_in_cursum(journal); i++)
1933                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1934                                 return i;
1935                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1936                         return update_sits_in_cursum(journal, 1);
1937         }
1938         return -1;
1939 }
1940
1941 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1942                                         unsigned int segno)
1943 {
1944         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1945 }
1946
1947 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1948                                         unsigned int start)
1949 {
1950         struct sit_info *sit_i = SIT_I(sbi);
1951         struct page *src_page, *dst_page;
1952         pgoff_t src_off, dst_off;
1953         void *src_addr, *dst_addr;
1954
1955         src_off = current_sit_addr(sbi, start);
1956         dst_off = next_sit_addr(sbi, src_off);
1957
1958         /* get current sit block page without lock */
1959         src_page = get_meta_page(sbi, src_off);
1960         dst_page = grab_meta_page(sbi, dst_off);
1961         f2fs_bug_on(sbi, PageDirty(src_page));
1962
1963         src_addr = page_address(src_page);
1964         dst_addr = page_address(dst_page);
1965         memcpy(dst_addr, src_addr, PAGE_SIZE);
1966
1967         set_page_dirty(dst_page);
1968         f2fs_put_page(src_page, 1);
1969
1970         set_to_next_sit(sit_i, start);
1971
1972         return dst_page;
1973 }
1974
1975 static struct sit_entry_set *grab_sit_entry_set(void)
1976 {
1977         struct sit_entry_set *ses =
1978                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1979
1980         ses->entry_cnt = 0;
1981         INIT_LIST_HEAD(&ses->set_list);
1982         return ses;
1983 }
1984
1985 static void release_sit_entry_set(struct sit_entry_set *ses)
1986 {
1987         list_del(&ses->set_list);
1988         kmem_cache_free(sit_entry_set_slab, ses);
1989 }
1990
1991 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1992                                                 struct list_head *head)
1993 {
1994         struct sit_entry_set *next = ses;
1995
1996         if (list_is_last(&ses->set_list, head))
1997                 return;
1998
1999         list_for_each_entry_continue(next, head, set_list)
2000                 if (ses->entry_cnt <= next->entry_cnt)
2001                         break;
2002
2003         list_move_tail(&ses->set_list, &next->set_list);
2004 }
2005
2006 static void add_sit_entry(unsigned int segno, struct list_head *head)
2007 {
2008         struct sit_entry_set *ses;
2009         unsigned int start_segno = START_SEGNO(segno);
2010
2011         list_for_each_entry(ses, head, set_list) {
2012                 if (ses->start_segno == start_segno) {
2013                         ses->entry_cnt++;
2014                         adjust_sit_entry_set(ses, head);
2015                         return;
2016                 }
2017         }
2018
2019         ses = grab_sit_entry_set();
2020
2021         ses->start_segno = start_segno;
2022         ses->entry_cnt++;
2023         list_add(&ses->set_list, head);
2024 }
2025
2026 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2027 {
2028         struct f2fs_sm_info *sm_info = SM_I(sbi);
2029         struct list_head *set_list = &sm_info->sit_entry_set;
2030         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2031         unsigned int segno;
2032
2033         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2034                 add_sit_entry(segno, set_list);
2035 }
2036
2037 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2038 {
2039         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2040         struct f2fs_journal *journal = curseg->journal;
2041         int i;
2042
2043         down_write(&curseg->journal_rwsem);
2044         for (i = 0; i < sits_in_cursum(journal); i++) {
2045                 unsigned int segno;
2046                 bool dirtied;
2047
2048                 segno = le32_to_cpu(segno_in_journal(journal, i));
2049                 dirtied = __mark_sit_entry_dirty(sbi, segno);
2050
2051                 if (!dirtied)
2052                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2053         }
2054         update_sits_in_cursum(journal, -i);
2055         up_write(&curseg->journal_rwsem);
2056 }
2057
2058 /*
2059  * CP calls this function, which flushes SIT entries including sit_journal,
2060  * and moves prefree segs to free segs.
2061  */
2062 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2063 {
2064         struct sit_info *sit_i = SIT_I(sbi);
2065         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2066         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2067         struct f2fs_journal *journal = curseg->journal;
2068         struct sit_entry_set *ses, *tmp;
2069         struct list_head *head = &SM_I(sbi)->sit_entry_set;
2070         bool to_journal = true;
2071         struct seg_entry *se;
2072
2073         mutex_lock(&sit_i->sentry_lock);
2074
2075         if (!sit_i->dirty_sentries)
2076                 goto out;
2077
2078         /*
2079          * add and account sit entries of dirty bitmap in sit entry
2080          * set temporarily
2081          */
2082         add_sits_in_set(sbi);
2083
2084         /*
2085          * if there are no enough space in journal to store dirty sit
2086          * entries, remove all entries from journal and add and account
2087          * them in sit entry set.
2088          */
2089         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2090                 remove_sits_in_journal(sbi);
2091
2092         /*
2093          * there are two steps to flush sit entries:
2094          * #1, flush sit entries to journal in current cold data summary block.
2095          * #2, flush sit entries to sit page.
2096          */
2097         list_for_each_entry_safe(ses, tmp, head, set_list) {
2098                 struct page *page = NULL;
2099                 struct f2fs_sit_block *raw_sit = NULL;
2100                 unsigned int start_segno = ses->start_segno;
2101                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2102                                                 (unsigned long)MAIN_SEGS(sbi));
2103                 unsigned int segno = start_segno;
2104
2105                 if (to_journal &&
2106                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2107                         to_journal = false;
2108
2109                 if (to_journal) {
2110                         down_write(&curseg->journal_rwsem);
2111                 } else {
2112                         page = get_next_sit_page(sbi, start_segno);
2113                         raw_sit = page_address(page);
2114                 }
2115
2116                 /* flush dirty sit entries in region of current sit set */
2117                 for_each_set_bit_from(segno, bitmap, end) {
2118                         int offset, sit_offset;
2119
2120                         se = get_seg_entry(sbi, segno);
2121
2122                         /* add discard candidates */
2123                         if (cpc->reason != CP_DISCARD) {
2124                                 cpc->trim_start = segno;
2125                                 add_discard_addrs(sbi, cpc);
2126                         }
2127
2128                         if (to_journal) {
2129                                 offset = lookup_journal_in_cursum(journal,
2130                                                         SIT_JOURNAL, segno, 1);
2131                                 f2fs_bug_on(sbi, offset < 0);
2132                                 segno_in_journal(journal, offset) =
2133                                                         cpu_to_le32(segno);
2134                                 seg_info_to_raw_sit(se,
2135                                         &sit_in_journal(journal, offset));
2136                         } else {
2137                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2138                                 seg_info_to_raw_sit(se,
2139                                                 &raw_sit->entries[sit_offset]);
2140                         }
2141
2142                         __clear_bit(segno, bitmap);
2143                         sit_i->dirty_sentries--;
2144                         ses->entry_cnt--;
2145                 }
2146
2147                 if (to_journal)
2148                         up_write(&curseg->journal_rwsem);
2149                 else
2150                         f2fs_put_page(page, 1);
2151
2152                 f2fs_bug_on(sbi, ses->entry_cnt);
2153                 release_sit_entry_set(ses);
2154         }
2155
2156         f2fs_bug_on(sbi, !list_empty(head));
2157         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2158 out:
2159         if (cpc->reason == CP_DISCARD) {
2160                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2161                         add_discard_addrs(sbi, cpc);
2162         }
2163         mutex_unlock(&sit_i->sentry_lock);
2164
2165         set_prefree_as_free_segments(sbi);
2166 }
2167
2168 static int build_sit_info(struct f2fs_sb_info *sbi)
2169 {
2170         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2171         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2172         struct sit_info *sit_i;
2173         unsigned int sit_segs, start;
2174         char *src_bitmap, *dst_bitmap;
2175         unsigned int bitmap_size;
2176
2177         /* allocate memory for SIT information */
2178         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2179         if (!sit_i)
2180                 return -ENOMEM;
2181
2182         SM_I(sbi)->sit_info = sit_i;
2183
2184         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2185                                         sizeof(struct seg_entry), GFP_KERNEL);
2186         if (!sit_i->sentries)
2187                 return -ENOMEM;
2188
2189         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2190         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2191         if (!sit_i->dirty_sentries_bitmap)
2192                 return -ENOMEM;
2193
2194         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2195                 sit_i->sentries[start].cur_valid_map
2196                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2197                 sit_i->sentries[start].ckpt_valid_map
2198                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2199                 if (!sit_i->sentries[start].cur_valid_map ||
2200                                 !sit_i->sentries[start].ckpt_valid_map)
2201                         return -ENOMEM;
2202
2203                 if (f2fs_discard_en(sbi)) {
2204                         sit_i->sentries[start].discard_map
2205                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2206                         if (!sit_i->sentries[start].discard_map)
2207                                 return -ENOMEM;
2208                 }
2209         }
2210
2211         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2212         if (!sit_i->tmp_map)
2213                 return -ENOMEM;
2214
2215         if (sbi->segs_per_sec > 1) {
2216                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2217                                         sizeof(struct sec_entry), GFP_KERNEL);
2218                 if (!sit_i->sec_entries)
2219                         return -ENOMEM;
2220         }
2221
2222         /* get information related with SIT */
2223         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2224
2225         /* setup SIT bitmap from ckeckpoint pack */
2226         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2227         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2228
2229         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2230         if (!dst_bitmap)
2231                 return -ENOMEM;
2232
2233         /* init SIT information */
2234         sit_i->s_ops = &default_salloc_ops;
2235
2236         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2237         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2238         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2239         sit_i->sit_bitmap = dst_bitmap;
2240         sit_i->bitmap_size = bitmap_size;
2241         sit_i->dirty_sentries = 0;
2242         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2243         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2244         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2245         mutex_init(&sit_i->sentry_lock);
2246         return 0;
2247 }
2248
2249 static int build_free_segmap(struct f2fs_sb_info *sbi)
2250 {
2251         struct free_segmap_info *free_i;
2252         unsigned int bitmap_size, sec_bitmap_size;
2253
2254         /* allocate memory for free segmap information */
2255         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2256         if (!free_i)
2257                 return -ENOMEM;
2258
2259         SM_I(sbi)->free_info = free_i;
2260
2261         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2262         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2263         if (!free_i->free_segmap)
2264                 return -ENOMEM;
2265
2266         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2267         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2268         if (!free_i->free_secmap)
2269                 return -ENOMEM;
2270
2271         /* set all segments as dirty temporarily */
2272         memset(free_i->free_segmap, 0xff, bitmap_size);
2273         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2274
2275         /* init free segmap information */
2276         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2277         free_i->free_segments = 0;
2278         free_i->free_sections = 0;
2279         spin_lock_init(&free_i->segmap_lock);
2280         return 0;
2281 }
2282
2283 static int build_curseg(struct f2fs_sb_info *sbi)
2284 {
2285         struct curseg_info *array;
2286         int i;
2287
2288         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2289         if (!array)
2290                 return -ENOMEM;
2291
2292         SM_I(sbi)->curseg_array = array;
2293
2294         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2295                 mutex_init(&array[i].curseg_mutex);
2296                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2297                 if (!array[i].sum_blk)
2298                         return -ENOMEM;
2299                 init_rwsem(&array[i].journal_rwsem);
2300                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2301                                                         GFP_KERNEL);
2302                 if (!array[i].journal)
2303                         return -ENOMEM;
2304                 array[i].segno = NULL_SEGNO;
2305                 array[i].next_blkoff = 0;
2306         }
2307         return restore_curseg_summaries(sbi);
2308 }
2309
2310 static void build_sit_entries(struct f2fs_sb_info *sbi)
2311 {
2312         struct sit_info *sit_i = SIT_I(sbi);
2313         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2314         struct f2fs_journal *journal = curseg->journal;
2315         struct seg_entry *se;
2316         struct f2fs_sit_entry sit;
2317         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2318         unsigned int i, start, end;
2319         unsigned int readed, start_blk = 0;
2320         int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2321
2322         do {
2323                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2324
2325                 start = start_blk * sit_i->sents_per_block;
2326                 end = (start_blk + readed) * sit_i->sents_per_block;
2327
2328                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2329                         struct f2fs_sit_block *sit_blk;
2330                         struct page *page;
2331
2332                         se = &sit_i->sentries[start];
2333                         page = get_current_sit_page(sbi, start);
2334                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2335                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2336                         f2fs_put_page(page, 1);
2337
2338                         check_block_count(sbi, start, &sit);
2339                         seg_info_from_raw_sit(se, &sit);
2340
2341                         /* build discard map only one time */
2342                         if (f2fs_discard_en(sbi)) {
2343                                 memcpy(se->discard_map, se->cur_valid_map,
2344                                                         SIT_VBLOCK_MAP_SIZE);
2345                                 sbi->discard_blks += sbi->blocks_per_seg -
2346                                                         se->valid_blocks;
2347                         }
2348
2349                         if (sbi->segs_per_sec > 1)
2350                                 get_sec_entry(sbi, start)->valid_blocks +=
2351                                                         se->valid_blocks;
2352                 }
2353                 start_blk += readed;
2354         } while (start_blk < sit_blk_cnt);
2355
2356         down_read(&curseg->journal_rwsem);
2357         for (i = 0; i < sits_in_cursum(journal); i++) {
2358                 unsigned int old_valid_blocks;
2359
2360                 start = le32_to_cpu(segno_in_journal(journal, i));
2361                 se = &sit_i->sentries[start];
2362                 sit = sit_in_journal(journal, i);
2363
2364                 old_valid_blocks = se->valid_blocks;
2365
2366                 check_block_count(sbi, start, &sit);
2367                 seg_info_from_raw_sit(se, &sit);
2368
2369                 if (f2fs_discard_en(sbi)) {
2370                         memcpy(se->discard_map, se->cur_valid_map,
2371                                                 SIT_VBLOCK_MAP_SIZE);
2372                         sbi->discard_blks += old_valid_blocks -
2373                                                 se->valid_blocks;
2374                 }
2375
2376                 if (sbi->segs_per_sec > 1)
2377                         get_sec_entry(sbi, start)->valid_blocks +=
2378                                 se->valid_blocks - old_valid_blocks;
2379         }
2380         up_read(&curseg->journal_rwsem);
2381 }
2382
2383 static void init_free_segmap(struct f2fs_sb_info *sbi)
2384 {
2385         unsigned int start;
2386         int type;
2387
2388         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2389                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2390                 if (!sentry->valid_blocks)
2391                         __set_free(sbi, start);
2392         }
2393
2394         /* set use the current segments */
2395         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2396                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2397                 __set_test_and_inuse(sbi, curseg_t->segno);
2398         }
2399 }
2400
2401 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2402 {
2403         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2404         struct free_segmap_info *free_i = FREE_I(sbi);
2405         unsigned int segno = 0, offset = 0;
2406         unsigned short valid_blocks;
2407
2408         while (1) {
2409                 /* find dirty segment based on free segmap */
2410                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2411                 if (segno >= MAIN_SEGS(sbi))
2412                         break;
2413                 offset = segno + 1;
2414                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2415                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2416                         continue;
2417                 if (valid_blocks > sbi->blocks_per_seg) {
2418                         f2fs_bug_on(sbi, 1);
2419                         continue;
2420                 }
2421                 mutex_lock(&dirty_i->seglist_lock);
2422                 __locate_dirty_segment(sbi, segno, DIRTY);
2423                 mutex_unlock(&dirty_i->seglist_lock);
2424         }
2425 }
2426
2427 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2428 {
2429         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2430         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2431
2432         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2433         if (!dirty_i->victim_secmap)
2434                 return -ENOMEM;
2435         return 0;
2436 }
2437
2438 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2439 {
2440         struct dirty_seglist_info *dirty_i;
2441         unsigned int bitmap_size, i;
2442
2443         /* allocate memory for dirty segments list information */
2444         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2445         if (!dirty_i)
2446                 return -ENOMEM;
2447
2448         SM_I(sbi)->dirty_info = dirty_i;
2449         mutex_init(&dirty_i->seglist_lock);
2450
2451         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2452
2453         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2454                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2455                 if (!dirty_i->dirty_segmap[i])
2456                         return -ENOMEM;
2457         }
2458
2459         init_dirty_segmap(sbi);
2460         return init_victim_secmap(sbi);
2461 }
2462
2463 /*
2464  * Update min, max modified time for cost-benefit GC algorithm
2465  */
2466 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2467 {
2468         struct sit_info *sit_i = SIT_I(sbi);
2469         unsigned int segno;
2470
2471         mutex_lock(&sit_i->sentry_lock);
2472
2473         sit_i->min_mtime = LLONG_MAX;
2474
2475         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2476                 unsigned int i;
2477                 unsigned long long mtime = 0;
2478
2479                 for (i = 0; i < sbi->segs_per_sec; i++)
2480                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2481
2482                 mtime = div_u64(mtime, sbi->segs_per_sec);
2483
2484                 if (sit_i->min_mtime > mtime)
2485                         sit_i->min_mtime = mtime;
2486         }
2487         sit_i->max_mtime = get_mtime(sbi);
2488         mutex_unlock(&sit_i->sentry_lock);
2489 }
2490
2491 int build_segment_manager(struct f2fs_sb_info *sbi)
2492 {
2493         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2494         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2495         struct f2fs_sm_info *sm_info;
2496         int err;
2497
2498         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2499         if (!sm_info)
2500                 return -ENOMEM;
2501
2502         /* init sm info */
2503         sbi->sm_info = sm_info;
2504         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2505         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2506         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2507         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2508         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2509         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2510         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2511         sm_info->rec_prefree_segments = sm_info->main_segments *
2512                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2513         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2514                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2515
2516         if (!test_opt(sbi, LFS))
2517                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2518         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2519         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2520
2521         INIT_LIST_HEAD(&sm_info->discard_list);
2522         INIT_LIST_HEAD(&sm_info->wait_list);
2523         sm_info->nr_discards = 0;
2524         sm_info->max_discards = 0;
2525
2526         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2527
2528         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2529
2530         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2531                 err = create_flush_cmd_control(sbi);
2532                 if (err)
2533                         return err;
2534         }
2535
2536         err = build_sit_info(sbi);
2537         if (err)
2538                 return err;
2539         err = build_free_segmap(sbi);
2540         if (err)
2541                 return err;
2542         err = build_curseg(sbi);
2543         if (err)
2544                 return err;
2545
2546         /* reinit free segmap based on SIT */
2547         build_sit_entries(sbi);
2548
2549         init_free_segmap(sbi);
2550         err = build_dirty_segmap(sbi);
2551         if (err)
2552                 return err;
2553
2554         init_min_max_mtime(sbi);
2555         return 0;
2556 }
2557
2558 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2559                 enum dirty_type dirty_type)
2560 {
2561         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2562
2563         mutex_lock(&dirty_i->seglist_lock);
2564         kvfree(dirty_i->dirty_segmap[dirty_type]);
2565         dirty_i->nr_dirty[dirty_type] = 0;
2566         mutex_unlock(&dirty_i->seglist_lock);
2567 }
2568
2569 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2570 {
2571         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2572         kvfree(dirty_i->victim_secmap);
2573 }
2574
2575 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2576 {
2577         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2578         int i;
2579
2580         if (!dirty_i)
2581                 return;
2582
2583         /* discard pre-free/dirty segments list */
2584         for (i = 0; i < NR_DIRTY_TYPE; i++)
2585                 discard_dirty_segmap(sbi, i);
2586
2587         destroy_victim_secmap(sbi);
2588         SM_I(sbi)->dirty_info = NULL;
2589         kfree(dirty_i);
2590 }
2591
2592 static void destroy_curseg(struct f2fs_sb_info *sbi)
2593 {
2594         struct curseg_info *array = SM_I(sbi)->curseg_array;
2595         int i;
2596
2597         if (!array)
2598                 return;
2599         SM_I(sbi)->curseg_array = NULL;
2600         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2601                 kfree(array[i].sum_blk);
2602                 kfree(array[i].journal);
2603         }
2604         kfree(array);
2605 }
2606
2607 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2608 {
2609         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2610         if (!free_i)
2611                 return;
2612         SM_I(sbi)->free_info = NULL;
2613         kvfree(free_i->free_segmap);
2614         kvfree(free_i->free_secmap);
2615         kfree(free_i);
2616 }
2617
2618 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2619 {
2620         struct sit_info *sit_i = SIT_I(sbi);
2621         unsigned int start;
2622
2623         if (!sit_i)
2624                 return;
2625
2626         if (sit_i->sentries) {
2627                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2628                         kfree(sit_i->sentries[start].cur_valid_map);
2629                         kfree(sit_i->sentries[start].ckpt_valid_map);
2630                         kfree(sit_i->sentries[start].discard_map);
2631                 }
2632         }
2633         kfree(sit_i->tmp_map);
2634
2635         kvfree(sit_i->sentries);
2636         kvfree(sit_i->sec_entries);
2637         kvfree(sit_i->dirty_sentries_bitmap);
2638
2639         SM_I(sbi)->sit_info = NULL;
2640         kfree(sit_i->sit_bitmap);
2641         kfree(sit_i);
2642 }
2643
2644 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2645 {
2646         struct f2fs_sm_info *sm_info = SM_I(sbi);
2647
2648         if (!sm_info)
2649                 return;
2650         destroy_flush_cmd_control(sbi);
2651         destroy_dirty_segmap(sbi);
2652         destroy_curseg(sbi);
2653         destroy_free_segmap(sbi);
2654         destroy_sit_info(sbi);
2655         sbi->sm_info = NULL;
2656         kfree(sm_info);
2657 }
2658
2659 int __init create_segment_manager_caches(void)
2660 {
2661         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2662                         sizeof(struct discard_entry));
2663         if (!discard_entry_slab)
2664                 goto fail;
2665
2666         bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2667                         sizeof(struct bio_entry));
2668         if (!bio_entry_slab)
2669                 goto destroy_discard_entry;
2670
2671         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2672                         sizeof(struct sit_entry_set));
2673         if (!sit_entry_set_slab)
2674                 goto destroy_bio_entry;
2675
2676         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2677                         sizeof(struct inmem_pages));
2678         if (!inmem_entry_slab)
2679                 goto destroy_sit_entry_set;
2680         return 0;
2681
2682 destroy_sit_entry_set:
2683         kmem_cache_destroy(sit_entry_set_slab);
2684 destroy_bio_entry:
2685         kmem_cache_destroy(bio_entry_slab);
2686 destroy_discard_entry:
2687         kmem_cache_destroy(discard_entry_slab);
2688 fail:
2689         return -ENOMEM;
2690 }
2691
2692 void destroy_segment_manager_caches(void)
2693 {
2694         kmem_cache_destroy(sit_entry_set_slab);
2695         kmem_cache_destroy(bio_entry_slab);
2696         kmem_cache_destroy(discard_entry_slab);
2697         kmem_cache_destroy(inmem_entry_slab);
2698 }