]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
f2fs: readahead contiguous current summary blocks in checkpoint
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *sit_entry_set_slab;
29 static struct kmem_cache *inmem_entry_slab;
30
31 /*
32  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
33  * MSB and LSB are reversed in a byte by f2fs_set_bit.
34  */
35 static inline unsigned long __reverse_ffs(unsigned long word)
36 {
37         int num = 0;
38
39 #if BITS_PER_LONG == 64
40         if ((word & 0xffffffff) == 0) {
41                 num += 32;
42                 word >>= 32;
43         }
44 #endif
45         if ((word & 0xffff) == 0) {
46                 num += 16;
47                 word >>= 16;
48         }
49         if ((word & 0xff) == 0) {
50                 num += 8;
51                 word >>= 8;
52         }
53         if ((word & 0xf0) == 0)
54                 num += 4;
55         else
56                 word >>= 4;
57         if ((word & 0xc) == 0)
58                 num += 2;
59         else
60                 word >>= 2;
61         if ((word & 0x2) == 0)
62                 num += 1;
63         return num;
64 }
65
66 /*
67  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
68  * f2fs_set_bit makes MSB and LSB reversed in a byte.
69  * Example:
70  *                             LSB <--> MSB
71  *   f2fs_set_bit(0, bitmap) => 0000 0001
72  *   f2fs_set_bit(7, bitmap) => 1000 0000
73  */
74 static unsigned long __find_rev_next_bit(const unsigned long *addr,
75                         unsigned long size, unsigned long offset)
76 {
77         const unsigned long *p = addr + BIT_WORD(offset);
78         unsigned long result = offset & ~(BITS_PER_LONG - 1);
79         unsigned long tmp;
80         unsigned long mask, submask;
81         unsigned long quot, rest;
82
83         if (offset >= size)
84                 return size;
85
86         size -= result;
87         offset %= BITS_PER_LONG;
88         if (!offset)
89                 goto aligned;
90
91         tmp = *(p++);
92         quot = (offset >> 3) << 3;
93         rest = offset & 0x7;
94         mask = ~0UL << quot;
95         submask = (unsigned char)(0xff << rest) >> rest;
96         submask <<= quot;
97         mask &= submask;
98         tmp &= mask;
99         if (size < BITS_PER_LONG)
100                 goto found_first;
101         if (tmp)
102                 goto found_middle;
103
104         size -= BITS_PER_LONG;
105         result += BITS_PER_LONG;
106 aligned:
107         while (size & ~(BITS_PER_LONG-1)) {
108                 tmp = *(p++);
109                 if (tmp)
110                         goto found_middle;
111                 result += BITS_PER_LONG;
112                 size -= BITS_PER_LONG;
113         }
114         if (!size)
115                 return result;
116         tmp = *p;
117 found_first:
118         tmp &= (~0UL >> (BITS_PER_LONG - size));
119         if (tmp == 0UL)         /* Are any bits set? */
120                 return result + size;   /* Nope. */
121 found_middle:
122         return result + __reverse_ffs(tmp);
123 }
124
125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
126                         unsigned long size, unsigned long offset)
127 {
128         const unsigned long *p = addr + BIT_WORD(offset);
129         unsigned long result = offset & ~(BITS_PER_LONG - 1);
130         unsigned long tmp;
131         unsigned long mask, submask;
132         unsigned long quot, rest;
133
134         if (offset >= size)
135                 return size;
136
137         size -= result;
138         offset %= BITS_PER_LONG;
139         if (!offset)
140                 goto aligned;
141
142         tmp = *(p++);
143         quot = (offset >> 3) << 3;
144         rest = offset & 0x7;
145         mask = ~(~0UL << quot);
146         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
147         submask <<= quot;
148         mask += submask;
149         tmp |= mask;
150         if (size < BITS_PER_LONG)
151                 goto found_first;
152         if (~tmp)
153                 goto found_middle;
154
155         size -= BITS_PER_LONG;
156         result += BITS_PER_LONG;
157 aligned:
158         while (size & ~(BITS_PER_LONG - 1)) {
159                 tmp = *(p++);
160                 if (~tmp)
161                         goto found_middle;
162                 result += BITS_PER_LONG;
163                 size -= BITS_PER_LONG;
164         }
165         if (!size)
166                 return result;
167         tmp = *p;
168
169 found_first:
170         tmp |= ~0UL << size;
171         if (tmp == ~0UL)        /* Are any bits zero? */
172                 return result + size;   /* Nope. */
173 found_middle:
174         return result + __reverse_ffz(tmp);
175 }
176
177 void register_inmem_page(struct inode *inode, struct page *page)
178 {
179         struct f2fs_inode_info *fi = F2FS_I(inode);
180         struct inmem_pages *new;
181         int err;
182
183         SetPagePrivate(page);
184
185         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
186
187         /* add atomic page indices to the list */
188         new->page = page;
189         INIT_LIST_HEAD(&new->list);
190 retry:
191         /* increase reference count with clean state */
192         mutex_lock(&fi->inmem_lock);
193         err = radix_tree_insert(&fi->inmem_root, page->index, new);
194         if (err == -EEXIST) {
195                 mutex_unlock(&fi->inmem_lock);
196                 kmem_cache_free(inmem_entry_slab, new);
197                 return;
198         } else if (err) {
199                 mutex_unlock(&fi->inmem_lock);
200                 goto retry;
201         }
202         get_page(page);
203         list_add_tail(&new->list, &fi->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&fi->inmem_lock);
206 }
207
208 void commit_inmem_pages(struct inode *inode, bool abort)
209 {
210         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211         struct f2fs_inode_info *fi = F2FS_I(inode);
212         struct inmem_pages *cur, *tmp;
213         bool submit_bio = false;
214         struct f2fs_io_info fio = {
215                 .type = DATA,
216                 .rw = WRITE_SYNC | REQ_PRIO,
217         };
218
219         /*
220          * The abort is true only when f2fs_evict_inode is called.
221          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
222          * that we don't need to call f2fs_balance_fs.
223          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
224          * inode becomes free by iget_locked in f2fs_iget.
225          */
226         if (!abort) {
227                 f2fs_balance_fs(sbi);
228                 f2fs_lock_op(sbi);
229         }
230
231         mutex_lock(&fi->inmem_lock);
232         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
233                 if (!abort) {
234                         lock_page(cur->page);
235                         if (cur->page->mapping == inode->i_mapping) {
236                                 f2fs_wait_on_page_writeback(cur->page, DATA);
237                                 if (clear_page_dirty_for_io(cur->page))
238                                         inode_dec_dirty_pages(inode);
239                                 do_write_data_page(cur->page, &fio);
240                                 submit_bio = true;
241                         }
242                         f2fs_put_page(cur->page, 1);
243                 } else {
244                         put_page(cur->page);
245                 }
246                 radix_tree_delete(&fi->inmem_root, cur->page->index);
247                 list_del(&cur->list);
248                 kmem_cache_free(inmem_entry_slab, cur);
249                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
250         }
251         mutex_unlock(&fi->inmem_lock);
252
253         if (!abort) {
254                 f2fs_unlock_op(sbi);
255                 if (submit_bio)
256                         f2fs_submit_merged_bio(sbi, DATA, WRITE);
257         }
258 }
259
260 /*
261  * This function balances dirty node and dentry pages.
262  * In addition, it controls garbage collection.
263  */
264 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
265 {
266         /*
267          * We should do GC or end up with checkpoint, if there are so many dirty
268          * dir/node pages without enough free segments.
269          */
270         if (has_not_enough_free_secs(sbi, 0)) {
271                 mutex_lock(&sbi->gc_mutex);
272                 f2fs_gc(sbi);
273         }
274 }
275
276 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
277 {
278         /* check the # of cached NAT entries and prefree segments */
279         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
280                         excess_prefree_segs(sbi) ||
281                         !available_free_memory(sbi, INO_ENTRIES))
282                 f2fs_sync_fs(sbi->sb, true);
283 }
284
285 static int issue_flush_thread(void *data)
286 {
287         struct f2fs_sb_info *sbi = data;
288         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
289         wait_queue_head_t *q = &fcc->flush_wait_queue;
290 repeat:
291         if (kthread_should_stop())
292                 return 0;
293
294         if (!llist_empty(&fcc->issue_list)) {
295                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
296                 struct flush_cmd *cmd, *next;
297                 int ret;
298
299                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
300                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
301
302                 bio->bi_bdev = sbi->sb->s_bdev;
303                 ret = submit_bio_wait(WRITE_FLUSH, bio);
304
305                 llist_for_each_entry_safe(cmd, next,
306                                           fcc->dispatch_list, llnode) {
307                         cmd->ret = ret;
308                         complete(&cmd->wait);
309                 }
310                 bio_put(bio);
311                 fcc->dispatch_list = NULL;
312         }
313
314         wait_event_interruptible(*q,
315                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
316         goto repeat;
317 }
318
319 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
320 {
321         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
322         struct flush_cmd cmd;
323
324         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
325                                         test_opt(sbi, FLUSH_MERGE));
326
327         if (test_opt(sbi, NOBARRIER))
328                 return 0;
329
330         if (!test_opt(sbi, FLUSH_MERGE))
331                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
332
333         init_completion(&cmd.wait);
334
335         llist_add(&cmd.llnode, &fcc->issue_list);
336
337         if (!fcc->dispatch_list)
338                 wake_up(&fcc->flush_wait_queue);
339
340         wait_for_completion(&cmd.wait);
341
342         return cmd.ret;
343 }
344
345 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
346 {
347         dev_t dev = sbi->sb->s_bdev->bd_dev;
348         struct flush_cmd_control *fcc;
349         int err = 0;
350
351         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
352         if (!fcc)
353                 return -ENOMEM;
354         init_waitqueue_head(&fcc->flush_wait_queue);
355         init_llist_head(&fcc->issue_list);
356         SM_I(sbi)->cmd_control_info = fcc;
357         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
358                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
359         if (IS_ERR(fcc->f2fs_issue_flush)) {
360                 err = PTR_ERR(fcc->f2fs_issue_flush);
361                 kfree(fcc);
362                 SM_I(sbi)->cmd_control_info = NULL;
363                 return err;
364         }
365
366         return err;
367 }
368
369 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
370 {
371         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
372
373         if (fcc && fcc->f2fs_issue_flush)
374                 kthread_stop(fcc->f2fs_issue_flush);
375         kfree(fcc);
376         SM_I(sbi)->cmd_control_info = NULL;
377 }
378
379 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
380                 enum dirty_type dirty_type)
381 {
382         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
383
384         /* need not be added */
385         if (IS_CURSEG(sbi, segno))
386                 return;
387
388         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
389                 dirty_i->nr_dirty[dirty_type]++;
390
391         if (dirty_type == DIRTY) {
392                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
393                 enum dirty_type t = sentry->type;
394
395                 if (unlikely(t >= DIRTY)) {
396                         f2fs_bug_on(sbi, 1);
397                         return;
398                 }
399                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
400                         dirty_i->nr_dirty[t]++;
401         }
402 }
403
404 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
405                 enum dirty_type dirty_type)
406 {
407         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
408
409         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
410                 dirty_i->nr_dirty[dirty_type]--;
411
412         if (dirty_type == DIRTY) {
413                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
414                 enum dirty_type t = sentry->type;
415
416                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
417                         dirty_i->nr_dirty[t]--;
418
419                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
420                         clear_bit(GET_SECNO(sbi, segno),
421                                                 dirty_i->victim_secmap);
422         }
423 }
424
425 /*
426  * Should not occur error such as -ENOMEM.
427  * Adding dirty entry into seglist is not critical operation.
428  * If a given segment is one of current working segments, it won't be added.
429  */
430 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
431 {
432         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
433         unsigned short valid_blocks;
434
435         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
436                 return;
437
438         mutex_lock(&dirty_i->seglist_lock);
439
440         valid_blocks = get_valid_blocks(sbi, segno, 0);
441
442         if (valid_blocks == 0) {
443                 __locate_dirty_segment(sbi, segno, PRE);
444                 __remove_dirty_segment(sbi, segno, DIRTY);
445         } else if (valid_blocks < sbi->blocks_per_seg) {
446                 __locate_dirty_segment(sbi, segno, DIRTY);
447         } else {
448                 /* Recovery routine with SSR needs this */
449                 __remove_dirty_segment(sbi, segno, DIRTY);
450         }
451
452         mutex_unlock(&dirty_i->seglist_lock);
453 }
454
455 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
456                                 block_t blkstart, block_t blklen)
457 {
458         sector_t start = SECTOR_FROM_BLOCK(blkstart);
459         sector_t len = SECTOR_FROM_BLOCK(blklen);
460         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
461         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
462 }
463
464 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
465 {
466         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
467                 struct page *page = grab_meta_page(sbi, blkaddr);
468                 /* zero-filled page */
469                 set_page_dirty(page);
470                 f2fs_put_page(page, 1);
471         }
472 }
473
474 static void __add_discard_entry(struct f2fs_sb_info *sbi,
475                 struct cp_control *cpc, unsigned int start, unsigned int end)
476 {
477         struct list_head *head = &SM_I(sbi)->discard_list;
478         struct discard_entry *new, *last;
479
480         if (!list_empty(head)) {
481                 last = list_last_entry(head, struct discard_entry, list);
482                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
483                                                 last->blkaddr + last->len) {
484                         last->len += end - start;
485                         goto done;
486                 }
487         }
488
489         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
490         INIT_LIST_HEAD(&new->list);
491         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
492         new->len = end - start;
493         list_add_tail(&new->list, head);
494 done:
495         SM_I(sbi)->nr_discards += end - start;
496         cpc->trimmed += end - start;
497 }
498
499 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
500 {
501         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
502         int max_blocks = sbi->blocks_per_seg;
503         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
504         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
505         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
506         unsigned long dmap[entries];
507         unsigned int start = 0, end = -1;
508         bool force = (cpc->reason == CP_DISCARD);
509         int i;
510
511         if (!force && (!test_opt(sbi, DISCARD) ||
512                         SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
513                 return;
514
515         if (force && !se->valid_blocks) {
516                 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517                 /*
518                  * if this segment is registered in the prefree list, then
519                  * we should skip adding a discard candidate, and let the
520                  * checkpoint do that later.
521                  */
522                 mutex_lock(&dirty_i->seglist_lock);
523                 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
524                         mutex_unlock(&dirty_i->seglist_lock);
525                         cpc->trimmed += sbi->blocks_per_seg;
526                         return;
527                 }
528                 mutex_unlock(&dirty_i->seglist_lock);
529
530                 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
531                 return;
532         }
533
534         /* zero block will be discarded through the prefree list */
535         if (!se->valid_blocks || se->valid_blocks == max_blocks)
536                 return;
537
538         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
539         for (i = 0; i < entries; i++)
540                 dmap[i] = force ? ~ckpt_map[i] :
541                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
542
543         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
544                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
545                 if (start >= max_blocks)
546                         break;
547
548                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
549
550                 if (end - start < cpc->trim_minlen)
551                         continue;
552
553                 __add_discard_entry(sbi, cpc, start, end);
554         }
555 }
556
557 void release_discard_addrs(struct f2fs_sb_info *sbi)
558 {
559         struct list_head *head = &(SM_I(sbi)->discard_list);
560         struct discard_entry *entry, *this;
561
562         /* drop caches */
563         list_for_each_entry_safe(entry, this, head, list) {
564                 list_del(&entry->list);
565                 kmem_cache_free(discard_entry_slab, entry);
566         }
567 }
568
569 /*
570  * Should call clear_prefree_segments after checkpoint is done.
571  */
572 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
573 {
574         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
575         unsigned int segno;
576
577         mutex_lock(&dirty_i->seglist_lock);
578         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
579                 __set_test_and_free(sbi, segno);
580         mutex_unlock(&dirty_i->seglist_lock);
581 }
582
583 void clear_prefree_segments(struct f2fs_sb_info *sbi)
584 {
585         struct list_head *head = &(SM_I(sbi)->discard_list);
586         struct discard_entry *entry, *this;
587         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
588         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
589         unsigned int start = 0, end = -1;
590
591         mutex_lock(&dirty_i->seglist_lock);
592
593         while (1) {
594                 int i;
595                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
596                 if (start >= MAIN_SEGS(sbi))
597                         break;
598                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
599                                                                 start + 1);
600
601                 for (i = start; i < end; i++)
602                         clear_bit(i, prefree_map);
603
604                 dirty_i->nr_dirty[PRE] -= end - start;
605
606                 if (!test_opt(sbi, DISCARD))
607                         continue;
608
609                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
610                                 (end - start) << sbi->log_blocks_per_seg);
611         }
612         mutex_unlock(&dirty_i->seglist_lock);
613
614         /* send small discards */
615         list_for_each_entry_safe(entry, this, head, list) {
616                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
617                 list_del(&entry->list);
618                 SM_I(sbi)->nr_discards -= entry->len;
619                 kmem_cache_free(discard_entry_slab, entry);
620         }
621 }
622
623 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
624 {
625         struct sit_info *sit_i = SIT_I(sbi);
626
627         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
628                 sit_i->dirty_sentries++;
629                 return false;
630         }
631
632         return true;
633 }
634
635 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
636                                         unsigned int segno, int modified)
637 {
638         struct seg_entry *se = get_seg_entry(sbi, segno);
639         se->type = type;
640         if (modified)
641                 __mark_sit_entry_dirty(sbi, segno);
642 }
643
644 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
645 {
646         struct seg_entry *se;
647         unsigned int segno, offset;
648         long int new_vblocks;
649
650         segno = GET_SEGNO(sbi, blkaddr);
651
652         se = get_seg_entry(sbi, segno);
653         new_vblocks = se->valid_blocks + del;
654         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
655
656         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
657                                 (new_vblocks > sbi->blocks_per_seg)));
658
659         se->valid_blocks = new_vblocks;
660         se->mtime = get_mtime(sbi);
661         SIT_I(sbi)->max_mtime = se->mtime;
662
663         /* Update valid block bitmap */
664         if (del > 0) {
665                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
666                         f2fs_bug_on(sbi, 1);
667         } else {
668                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
669                         f2fs_bug_on(sbi, 1);
670         }
671         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
672                 se->ckpt_valid_blocks += del;
673
674         __mark_sit_entry_dirty(sbi, segno);
675
676         /* update total number of valid blocks to be written in ckpt area */
677         SIT_I(sbi)->written_valid_blocks += del;
678
679         if (sbi->segs_per_sec > 1)
680                 get_sec_entry(sbi, segno)->valid_blocks += del;
681 }
682
683 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
684 {
685         update_sit_entry(sbi, new, 1);
686         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
687                 update_sit_entry(sbi, old, -1);
688
689         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
690         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
691 }
692
693 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
694 {
695         unsigned int segno = GET_SEGNO(sbi, addr);
696         struct sit_info *sit_i = SIT_I(sbi);
697
698         f2fs_bug_on(sbi, addr == NULL_ADDR);
699         if (addr == NEW_ADDR)
700                 return;
701
702         /* add it into sit main buffer */
703         mutex_lock(&sit_i->sentry_lock);
704
705         update_sit_entry(sbi, addr, -1);
706
707         /* add it into dirty seglist */
708         locate_dirty_segment(sbi, segno);
709
710         mutex_unlock(&sit_i->sentry_lock);
711 }
712
713 /*
714  * This function should be resided under the curseg_mutex lock
715  */
716 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
717                                         struct f2fs_summary *sum)
718 {
719         struct curseg_info *curseg = CURSEG_I(sbi, type);
720         void *addr = curseg->sum_blk;
721         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
722         memcpy(addr, sum, sizeof(struct f2fs_summary));
723 }
724
725 /*
726  * Calculate the number of current summary pages for writing
727  */
728 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
729 {
730         int valid_sum_count = 0;
731         int i, sum_in_page;
732
733         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
734                 if (sbi->ckpt->alloc_type[i] == SSR)
735                         valid_sum_count += sbi->blocks_per_seg;
736                 else {
737                         if (for_ra)
738                                 valid_sum_count += le16_to_cpu(
739                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
740                         else
741                                 valid_sum_count += curseg_blkoff(sbi, i);
742                 }
743         }
744
745         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
746                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
747         if (valid_sum_count <= sum_in_page)
748                 return 1;
749         else if ((valid_sum_count - sum_in_page) <=
750                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
751                 return 2;
752         return 3;
753 }
754
755 /*
756  * Caller should put this summary page
757  */
758 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
759 {
760         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
761 }
762
763 static void write_sum_page(struct f2fs_sb_info *sbi,
764                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
765 {
766         struct page *page = grab_meta_page(sbi, blk_addr);
767         void *kaddr = page_address(page);
768         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
769         set_page_dirty(page);
770         f2fs_put_page(page, 1);
771 }
772
773 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
774 {
775         struct curseg_info *curseg = CURSEG_I(sbi, type);
776         unsigned int segno = curseg->segno + 1;
777         struct free_segmap_info *free_i = FREE_I(sbi);
778
779         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
780                 return !test_bit(segno, free_i->free_segmap);
781         return 0;
782 }
783
784 /*
785  * Find a new segment from the free segments bitmap to right order
786  * This function should be returned with success, otherwise BUG
787  */
788 static void get_new_segment(struct f2fs_sb_info *sbi,
789                         unsigned int *newseg, bool new_sec, int dir)
790 {
791         struct free_segmap_info *free_i = FREE_I(sbi);
792         unsigned int segno, secno, zoneno;
793         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
794         unsigned int hint = *newseg / sbi->segs_per_sec;
795         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
796         unsigned int left_start = hint;
797         bool init = true;
798         int go_left = 0;
799         int i;
800
801         write_lock(&free_i->segmap_lock);
802
803         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
804                 segno = find_next_zero_bit(free_i->free_segmap,
805                                         MAIN_SEGS(sbi), *newseg + 1);
806                 if (segno - *newseg < sbi->segs_per_sec -
807                                         (*newseg % sbi->segs_per_sec))
808                         goto got_it;
809         }
810 find_other_zone:
811         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
812         if (secno >= MAIN_SECS(sbi)) {
813                 if (dir == ALLOC_RIGHT) {
814                         secno = find_next_zero_bit(free_i->free_secmap,
815                                                         MAIN_SECS(sbi), 0);
816                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
817                 } else {
818                         go_left = 1;
819                         left_start = hint - 1;
820                 }
821         }
822         if (go_left == 0)
823                 goto skip_left;
824
825         while (test_bit(left_start, free_i->free_secmap)) {
826                 if (left_start > 0) {
827                         left_start--;
828                         continue;
829                 }
830                 left_start = find_next_zero_bit(free_i->free_secmap,
831                                                         MAIN_SECS(sbi), 0);
832                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
833                 break;
834         }
835         secno = left_start;
836 skip_left:
837         hint = secno;
838         segno = secno * sbi->segs_per_sec;
839         zoneno = secno / sbi->secs_per_zone;
840
841         /* give up on finding another zone */
842         if (!init)
843                 goto got_it;
844         if (sbi->secs_per_zone == 1)
845                 goto got_it;
846         if (zoneno == old_zoneno)
847                 goto got_it;
848         if (dir == ALLOC_LEFT) {
849                 if (!go_left && zoneno + 1 >= total_zones)
850                         goto got_it;
851                 if (go_left && zoneno == 0)
852                         goto got_it;
853         }
854         for (i = 0; i < NR_CURSEG_TYPE; i++)
855                 if (CURSEG_I(sbi, i)->zone == zoneno)
856                         break;
857
858         if (i < NR_CURSEG_TYPE) {
859                 /* zone is in user, try another */
860                 if (go_left)
861                         hint = zoneno * sbi->secs_per_zone - 1;
862                 else if (zoneno + 1 >= total_zones)
863                         hint = 0;
864                 else
865                         hint = (zoneno + 1) * sbi->secs_per_zone;
866                 init = false;
867                 goto find_other_zone;
868         }
869 got_it:
870         /* set it as dirty segment in free segmap */
871         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
872         __set_inuse(sbi, segno);
873         *newseg = segno;
874         write_unlock(&free_i->segmap_lock);
875 }
876
877 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
878 {
879         struct curseg_info *curseg = CURSEG_I(sbi, type);
880         struct summary_footer *sum_footer;
881
882         curseg->segno = curseg->next_segno;
883         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
884         curseg->next_blkoff = 0;
885         curseg->next_segno = NULL_SEGNO;
886
887         sum_footer = &(curseg->sum_blk->footer);
888         memset(sum_footer, 0, sizeof(struct summary_footer));
889         if (IS_DATASEG(type))
890                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
891         if (IS_NODESEG(type))
892                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
893         __set_sit_entry_type(sbi, type, curseg->segno, modified);
894 }
895
896 /*
897  * Allocate a current working segment.
898  * This function always allocates a free segment in LFS manner.
899  */
900 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
901 {
902         struct curseg_info *curseg = CURSEG_I(sbi, type);
903         unsigned int segno = curseg->segno;
904         int dir = ALLOC_LEFT;
905
906         write_sum_page(sbi, curseg->sum_blk,
907                                 GET_SUM_BLOCK(sbi, segno));
908         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
909                 dir = ALLOC_RIGHT;
910
911         if (test_opt(sbi, NOHEAP))
912                 dir = ALLOC_RIGHT;
913
914         get_new_segment(sbi, &segno, new_sec, dir);
915         curseg->next_segno = segno;
916         reset_curseg(sbi, type, 1);
917         curseg->alloc_type = LFS;
918 }
919
920 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
921                         struct curseg_info *seg, block_t start)
922 {
923         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
924         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
925         unsigned long target_map[entries];
926         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
927         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
928         int i, pos;
929
930         for (i = 0; i < entries; i++)
931                 target_map[i] = ckpt_map[i] | cur_map[i];
932
933         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
934
935         seg->next_blkoff = pos;
936 }
937
938 /*
939  * If a segment is written by LFS manner, next block offset is just obtained
940  * by increasing the current block offset. However, if a segment is written by
941  * SSR manner, next block offset obtained by calling __next_free_blkoff
942  */
943 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
944                                 struct curseg_info *seg)
945 {
946         if (seg->alloc_type == SSR)
947                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
948         else
949                 seg->next_blkoff++;
950 }
951
952 /*
953  * This function always allocates a used segment(from dirty seglist) by SSR
954  * manner, so it should recover the existing segment information of valid blocks
955  */
956 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
957 {
958         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
959         struct curseg_info *curseg = CURSEG_I(sbi, type);
960         unsigned int new_segno = curseg->next_segno;
961         struct f2fs_summary_block *sum_node;
962         struct page *sum_page;
963
964         write_sum_page(sbi, curseg->sum_blk,
965                                 GET_SUM_BLOCK(sbi, curseg->segno));
966         __set_test_and_inuse(sbi, new_segno);
967
968         mutex_lock(&dirty_i->seglist_lock);
969         __remove_dirty_segment(sbi, new_segno, PRE);
970         __remove_dirty_segment(sbi, new_segno, DIRTY);
971         mutex_unlock(&dirty_i->seglist_lock);
972
973         reset_curseg(sbi, type, 1);
974         curseg->alloc_type = SSR;
975         __next_free_blkoff(sbi, curseg, 0);
976
977         if (reuse) {
978                 sum_page = get_sum_page(sbi, new_segno);
979                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
980                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
981                 f2fs_put_page(sum_page, 1);
982         }
983 }
984
985 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
986 {
987         struct curseg_info *curseg = CURSEG_I(sbi, type);
988         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
989
990         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
991                 return v_ops->get_victim(sbi,
992                                 &(curseg)->next_segno, BG_GC, type, SSR);
993
994         /* For data segments, let's do SSR more intensively */
995         for (; type >= CURSEG_HOT_DATA; type--)
996                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
997                                                 BG_GC, type, SSR))
998                         return 1;
999         return 0;
1000 }
1001
1002 /*
1003  * flush out current segment and replace it with new segment
1004  * This function should be returned with success, otherwise BUG
1005  */
1006 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1007                                                 int type, bool force)
1008 {
1009         struct curseg_info *curseg = CURSEG_I(sbi, type);
1010
1011         if (force)
1012                 new_curseg(sbi, type, true);
1013         else if (type == CURSEG_WARM_NODE)
1014                 new_curseg(sbi, type, false);
1015         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1016                 new_curseg(sbi, type, false);
1017         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1018                 change_curseg(sbi, type, true);
1019         else
1020                 new_curseg(sbi, type, false);
1021
1022         stat_inc_seg_type(sbi, curseg);
1023 }
1024
1025 void allocate_new_segments(struct f2fs_sb_info *sbi)
1026 {
1027         struct curseg_info *curseg;
1028         unsigned int old_curseg;
1029         int i;
1030
1031         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1032                 curseg = CURSEG_I(sbi, i);
1033                 old_curseg = curseg->segno;
1034                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1035                 locate_dirty_segment(sbi, old_curseg);
1036         }
1037 }
1038
1039 static const struct segment_allocation default_salloc_ops = {
1040         .allocate_segment = allocate_segment_by_default,
1041 };
1042
1043 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1044 {
1045         __u64 start = range->start >> sbi->log_blocksize;
1046         __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
1047         unsigned int start_segno, end_segno;
1048         struct cp_control cpc;
1049
1050         if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1051                                                 range->len < sbi->blocksize)
1052                 return -EINVAL;
1053
1054         cpc.trimmed = 0;
1055         if (end <= MAIN_BLKADDR(sbi))
1056                 goto out;
1057
1058         /* start/end segment number in main_area */
1059         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1060         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1061                                                 GET_SEGNO(sbi, end);
1062         cpc.reason = CP_DISCARD;
1063         cpc.trim_start = start_segno;
1064         cpc.trim_end = end_segno;
1065         cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
1066
1067         /* do checkpoint to issue discard commands safely */
1068         mutex_lock(&sbi->gc_mutex);
1069         write_checkpoint(sbi, &cpc);
1070         mutex_unlock(&sbi->gc_mutex);
1071 out:
1072         range->len = cpc.trimmed << sbi->log_blocksize;
1073         return 0;
1074 }
1075
1076 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1077 {
1078         struct curseg_info *curseg = CURSEG_I(sbi, type);
1079         if (curseg->next_blkoff < sbi->blocks_per_seg)
1080                 return true;
1081         return false;
1082 }
1083
1084 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1085 {
1086         if (p_type == DATA)
1087                 return CURSEG_HOT_DATA;
1088         else
1089                 return CURSEG_HOT_NODE;
1090 }
1091
1092 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1093 {
1094         if (p_type == DATA) {
1095                 struct inode *inode = page->mapping->host;
1096
1097                 if (S_ISDIR(inode->i_mode))
1098                         return CURSEG_HOT_DATA;
1099                 else
1100                         return CURSEG_COLD_DATA;
1101         } else {
1102                 if (IS_DNODE(page) && is_cold_node(page))
1103                         return CURSEG_WARM_NODE;
1104                 else
1105                         return CURSEG_COLD_NODE;
1106         }
1107 }
1108
1109 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1110 {
1111         if (p_type == DATA) {
1112                 struct inode *inode = page->mapping->host;
1113
1114                 if (S_ISDIR(inode->i_mode))
1115                         return CURSEG_HOT_DATA;
1116                 else if (is_cold_data(page) || file_is_cold(inode))
1117                         return CURSEG_COLD_DATA;
1118                 else
1119                         return CURSEG_WARM_DATA;
1120         } else {
1121                 if (IS_DNODE(page))
1122                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1123                                                 CURSEG_HOT_NODE;
1124                 else
1125                         return CURSEG_COLD_NODE;
1126         }
1127 }
1128
1129 static int __get_segment_type(struct page *page, enum page_type p_type)
1130 {
1131         switch (F2FS_P_SB(page)->active_logs) {
1132         case 2:
1133                 return __get_segment_type_2(page, p_type);
1134         case 4:
1135                 return __get_segment_type_4(page, p_type);
1136         }
1137         /* NR_CURSEG_TYPE(6) logs by default */
1138         f2fs_bug_on(F2FS_P_SB(page),
1139                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1140         return __get_segment_type_6(page, p_type);
1141 }
1142
1143 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1144                 block_t old_blkaddr, block_t *new_blkaddr,
1145                 struct f2fs_summary *sum, int type)
1146 {
1147         struct sit_info *sit_i = SIT_I(sbi);
1148         struct curseg_info *curseg;
1149
1150         curseg = CURSEG_I(sbi, type);
1151
1152         mutex_lock(&curseg->curseg_mutex);
1153
1154         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1155
1156         /*
1157          * __add_sum_entry should be resided under the curseg_mutex
1158          * because, this function updates a summary entry in the
1159          * current summary block.
1160          */
1161         __add_sum_entry(sbi, type, sum);
1162
1163         mutex_lock(&sit_i->sentry_lock);
1164         __refresh_next_blkoff(sbi, curseg);
1165
1166         stat_inc_block_count(sbi, curseg);
1167
1168         if (!__has_curseg_space(sbi, type))
1169                 sit_i->s_ops->allocate_segment(sbi, type, false);
1170         /*
1171          * SIT information should be updated before segment allocation,
1172          * since SSR needs latest valid block information.
1173          */
1174         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1175
1176         mutex_unlock(&sit_i->sentry_lock);
1177
1178         if (page && IS_NODESEG(type))
1179                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1180
1181         mutex_unlock(&curseg->curseg_mutex);
1182 }
1183
1184 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1185                         block_t old_blkaddr, block_t *new_blkaddr,
1186                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
1187 {
1188         int type = __get_segment_type(page, fio->type);
1189
1190         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1191
1192         /* writeout dirty page into bdev */
1193         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1194 }
1195
1196 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1197 {
1198         struct f2fs_io_info fio = {
1199                 .type = META,
1200                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1201         };
1202
1203         set_page_writeback(page);
1204         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1205 }
1206
1207 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1208                 struct f2fs_io_info *fio,
1209                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1210 {
1211         struct f2fs_summary sum;
1212         set_summary(&sum, nid, 0, 0);
1213         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1214 }
1215
1216 void write_data_page(struct page *page, struct dnode_of_data *dn,
1217                 block_t *new_blkaddr, struct f2fs_io_info *fio)
1218 {
1219         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1220         struct f2fs_summary sum;
1221         struct node_info ni;
1222
1223         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1224         get_node_info(sbi, dn->nid, &ni);
1225         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1226
1227         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1228 }
1229
1230 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1231                                         struct f2fs_io_info *fio)
1232 {
1233         f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1234 }
1235
1236 void recover_data_page(struct f2fs_sb_info *sbi,
1237                         struct page *page, struct f2fs_summary *sum,
1238                         block_t old_blkaddr, block_t new_blkaddr)
1239 {
1240         struct sit_info *sit_i = SIT_I(sbi);
1241         struct curseg_info *curseg;
1242         unsigned int segno, old_cursegno;
1243         struct seg_entry *se;
1244         int type;
1245
1246         segno = GET_SEGNO(sbi, new_blkaddr);
1247         se = get_seg_entry(sbi, segno);
1248         type = se->type;
1249
1250         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1251                 if (old_blkaddr == NULL_ADDR)
1252                         type = CURSEG_COLD_DATA;
1253                 else
1254                         type = CURSEG_WARM_DATA;
1255         }
1256         curseg = CURSEG_I(sbi, type);
1257
1258         mutex_lock(&curseg->curseg_mutex);
1259         mutex_lock(&sit_i->sentry_lock);
1260
1261         old_cursegno = curseg->segno;
1262
1263         /* change the current segment */
1264         if (segno != curseg->segno) {
1265                 curseg->next_segno = segno;
1266                 change_curseg(sbi, type, true);
1267         }
1268
1269         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1270         __add_sum_entry(sbi, type, sum);
1271
1272         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1273         locate_dirty_segment(sbi, old_cursegno);
1274
1275         mutex_unlock(&sit_i->sentry_lock);
1276         mutex_unlock(&curseg->curseg_mutex);
1277 }
1278
1279 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1280                                         struct page *page, enum page_type type)
1281 {
1282         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1283         struct f2fs_bio_info *io = &sbi->write_io[btype];
1284         struct bio_vec *bvec;
1285         int i;
1286
1287         down_read(&io->io_rwsem);
1288         if (!io->bio)
1289                 goto out;
1290
1291         bio_for_each_segment_all(bvec, io->bio, i) {
1292                 if (page == bvec->bv_page) {
1293                         up_read(&io->io_rwsem);
1294                         return true;
1295                 }
1296         }
1297
1298 out:
1299         up_read(&io->io_rwsem);
1300         return false;
1301 }
1302
1303 void f2fs_wait_on_page_writeback(struct page *page,
1304                                 enum page_type type)
1305 {
1306         if (PageWriteback(page)) {
1307                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1308
1309                 if (is_merged_page(sbi, page, type))
1310                         f2fs_submit_merged_bio(sbi, type, WRITE);
1311                 wait_on_page_writeback(page);
1312         }
1313 }
1314
1315 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1316 {
1317         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318         struct curseg_info *seg_i;
1319         unsigned char *kaddr;
1320         struct page *page;
1321         block_t start;
1322         int i, j, offset;
1323
1324         start = start_sum_block(sbi);
1325
1326         page = get_meta_page(sbi, start++);
1327         kaddr = (unsigned char *)page_address(page);
1328
1329         /* Step 1: restore nat cache */
1330         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1331         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1332
1333         /* Step 2: restore sit cache */
1334         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1335         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1336                                                 SUM_JOURNAL_SIZE);
1337         offset = 2 * SUM_JOURNAL_SIZE;
1338
1339         /* Step 3: restore summary entries */
1340         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1341                 unsigned short blk_off;
1342                 unsigned int segno;
1343
1344                 seg_i = CURSEG_I(sbi, i);
1345                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1346                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1347                 seg_i->next_segno = segno;
1348                 reset_curseg(sbi, i, 0);
1349                 seg_i->alloc_type = ckpt->alloc_type[i];
1350                 seg_i->next_blkoff = blk_off;
1351
1352                 if (seg_i->alloc_type == SSR)
1353                         blk_off = sbi->blocks_per_seg;
1354
1355                 for (j = 0; j < blk_off; j++) {
1356                         struct f2fs_summary *s;
1357                         s = (struct f2fs_summary *)(kaddr + offset);
1358                         seg_i->sum_blk->entries[j] = *s;
1359                         offset += SUMMARY_SIZE;
1360                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1361                                                 SUM_FOOTER_SIZE)
1362                                 continue;
1363
1364                         f2fs_put_page(page, 1);
1365                         page = NULL;
1366
1367                         page = get_meta_page(sbi, start++);
1368                         kaddr = (unsigned char *)page_address(page);
1369                         offset = 0;
1370                 }
1371         }
1372         f2fs_put_page(page, 1);
1373         return 0;
1374 }
1375
1376 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1377 {
1378         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1379         struct f2fs_summary_block *sum;
1380         struct curseg_info *curseg;
1381         struct page *new;
1382         unsigned short blk_off;
1383         unsigned int segno = 0;
1384         block_t blk_addr = 0;
1385
1386         /* get segment number and block addr */
1387         if (IS_DATASEG(type)) {
1388                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1389                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1390                                                         CURSEG_HOT_DATA]);
1391                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1392                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1393                 else
1394                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1395         } else {
1396                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1397                                                         CURSEG_HOT_NODE]);
1398                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1399                                                         CURSEG_HOT_NODE]);
1400                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1401                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1402                                                         type - CURSEG_HOT_NODE);
1403                 else
1404                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1405         }
1406
1407         new = get_meta_page(sbi, blk_addr);
1408         sum = (struct f2fs_summary_block *)page_address(new);
1409
1410         if (IS_NODESEG(type)) {
1411                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1412                         struct f2fs_summary *ns = &sum->entries[0];
1413                         int i;
1414                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1415                                 ns->version = 0;
1416                                 ns->ofs_in_node = 0;
1417                         }
1418                 } else {
1419                         int err;
1420
1421                         err = restore_node_summary(sbi, segno, sum);
1422                         if (err) {
1423                                 f2fs_put_page(new, 1);
1424                                 return err;
1425                         }
1426                 }
1427         }
1428
1429         /* set uncompleted segment to curseg */
1430         curseg = CURSEG_I(sbi, type);
1431         mutex_lock(&curseg->curseg_mutex);
1432         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1433         curseg->next_segno = segno;
1434         reset_curseg(sbi, type, 0);
1435         curseg->alloc_type = ckpt->alloc_type[type];
1436         curseg->next_blkoff = blk_off;
1437         mutex_unlock(&curseg->curseg_mutex);
1438         f2fs_put_page(new, 1);
1439         return 0;
1440 }
1441
1442 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1443 {
1444         int type = CURSEG_HOT_DATA;
1445         int err;
1446
1447         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1448                 int npages = npages_for_summary_flush(sbi, true);
1449
1450                 if (npages >= 2)
1451                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1452                                                                 META_CP);
1453
1454                 /* restore for compacted data summary */
1455                 if (read_compacted_summaries(sbi))
1456                         return -EINVAL;
1457                 type = CURSEG_HOT_NODE;
1458         }
1459
1460         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1461                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1462                                         NR_CURSEG_TYPE - type, META_CP);
1463
1464         for (; type <= CURSEG_COLD_NODE; type++) {
1465                 err = read_normal_summaries(sbi, type);
1466                 if (err)
1467                         return err;
1468         }
1469
1470         return 0;
1471 }
1472
1473 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1474 {
1475         struct page *page;
1476         unsigned char *kaddr;
1477         struct f2fs_summary *summary;
1478         struct curseg_info *seg_i;
1479         int written_size = 0;
1480         int i, j;
1481
1482         page = grab_meta_page(sbi, blkaddr++);
1483         kaddr = (unsigned char *)page_address(page);
1484
1485         /* Step 1: write nat cache */
1486         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1487         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1488         written_size += SUM_JOURNAL_SIZE;
1489
1490         /* Step 2: write sit cache */
1491         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1492         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1493                                                 SUM_JOURNAL_SIZE);
1494         written_size += SUM_JOURNAL_SIZE;
1495
1496         /* Step 3: write summary entries */
1497         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1498                 unsigned short blkoff;
1499                 seg_i = CURSEG_I(sbi, i);
1500                 if (sbi->ckpt->alloc_type[i] == SSR)
1501                         blkoff = sbi->blocks_per_seg;
1502                 else
1503                         blkoff = curseg_blkoff(sbi, i);
1504
1505                 for (j = 0; j < blkoff; j++) {
1506                         if (!page) {
1507                                 page = grab_meta_page(sbi, blkaddr++);
1508                                 kaddr = (unsigned char *)page_address(page);
1509                                 written_size = 0;
1510                         }
1511                         summary = (struct f2fs_summary *)(kaddr + written_size);
1512                         *summary = seg_i->sum_blk->entries[j];
1513                         written_size += SUMMARY_SIZE;
1514
1515                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1516                                                         SUM_FOOTER_SIZE)
1517                                 continue;
1518
1519                         set_page_dirty(page);
1520                         f2fs_put_page(page, 1);
1521                         page = NULL;
1522                 }
1523         }
1524         if (page) {
1525                 set_page_dirty(page);
1526                 f2fs_put_page(page, 1);
1527         }
1528 }
1529
1530 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1531                                         block_t blkaddr, int type)
1532 {
1533         int i, end;
1534         if (IS_DATASEG(type))
1535                 end = type + NR_CURSEG_DATA_TYPE;
1536         else
1537                 end = type + NR_CURSEG_NODE_TYPE;
1538
1539         for (i = type; i < end; i++) {
1540                 struct curseg_info *sum = CURSEG_I(sbi, i);
1541                 mutex_lock(&sum->curseg_mutex);
1542                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1543                 mutex_unlock(&sum->curseg_mutex);
1544         }
1545 }
1546
1547 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1548 {
1549         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1550                 write_compacted_summaries(sbi, start_blk);
1551         else
1552                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1553 }
1554
1555 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1556 {
1557         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1558                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1559 }
1560
1561 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1562                                         unsigned int val, int alloc)
1563 {
1564         int i;
1565
1566         if (type == NAT_JOURNAL) {
1567                 for (i = 0; i < nats_in_cursum(sum); i++) {
1568                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1569                                 return i;
1570                 }
1571                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1572                         return update_nats_in_cursum(sum, 1);
1573         } else if (type == SIT_JOURNAL) {
1574                 for (i = 0; i < sits_in_cursum(sum); i++)
1575                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1576                                 return i;
1577                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1578                         return update_sits_in_cursum(sum, 1);
1579         }
1580         return -1;
1581 }
1582
1583 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1584                                         unsigned int segno)
1585 {
1586         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1587 }
1588
1589 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1590                                         unsigned int start)
1591 {
1592         struct sit_info *sit_i = SIT_I(sbi);
1593         struct page *src_page, *dst_page;
1594         pgoff_t src_off, dst_off;
1595         void *src_addr, *dst_addr;
1596
1597         src_off = current_sit_addr(sbi, start);
1598         dst_off = next_sit_addr(sbi, src_off);
1599
1600         /* get current sit block page without lock */
1601         src_page = get_meta_page(sbi, src_off);
1602         dst_page = grab_meta_page(sbi, dst_off);
1603         f2fs_bug_on(sbi, PageDirty(src_page));
1604
1605         src_addr = page_address(src_page);
1606         dst_addr = page_address(dst_page);
1607         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1608
1609         set_page_dirty(dst_page);
1610         f2fs_put_page(src_page, 1);
1611
1612         set_to_next_sit(sit_i, start);
1613
1614         return dst_page;
1615 }
1616
1617 static struct sit_entry_set *grab_sit_entry_set(void)
1618 {
1619         struct sit_entry_set *ses =
1620                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1621
1622         ses->entry_cnt = 0;
1623         INIT_LIST_HEAD(&ses->set_list);
1624         return ses;
1625 }
1626
1627 static void release_sit_entry_set(struct sit_entry_set *ses)
1628 {
1629         list_del(&ses->set_list);
1630         kmem_cache_free(sit_entry_set_slab, ses);
1631 }
1632
1633 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1634                                                 struct list_head *head)
1635 {
1636         struct sit_entry_set *next = ses;
1637
1638         if (list_is_last(&ses->set_list, head))
1639                 return;
1640
1641         list_for_each_entry_continue(next, head, set_list)
1642                 if (ses->entry_cnt <= next->entry_cnt)
1643                         break;
1644
1645         list_move_tail(&ses->set_list, &next->set_list);
1646 }
1647
1648 static void add_sit_entry(unsigned int segno, struct list_head *head)
1649 {
1650         struct sit_entry_set *ses;
1651         unsigned int start_segno = START_SEGNO(segno);
1652
1653         list_for_each_entry(ses, head, set_list) {
1654                 if (ses->start_segno == start_segno) {
1655                         ses->entry_cnt++;
1656                         adjust_sit_entry_set(ses, head);
1657                         return;
1658                 }
1659         }
1660
1661         ses = grab_sit_entry_set();
1662
1663         ses->start_segno = start_segno;
1664         ses->entry_cnt++;
1665         list_add(&ses->set_list, head);
1666 }
1667
1668 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1669 {
1670         struct f2fs_sm_info *sm_info = SM_I(sbi);
1671         struct list_head *set_list = &sm_info->sit_entry_set;
1672         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1673         unsigned int segno;
1674
1675         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1676                 add_sit_entry(segno, set_list);
1677 }
1678
1679 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1680 {
1681         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1682         struct f2fs_summary_block *sum = curseg->sum_blk;
1683         int i;
1684
1685         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1686                 unsigned int segno;
1687                 bool dirtied;
1688
1689                 segno = le32_to_cpu(segno_in_journal(sum, i));
1690                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1691
1692                 if (!dirtied)
1693                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1694         }
1695         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1696 }
1697
1698 /*
1699  * CP calls this function, which flushes SIT entries including sit_journal,
1700  * and moves prefree segs to free segs.
1701  */
1702 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1703 {
1704         struct sit_info *sit_i = SIT_I(sbi);
1705         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1706         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1707         struct f2fs_summary_block *sum = curseg->sum_blk;
1708         struct sit_entry_set *ses, *tmp;
1709         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1710         bool to_journal = true;
1711         struct seg_entry *se;
1712
1713         mutex_lock(&curseg->curseg_mutex);
1714         mutex_lock(&sit_i->sentry_lock);
1715
1716         /*
1717          * add and account sit entries of dirty bitmap in sit entry
1718          * set temporarily
1719          */
1720         add_sits_in_set(sbi);
1721
1722         /*
1723          * if there are no enough space in journal to store dirty sit
1724          * entries, remove all entries from journal and add and account
1725          * them in sit entry set.
1726          */
1727         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1728                 remove_sits_in_journal(sbi);
1729
1730         if (!sit_i->dirty_sentries)
1731                 goto out;
1732
1733         /*
1734          * there are two steps to flush sit entries:
1735          * #1, flush sit entries to journal in current cold data summary block.
1736          * #2, flush sit entries to sit page.
1737          */
1738         list_for_each_entry_safe(ses, tmp, head, set_list) {
1739                 struct page *page = NULL;
1740                 struct f2fs_sit_block *raw_sit = NULL;
1741                 unsigned int start_segno = ses->start_segno;
1742                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1743                                                 (unsigned long)MAIN_SEGS(sbi));
1744                 unsigned int segno = start_segno;
1745
1746                 if (to_journal &&
1747                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1748                         to_journal = false;
1749
1750                 if (!to_journal) {
1751                         page = get_next_sit_page(sbi, start_segno);
1752                         raw_sit = page_address(page);
1753                 }
1754
1755                 /* flush dirty sit entries in region of current sit set */
1756                 for_each_set_bit_from(segno, bitmap, end) {
1757                         int offset, sit_offset;
1758
1759                         se = get_seg_entry(sbi, segno);
1760
1761                         /* add discard candidates */
1762                         if (cpc->reason != CP_DISCARD) {
1763                                 cpc->trim_start = segno;
1764                                 add_discard_addrs(sbi, cpc);
1765                         }
1766
1767                         if (to_journal) {
1768                                 offset = lookup_journal_in_cursum(sum,
1769                                                         SIT_JOURNAL, segno, 1);
1770                                 f2fs_bug_on(sbi, offset < 0);
1771                                 segno_in_journal(sum, offset) =
1772                                                         cpu_to_le32(segno);
1773                                 seg_info_to_raw_sit(se,
1774                                                 &sit_in_journal(sum, offset));
1775                         } else {
1776                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1777                                 seg_info_to_raw_sit(se,
1778                                                 &raw_sit->entries[sit_offset]);
1779                         }
1780
1781                         __clear_bit(segno, bitmap);
1782                         sit_i->dirty_sentries--;
1783                         ses->entry_cnt--;
1784                 }
1785
1786                 if (!to_journal)
1787                         f2fs_put_page(page, 1);
1788
1789                 f2fs_bug_on(sbi, ses->entry_cnt);
1790                 release_sit_entry_set(ses);
1791         }
1792
1793         f2fs_bug_on(sbi, !list_empty(head));
1794         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1795 out:
1796         if (cpc->reason == CP_DISCARD) {
1797                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1798                         add_discard_addrs(sbi, cpc);
1799         }
1800         mutex_unlock(&sit_i->sentry_lock);
1801         mutex_unlock(&curseg->curseg_mutex);
1802
1803         set_prefree_as_free_segments(sbi);
1804 }
1805
1806 static int build_sit_info(struct f2fs_sb_info *sbi)
1807 {
1808         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1809         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1810         struct sit_info *sit_i;
1811         unsigned int sit_segs, start;
1812         char *src_bitmap, *dst_bitmap;
1813         unsigned int bitmap_size;
1814
1815         /* allocate memory for SIT information */
1816         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1817         if (!sit_i)
1818                 return -ENOMEM;
1819
1820         SM_I(sbi)->sit_info = sit_i;
1821
1822         sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1823         if (!sit_i->sentries)
1824                 return -ENOMEM;
1825
1826         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1827         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1828         if (!sit_i->dirty_sentries_bitmap)
1829                 return -ENOMEM;
1830
1831         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1832                 sit_i->sentries[start].cur_valid_map
1833                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1834                 sit_i->sentries[start].ckpt_valid_map
1835                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1836                 if (!sit_i->sentries[start].cur_valid_map
1837                                 || !sit_i->sentries[start].ckpt_valid_map)
1838                         return -ENOMEM;
1839         }
1840
1841         if (sbi->segs_per_sec > 1) {
1842                 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1843                                         sizeof(struct sec_entry));
1844                 if (!sit_i->sec_entries)
1845                         return -ENOMEM;
1846         }
1847
1848         /* get information related with SIT */
1849         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1850
1851         /* setup SIT bitmap from ckeckpoint pack */
1852         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1853         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1854
1855         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1856         if (!dst_bitmap)
1857                 return -ENOMEM;
1858
1859         /* init SIT information */
1860         sit_i->s_ops = &default_salloc_ops;
1861
1862         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1863         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1864         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1865         sit_i->sit_bitmap = dst_bitmap;
1866         sit_i->bitmap_size = bitmap_size;
1867         sit_i->dirty_sentries = 0;
1868         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1869         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1870         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1871         mutex_init(&sit_i->sentry_lock);
1872         return 0;
1873 }
1874
1875 static int build_free_segmap(struct f2fs_sb_info *sbi)
1876 {
1877         struct free_segmap_info *free_i;
1878         unsigned int bitmap_size, sec_bitmap_size;
1879
1880         /* allocate memory for free segmap information */
1881         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1882         if (!free_i)
1883                 return -ENOMEM;
1884
1885         SM_I(sbi)->free_info = free_i;
1886
1887         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1888         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1889         if (!free_i->free_segmap)
1890                 return -ENOMEM;
1891
1892         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1893         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1894         if (!free_i->free_secmap)
1895                 return -ENOMEM;
1896
1897         /* set all segments as dirty temporarily */
1898         memset(free_i->free_segmap, 0xff, bitmap_size);
1899         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1900
1901         /* init free segmap information */
1902         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1903         free_i->free_segments = 0;
1904         free_i->free_sections = 0;
1905         rwlock_init(&free_i->segmap_lock);
1906         return 0;
1907 }
1908
1909 static int build_curseg(struct f2fs_sb_info *sbi)
1910 {
1911         struct curseg_info *array;
1912         int i;
1913
1914         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1915         if (!array)
1916                 return -ENOMEM;
1917
1918         SM_I(sbi)->curseg_array = array;
1919
1920         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1921                 mutex_init(&array[i].curseg_mutex);
1922                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1923                 if (!array[i].sum_blk)
1924                         return -ENOMEM;
1925                 array[i].segno = NULL_SEGNO;
1926                 array[i].next_blkoff = 0;
1927         }
1928         return restore_curseg_summaries(sbi);
1929 }
1930
1931 static void build_sit_entries(struct f2fs_sb_info *sbi)
1932 {
1933         struct sit_info *sit_i = SIT_I(sbi);
1934         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1935         struct f2fs_summary_block *sum = curseg->sum_blk;
1936         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1937         unsigned int i, start, end;
1938         unsigned int readed, start_blk = 0;
1939         int nrpages = MAX_BIO_BLOCKS(sbi);
1940
1941         do {
1942                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1943
1944                 start = start_blk * sit_i->sents_per_block;
1945                 end = (start_blk + readed) * sit_i->sents_per_block;
1946
1947                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1948                         struct seg_entry *se = &sit_i->sentries[start];
1949                         struct f2fs_sit_block *sit_blk;
1950                         struct f2fs_sit_entry sit;
1951                         struct page *page;
1952
1953                         mutex_lock(&curseg->curseg_mutex);
1954                         for (i = 0; i < sits_in_cursum(sum); i++) {
1955                                 if (le32_to_cpu(segno_in_journal(sum, i))
1956                                                                 == start) {
1957                                         sit = sit_in_journal(sum, i);
1958                                         mutex_unlock(&curseg->curseg_mutex);
1959                                         goto got_it;
1960                                 }
1961                         }
1962                         mutex_unlock(&curseg->curseg_mutex);
1963
1964                         page = get_current_sit_page(sbi, start);
1965                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1966                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1967                         f2fs_put_page(page, 1);
1968 got_it:
1969                         check_block_count(sbi, start, &sit);
1970                         seg_info_from_raw_sit(se, &sit);
1971                         if (sbi->segs_per_sec > 1) {
1972                                 struct sec_entry *e = get_sec_entry(sbi, start);
1973                                 e->valid_blocks += se->valid_blocks;
1974                         }
1975                 }
1976                 start_blk += readed;
1977         } while (start_blk < sit_blk_cnt);
1978 }
1979
1980 static void init_free_segmap(struct f2fs_sb_info *sbi)
1981 {
1982         unsigned int start;
1983         int type;
1984
1985         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1986                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1987                 if (!sentry->valid_blocks)
1988                         __set_free(sbi, start);
1989         }
1990
1991         /* set use the current segments */
1992         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1993                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1994                 __set_test_and_inuse(sbi, curseg_t->segno);
1995         }
1996 }
1997
1998 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1999 {
2000         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2001         struct free_segmap_info *free_i = FREE_I(sbi);
2002         unsigned int segno = 0, offset = 0;
2003         unsigned short valid_blocks;
2004
2005         while (1) {
2006                 /* find dirty segment based on free segmap */
2007                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2008                 if (segno >= MAIN_SEGS(sbi))
2009                         break;
2010                 offset = segno + 1;
2011                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2012                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2013                         continue;
2014                 if (valid_blocks > sbi->blocks_per_seg) {
2015                         f2fs_bug_on(sbi, 1);
2016                         continue;
2017                 }
2018                 mutex_lock(&dirty_i->seglist_lock);
2019                 __locate_dirty_segment(sbi, segno, DIRTY);
2020                 mutex_unlock(&dirty_i->seglist_lock);
2021         }
2022 }
2023
2024 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2025 {
2026         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2027         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2028
2029         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2030         if (!dirty_i->victim_secmap)
2031                 return -ENOMEM;
2032         return 0;
2033 }
2034
2035 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2036 {
2037         struct dirty_seglist_info *dirty_i;
2038         unsigned int bitmap_size, i;
2039
2040         /* allocate memory for dirty segments list information */
2041         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2042         if (!dirty_i)
2043                 return -ENOMEM;
2044
2045         SM_I(sbi)->dirty_info = dirty_i;
2046         mutex_init(&dirty_i->seglist_lock);
2047
2048         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2049
2050         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2051                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2052                 if (!dirty_i->dirty_segmap[i])
2053                         return -ENOMEM;
2054         }
2055
2056         init_dirty_segmap(sbi);
2057         return init_victim_secmap(sbi);
2058 }
2059
2060 /*
2061  * Update min, max modified time for cost-benefit GC algorithm
2062  */
2063 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2064 {
2065         struct sit_info *sit_i = SIT_I(sbi);
2066         unsigned int segno;
2067
2068         mutex_lock(&sit_i->sentry_lock);
2069
2070         sit_i->min_mtime = LLONG_MAX;
2071
2072         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2073                 unsigned int i;
2074                 unsigned long long mtime = 0;
2075
2076                 for (i = 0; i < sbi->segs_per_sec; i++)
2077                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2078
2079                 mtime = div_u64(mtime, sbi->segs_per_sec);
2080
2081                 if (sit_i->min_mtime > mtime)
2082                         sit_i->min_mtime = mtime;
2083         }
2084         sit_i->max_mtime = get_mtime(sbi);
2085         mutex_unlock(&sit_i->sentry_lock);
2086 }
2087
2088 int build_segment_manager(struct f2fs_sb_info *sbi)
2089 {
2090         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2091         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2092         struct f2fs_sm_info *sm_info;
2093         int err;
2094
2095         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2096         if (!sm_info)
2097                 return -ENOMEM;
2098
2099         /* init sm info */
2100         sbi->sm_info = sm_info;
2101         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2102         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2103         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2104         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2105         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2106         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2107         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2108         sm_info->rec_prefree_segments = sm_info->main_segments *
2109                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2110         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2111         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2112         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2113
2114         INIT_LIST_HEAD(&sm_info->discard_list);
2115         sm_info->nr_discards = 0;
2116         sm_info->max_discards = 0;
2117
2118         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2119
2120         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2121                 err = create_flush_cmd_control(sbi);
2122                 if (err)
2123                         return err;
2124         }
2125
2126         err = build_sit_info(sbi);
2127         if (err)
2128                 return err;
2129         err = build_free_segmap(sbi);
2130         if (err)
2131                 return err;
2132         err = build_curseg(sbi);
2133         if (err)
2134                 return err;
2135
2136         /* reinit free segmap based on SIT */
2137         build_sit_entries(sbi);
2138
2139         init_free_segmap(sbi);
2140         err = build_dirty_segmap(sbi);
2141         if (err)
2142                 return err;
2143
2144         init_min_max_mtime(sbi);
2145         return 0;
2146 }
2147
2148 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2149                 enum dirty_type dirty_type)
2150 {
2151         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2152
2153         mutex_lock(&dirty_i->seglist_lock);
2154         kfree(dirty_i->dirty_segmap[dirty_type]);
2155         dirty_i->nr_dirty[dirty_type] = 0;
2156         mutex_unlock(&dirty_i->seglist_lock);
2157 }
2158
2159 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2160 {
2161         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2162         kfree(dirty_i->victim_secmap);
2163 }
2164
2165 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2166 {
2167         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2168         int i;
2169
2170         if (!dirty_i)
2171                 return;
2172
2173         /* discard pre-free/dirty segments list */
2174         for (i = 0; i < NR_DIRTY_TYPE; i++)
2175                 discard_dirty_segmap(sbi, i);
2176
2177         destroy_victim_secmap(sbi);
2178         SM_I(sbi)->dirty_info = NULL;
2179         kfree(dirty_i);
2180 }
2181
2182 static void destroy_curseg(struct f2fs_sb_info *sbi)
2183 {
2184         struct curseg_info *array = SM_I(sbi)->curseg_array;
2185         int i;
2186
2187         if (!array)
2188                 return;
2189         SM_I(sbi)->curseg_array = NULL;
2190         for (i = 0; i < NR_CURSEG_TYPE; i++)
2191                 kfree(array[i].sum_blk);
2192         kfree(array);
2193 }
2194
2195 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2196 {
2197         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2198         if (!free_i)
2199                 return;
2200         SM_I(sbi)->free_info = NULL;
2201         kfree(free_i->free_segmap);
2202         kfree(free_i->free_secmap);
2203         kfree(free_i);
2204 }
2205
2206 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2207 {
2208         struct sit_info *sit_i = SIT_I(sbi);
2209         unsigned int start;
2210
2211         if (!sit_i)
2212                 return;
2213
2214         if (sit_i->sentries) {
2215                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2216                         kfree(sit_i->sentries[start].cur_valid_map);
2217                         kfree(sit_i->sentries[start].ckpt_valid_map);
2218                 }
2219         }
2220         vfree(sit_i->sentries);
2221         vfree(sit_i->sec_entries);
2222         kfree(sit_i->dirty_sentries_bitmap);
2223
2224         SM_I(sbi)->sit_info = NULL;
2225         kfree(sit_i->sit_bitmap);
2226         kfree(sit_i);
2227 }
2228
2229 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2230 {
2231         struct f2fs_sm_info *sm_info = SM_I(sbi);
2232
2233         if (!sm_info)
2234                 return;
2235         destroy_flush_cmd_control(sbi);
2236         destroy_dirty_segmap(sbi);
2237         destroy_curseg(sbi);
2238         destroy_free_segmap(sbi);
2239         destroy_sit_info(sbi);
2240         sbi->sm_info = NULL;
2241         kfree(sm_info);
2242 }
2243
2244 int __init create_segment_manager_caches(void)
2245 {
2246         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2247                         sizeof(struct discard_entry));
2248         if (!discard_entry_slab)
2249                 goto fail;
2250
2251         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2252                         sizeof(struct sit_entry_set));
2253         if (!sit_entry_set_slab)
2254                 goto destory_discard_entry;
2255
2256         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2257                         sizeof(struct inmem_pages));
2258         if (!inmem_entry_slab)
2259                 goto destroy_sit_entry_set;
2260         return 0;
2261
2262 destroy_sit_entry_set:
2263         kmem_cache_destroy(sit_entry_set_slab);
2264 destory_discard_entry:
2265         kmem_cache_destroy(discard_entry_slab);
2266 fail:
2267         return -ENOMEM;
2268 }
2269
2270 void destroy_segment_manager_caches(void)
2271 {
2272         kmem_cache_destroy(sit_entry_set_slab);
2273         kmem_cache_destroy(discard_entry_slab);
2274         kmem_cache_destroy(inmem_entry_slab);
2275 }