]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
f2fs: introduce f2fs_balance_fs_bg for some background jobs
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
40 {
41         /* check the # of cached NAT entries and prefree segments */
42         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43                                 excess_prefree_segs(sbi))
44                 f2fs_sync_fs(sbi->sb, true);
45 }
46
47 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48                 enum dirty_type dirty_type)
49 {
50         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
51
52         /* need not be added */
53         if (IS_CURSEG(sbi, segno))
54                 return;
55
56         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57                 dirty_i->nr_dirty[dirty_type]++;
58
59         if (dirty_type == DIRTY) {
60                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
61                 enum dirty_type t = DIRTY_HOT_DATA;
62
63                 dirty_type = sentry->type;
64
65                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
66                         dirty_i->nr_dirty[dirty_type]++;
67
68                 /* Only one bitmap should be set */
69                 for (; t <= DIRTY_COLD_NODE; t++) {
70                         if (t == dirty_type)
71                                 continue;
72                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
73                                 dirty_i->nr_dirty[t]--;
74                 }
75         }
76 }
77
78 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
79                 enum dirty_type dirty_type)
80 {
81         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
82
83         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
84                 dirty_i->nr_dirty[dirty_type]--;
85
86         if (dirty_type == DIRTY) {
87                 enum dirty_type t = DIRTY_HOT_DATA;
88
89                 /* clear its dirty bitmap */
90                 for (; t <= DIRTY_COLD_NODE; t++) {
91                         if (test_and_clear_bit(segno,
92                                                 dirty_i->dirty_segmap[t])) {
93                                 dirty_i->nr_dirty[t]--;
94                                 break;
95                         }
96                 }
97
98                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
99                         clear_bit(GET_SECNO(sbi, segno),
100                                                 dirty_i->victim_secmap);
101         }
102 }
103
104 /*
105  * Should not occur error such as -ENOMEM.
106  * Adding dirty entry into seglist is not critical operation.
107  * If a given segment is one of current working segments, it won't be added.
108  */
109 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
110 {
111         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
112         unsigned short valid_blocks;
113
114         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
115                 return;
116
117         mutex_lock(&dirty_i->seglist_lock);
118
119         valid_blocks = get_valid_blocks(sbi, segno, 0);
120
121         if (valid_blocks == 0) {
122                 __locate_dirty_segment(sbi, segno, PRE);
123                 __remove_dirty_segment(sbi, segno, DIRTY);
124         } else if (valid_blocks < sbi->blocks_per_seg) {
125                 __locate_dirty_segment(sbi, segno, DIRTY);
126         } else {
127                 /* Recovery routine with SSR needs this */
128                 __remove_dirty_segment(sbi, segno, DIRTY);
129         }
130
131         mutex_unlock(&dirty_i->seglist_lock);
132 }
133
134 /*
135  * Should call clear_prefree_segments after checkpoint is done.
136  */
137 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
138 {
139         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
140         unsigned int segno = -1;
141         unsigned int total_segs = TOTAL_SEGS(sbi);
142
143         mutex_lock(&dirty_i->seglist_lock);
144         while (1) {
145                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
146                                 segno + 1);
147                 if (segno >= total_segs)
148                         break;
149                 __set_test_and_free(sbi, segno);
150         }
151         mutex_unlock(&dirty_i->seglist_lock);
152 }
153
154 void clear_prefree_segments(struct f2fs_sb_info *sbi)
155 {
156         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
157         unsigned int segno = -1;
158         unsigned int total_segs = TOTAL_SEGS(sbi);
159
160         mutex_lock(&dirty_i->seglist_lock);
161         while (1) {
162                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
163                                 segno + 1);
164                 if (segno >= total_segs)
165                         break;
166
167                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
168                         dirty_i->nr_dirty[PRE]--;
169
170                 /* Let's use trim */
171                 if (test_opt(sbi, DISCARD))
172                         blkdev_issue_discard(sbi->sb->s_bdev,
173                                         START_BLOCK(sbi, segno) <<
174                                         sbi->log_sectors_per_block,
175                                         1 << (sbi->log_sectors_per_block +
176                                                 sbi->log_blocks_per_seg),
177                                         GFP_NOFS, 0);
178         }
179         mutex_unlock(&dirty_i->seglist_lock);
180 }
181
182 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
183 {
184         struct sit_info *sit_i = SIT_I(sbi);
185         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
186                 sit_i->dirty_sentries++;
187 }
188
189 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
190                                         unsigned int segno, int modified)
191 {
192         struct seg_entry *se = get_seg_entry(sbi, segno);
193         se->type = type;
194         if (modified)
195                 __mark_sit_entry_dirty(sbi, segno);
196 }
197
198 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
199 {
200         struct seg_entry *se;
201         unsigned int segno, offset;
202         long int new_vblocks;
203
204         segno = GET_SEGNO(sbi, blkaddr);
205
206         se = get_seg_entry(sbi, segno);
207         new_vblocks = se->valid_blocks + del;
208         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
209
210         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
211                                 (new_vblocks > sbi->blocks_per_seg)));
212
213         se->valid_blocks = new_vblocks;
214         se->mtime = get_mtime(sbi);
215         SIT_I(sbi)->max_mtime = se->mtime;
216
217         /* Update valid block bitmap */
218         if (del > 0) {
219                 if (f2fs_set_bit(offset, se->cur_valid_map))
220                         BUG();
221         } else {
222                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
223                         BUG();
224         }
225         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
226                 se->ckpt_valid_blocks += del;
227
228         __mark_sit_entry_dirty(sbi, segno);
229
230         /* update total number of valid blocks to be written in ckpt area */
231         SIT_I(sbi)->written_valid_blocks += del;
232
233         if (sbi->segs_per_sec > 1)
234                 get_sec_entry(sbi, segno)->valid_blocks += del;
235 }
236
237 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
238                         block_t old_blkaddr, block_t new_blkaddr)
239 {
240         update_sit_entry(sbi, new_blkaddr, 1);
241         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
242                 update_sit_entry(sbi, old_blkaddr, -1);
243 }
244
245 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
246 {
247         unsigned int segno = GET_SEGNO(sbi, addr);
248         struct sit_info *sit_i = SIT_I(sbi);
249
250         BUG_ON(addr == NULL_ADDR);
251         if (addr == NEW_ADDR)
252                 return;
253
254         /* add it into sit main buffer */
255         mutex_lock(&sit_i->sentry_lock);
256
257         update_sit_entry(sbi, addr, -1);
258
259         /* add it into dirty seglist */
260         locate_dirty_segment(sbi, segno);
261
262         mutex_unlock(&sit_i->sentry_lock);
263 }
264
265 /*
266  * This function should be resided under the curseg_mutex lock
267  */
268 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
269                                         struct f2fs_summary *sum)
270 {
271         struct curseg_info *curseg = CURSEG_I(sbi, type);
272         void *addr = curseg->sum_blk;
273         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
274         memcpy(addr, sum, sizeof(struct f2fs_summary));
275 }
276
277 /*
278  * Calculate the number of current summary pages for writing
279  */
280 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
281 {
282         int total_size_bytes = 0;
283         int valid_sum_count = 0;
284         int i, sum_space;
285
286         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
287                 if (sbi->ckpt->alloc_type[i] == SSR)
288                         valid_sum_count += sbi->blocks_per_seg;
289                 else
290                         valid_sum_count += curseg_blkoff(sbi, i);
291         }
292
293         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
294                         + sizeof(struct nat_journal) + 2
295                         + sizeof(struct sit_journal) + 2;
296         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
297         if (total_size_bytes < sum_space)
298                 return 1;
299         else if (total_size_bytes < 2 * sum_space)
300                 return 2;
301         return 3;
302 }
303
304 /*
305  * Caller should put this summary page
306  */
307 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
308 {
309         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
310 }
311
312 static void write_sum_page(struct f2fs_sb_info *sbi,
313                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
314 {
315         struct page *page = grab_meta_page(sbi, blk_addr);
316         void *kaddr = page_address(page);
317         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
318         set_page_dirty(page);
319         f2fs_put_page(page, 1);
320 }
321
322 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
323 {
324         struct curseg_info *curseg = CURSEG_I(sbi, type);
325         unsigned int segno = curseg->segno + 1;
326         struct free_segmap_info *free_i = FREE_I(sbi);
327
328         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
329                 return !test_bit(segno, free_i->free_segmap);
330         return 0;
331 }
332
333 /*
334  * Find a new segment from the free segments bitmap to right order
335  * This function should be returned with success, otherwise BUG
336  */
337 static void get_new_segment(struct f2fs_sb_info *sbi,
338                         unsigned int *newseg, bool new_sec, int dir)
339 {
340         struct free_segmap_info *free_i = FREE_I(sbi);
341         unsigned int segno, secno, zoneno;
342         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
343         unsigned int hint = *newseg / sbi->segs_per_sec;
344         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
345         unsigned int left_start = hint;
346         bool init = true;
347         int go_left = 0;
348         int i;
349
350         write_lock(&free_i->segmap_lock);
351
352         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
353                 segno = find_next_zero_bit(free_i->free_segmap,
354                                         TOTAL_SEGS(sbi), *newseg + 1);
355                 if (segno - *newseg < sbi->segs_per_sec -
356                                         (*newseg % sbi->segs_per_sec))
357                         goto got_it;
358         }
359 find_other_zone:
360         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
361         if (secno >= TOTAL_SECS(sbi)) {
362                 if (dir == ALLOC_RIGHT) {
363                         secno = find_next_zero_bit(free_i->free_secmap,
364                                                         TOTAL_SECS(sbi), 0);
365                         BUG_ON(secno >= TOTAL_SECS(sbi));
366                 } else {
367                         go_left = 1;
368                         left_start = hint - 1;
369                 }
370         }
371         if (go_left == 0)
372                 goto skip_left;
373
374         while (test_bit(left_start, free_i->free_secmap)) {
375                 if (left_start > 0) {
376                         left_start--;
377                         continue;
378                 }
379                 left_start = find_next_zero_bit(free_i->free_secmap,
380                                                         TOTAL_SECS(sbi), 0);
381                 BUG_ON(left_start >= TOTAL_SECS(sbi));
382                 break;
383         }
384         secno = left_start;
385 skip_left:
386         hint = secno;
387         segno = secno * sbi->segs_per_sec;
388         zoneno = secno / sbi->secs_per_zone;
389
390         /* give up on finding another zone */
391         if (!init)
392                 goto got_it;
393         if (sbi->secs_per_zone == 1)
394                 goto got_it;
395         if (zoneno == old_zoneno)
396                 goto got_it;
397         if (dir == ALLOC_LEFT) {
398                 if (!go_left && zoneno + 1 >= total_zones)
399                         goto got_it;
400                 if (go_left && zoneno == 0)
401                         goto got_it;
402         }
403         for (i = 0; i < NR_CURSEG_TYPE; i++)
404                 if (CURSEG_I(sbi, i)->zone == zoneno)
405                         break;
406
407         if (i < NR_CURSEG_TYPE) {
408                 /* zone is in user, try another */
409                 if (go_left)
410                         hint = zoneno * sbi->secs_per_zone - 1;
411                 else if (zoneno + 1 >= total_zones)
412                         hint = 0;
413                 else
414                         hint = (zoneno + 1) * sbi->secs_per_zone;
415                 init = false;
416                 goto find_other_zone;
417         }
418 got_it:
419         /* set it as dirty segment in free segmap */
420         BUG_ON(test_bit(segno, free_i->free_segmap));
421         __set_inuse(sbi, segno);
422         *newseg = segno;
423         write_unlock(&free_i->segmap_lock);
424 }
425
426 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
427 {
428         struct curseg_info *curseg = CURSEG_I(sbi, type);
429         struct summary_footer *sum_footer;
430
431         curseg->segno = curseg->next_segno;
432         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
433         curseg->next_blkoff = 0;
434         curseg->next_segno = NULL_SEGNO;
435
436         sum_footer = &(curseg->sum_blk->footer);
437         memset(sum_footer, 0, sizeof(struct summary_footer));
438         if (IS_DATASEG(type))
439                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
440         if (IS_NODESEG(type))
441                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
442         __set_sit_entry_type(sbi, type, curseg->segno, modified);
443 }
444
445 /*
446  * Allocate a current working segment.
447  * This function always allocates a free segment in LFS manner.
448  */
449 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
450 {
451         struct curseg_info *curseg = CURSEG_I(sbi, type);
452         unsigned int segno = curseg->segno;
453         int dir = ALLOC_LEFT;
454
455         write_sum_page(sbi, curseg->sum_blk,
456                                 GET_SUM_BLOCK(sbi, segno));
457         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
458                 dir = ALLOC_RIGHT;
459
460         if (test_opt(sbi, NOHEAP))
461                 dir = ALLOC_RIGHT;
462
463         get_new_segment(sbi, &segno, new_sec, dir);
464         curseg->next_segno = segno;
465         reset_curseg(sbi, type, 1);
466         curseg->alloc_type = LFS;
467 }
468
469 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
470                         struct curseg_info *seg, block_t start)
471 {
472         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
473         block_t ofs;
474         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
475                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
476                         && !f2fs_test_bit(ofs, se->cur_valid_map))
477                         break;
478         }
479         seg->next_blkoff = ofs;
480 }
481
482 /*
483  * If a segment is written by LFS manner, next block offset is just obtained
484  * by increasing the current block offset. However, if a segment is written by
485  * SSR manner, next block offset obtained by calling __next_free_blkoff
486  */
487 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
488                                 struct curseg_info *seg)
489 {
490         if (seg->alloc_type == SSR)
491                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
492         else
493                 seg->next_blkoff++;
494 }
495
496 /*
497  * This function always allocates a used segment (from dirty seglist) by SSR
498  * manner, so it should recover the existing segment information of valid blocks
499  */
500 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
501 {
502         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
503         struct curseg_info *curseg = CURSEG_I(sbi, type);
504         unsigned int new_segno = curseg->next_segno;
505         struct f2fs_summary_block *sum_node;
506         struct page *sum_page;
507
508         write_sum_page(sbi, curseg->sum_blk,
509                                 GET_SUM_BLOCK(sbi, curseg->segno));
510         __set_test_and_inuse(sbi, new_segno);
511
512         mutex_lock(&dirty_i->seglist_lock);
513         __remove_dirty_segment(sbi, new_segno, PRE);
514         __remove_dirty_segment(sbi, new_segno, DIRTY);
515         mutex_unlock(&dirty_i->seglist_lock);
516
517         reset_curseg(sbi, type, 1);
518         curseg->alloc_type = SSR;
519         __next_free_blkoff(sbi, curseg, 0);
520
521         if (reuse) {
522                 sum_page = get_sum_page(sbi, new_segno);
523                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
524                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
525                 f2fs_put_page(sum_page, 1);
526         }
527 }
528
529 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
530 {
531         struct curseg_info *curseg = CURSEG_I(sbi, type);
532         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
533
534         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
535                 return v_ops->get_victim(sbi,
536                                 &(curseg)->next_segno, BG_GC, type, SSR);
537
538         /* For data segments, let's do SSR more intensively */
539         for (; type >= CURSEG_HOT_DATA; type--)
540                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
541                                                 BG_GC, type, SSR))
542                         return 1;
543         return 0;
544 }
545
546 /*
547  * flush out current segment and replace it with new segment
548  * This function should be returned with success, otherwise BUG
549  */
550 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
551                                                 int type, bool force)
552 {
553         struct curseg_info *curseg = CURSEG_I(sbi, type);
554
555         if (force)
556                 new_curseg(sbi, type, true);
557         else if (type == CURSEG_WARM_NODE)
558                 new_curseg(sbi, type, false);
559         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
560                 new_curseg(sbi, type, false);
561         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
562                 change_curseg(sbi, type, true);
563         else
564                 new_curseg(sbi, type, false);
565
566         stat_inc_seg_type(sbi, curseg);
567 }
568
569 void allocate_new_segments(struct f2fs_sb_info *sbi)
570 {
571         struct curseg_info *curseg;
572         unsigned int old_curseg;
573         int i;
574
575         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
576                 curseg = CURSEG_I(sbi, i);
577                 old_curseg = curseg->segno;
578                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
579                 locate_dirty_segment(sbi, old_curseg);
580         }
581 }
582
583 static const struct segment_allocation default_salloc_ops = {
584         .allocate_segment = allocate_segment_by_default,
585 };
586
587 static void f2fs_end_io_write(struct bio *bio, int err)
588 {
589         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
590         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
591         struct bio_private *p = bio->bi_private;
592
593         do {
594                 struct page *page = bvec->bv_page;
595
596                 if (--bvec >= bio->bi_io_vec)
597                         prefetchw(&bvec->bv_page->flags);
598                 if (!uptodate) {
599                         SetPageError(page);
600                         if (page->mapping)
601                                 set_bit(AS_EIO, &page->mapping->flags);
602                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
603                         p->sbi->sb->s_flags |= MS_RDONLY;
604                 }
605                 end_page_writeback(page);
606                 dec_page_count(p->sbi, F2FS_WRITEBACK);
607         } while (bvec >= bio->bi_io_vec);
608
609         if (p->is_sync)
610                 complete(p->wait);
611
612         if (!get_pages(p->sbi, F2FS_WRITEBACK) && p->sbi->cp_task)
613                 wake_up_process(p->sbi->cp_task);
614
615         kfree(p);
616         bio_put(bio);
617 }
618
619 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
620 {
621         struct bio *bio;
622
623         /* No failure on bio allocation */
624         bio = bio_alloc(GFP_NOIO, npages);
625         bio->bi_bdev = bdev;
626         bio->bi_private = NULL;
627
628         return bio;
629 }
630
631 static void do_submit_bio(struct f2fs_sb_info *sbi,
632                                 enum page_type type, bool sync)
633 {
634         int rw = sync ? WRITE_SYNC : WRITE;
635         enum page_type btype = type > META ? META : type;
636
637         if (type >= META_FLUSH)
638                 rw = WRITE_FLUSH_FUA;
639
640         if (btype == META)
641                 rw |= REQ_META;
642
643         if (sbi->bio[btype]) {
644                 struct bio_private *p = sbi->bio[btype]->bi_private;
645                 p->sbi = sbi;
646                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
647
648                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
649
650                 if (type == META_FLUSH) {
651                         DECLARE_COMPLETION_ONSTACK(wait);
652                         p->is_sync = true;
653                         p->wait = &wait;
654                         submit_bio(rw, sbi->bio[btype]);
655                         wait_for_completion(&wait);
656                 } else {
657                         p->is_sync = false;
658                         submit_bio(rw, sbi->bio[btype]);
659                 }
660                 sbi->bio[btype] = NULL;
661         }
662 }
663
664 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
665 {
666         down_write(&sbi->bio_sem);
667         do_submit_bio(sbi, type, sync);
668         up_write(&sbi->bio_sem);
669 }
670
671 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
672                                 block_t blk_addr, enum page_type type)
673 {
674         struct block_device *bdev = sbi->sb->s_bdev;
675         int bio_blocks;
676
677         verify_block_addr(sbi, blk_addr);
678
679         down_write(&sbi->bio_sem);
680
681         inc_page_count(sbi, F2FS_WRITEBACK);
682
683         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
684                 do_submit_bio(sbi, type, false);
685 alloc_new:
686         if (sbi->bio[type] == NULL) {
687                 struct bio_private *priv;
688 retry:
689                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
690                 if (!priv) {
691                         cond_resched();
692                         goto retry;
693                 }
694
695                 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
696                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
697                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
698                 sbi->bio[type]->bi_private = priv;
699                 /*
700                  * The end_io will be assigned at the sumbission phase.
701                  * Until then, let bio_add_page() merge consecutive IOs as much
702                  * as possible.
703                  */
704         }
705
706         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
707                                                         PAGE_CACHE_SIZE) {
708                 do_submit_bio(sbi, type, false);
709                 goto alloc_new;
710         }
711
712         sbi->last_block_in_bio[type] = blk_addr;
713
714         up_write(&sbi->bio_sem);
715         trace_f2fs_submit_write_page(page, blk_addr, type);
716 }
717
718 void f2fs_wait_on_page_writeback(struct page *page,
719                                 enum page_type type, bool sync)
720 {
721         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
722         if (PageWriteback(page)) {
723                 f2fs_submit_bio(sbi, type, sync);
724                 wait_on_page_writeback(page);
725         }
726 }
727
728 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
729 {
730         struct curseg_info *curseg = CURSEG_I(sbi, type);
731         if (curseg->next_blkoff < sbi->blocks_per_seg)
732                 return true;
733         return false;
734 }
735
736 static int __get_segment_type_2(struct page *page, enum page_type p_type)
737 {
738         if (p_type == DATA)
739                 return CURSEG_HOT_DATA;
740         else
741                 return CURSEG_HOT_NODE;
742 }
743
744 static int __get_segment_type_4(struct page *page, enum page_type p_type)
745 {
746         if (p_type == DATA) {
747                 struct inode *inode = page->mapping->host;
748
749                 if (S_ISDIR(inode->i_mode))
750                         return CURSEG_HOT_DATA;
751                 else
752                         return CURSEG_COLD_DATA;
753         } else {
754                 if (IS_DNODE(page) && !is_cold_node(page))
755                         return CURSEG_HOT_NODE;
756                 else
757                         return CURSEG_COLD_NODE;
758         }
759 }
760
761 static int __get_segment_type_6(struct page *page, enum page_type p_type)
762 {
763         if (p_type == DATA) {
764                 struct inode *inode = page->mapping->host;
765
766                 if (S_ISDIR(inode->i_mode))
767                         return CURSEG_HOT_DATA;
768                 else if (is_cold_data(page) || file_is_cold(inode))
769                         return CURSEG_COLD_DATA;
770                 else
771                         return CURSEG_WARM_DATA;
772         } else {
773                 if (IS_DNODE(page))
774                         return is_cold_node(page) ? CURSEG_WARM_NODE :
775                                                 CURSEG_HOT_NODE;
776                 else
777                         return CURSEG_COLD_NODE;
778         }
779 }
780
781 static int __get_segment_type(struct page *page, enum page_type p_type)
782 {
783         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
784         switch (sbi->active_logs) {
785         case 2:
786                 return __get_segment_type_2(page, p_type);
787         case 4:
788                 return __get_segment_type_4(page, p_type);
789         }
790         /* NR_CURSEG_TYPE(6) logs by default */
791         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
792         return __get_segment_type_6(page, p_type);
793 }
794
795 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
796                         block_t old_blkaddr, block_t *new_blkaddr,
797                         struct f2fs_summary *sum, enum page_type p_type)
798 {
799         struct sit_info *sit_i = SIT_I(sbi);
800         struct curseg_info *curseg;
801         unsigned int old_cursegno;
802         int type;
803
804         type = __get_segment_type(page, p_type);
805         curseg = CURSEG_I(sbi, type);
806
807         mutex_lock(&curseg->curseg_mutex);
808
809         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
810         old_cursegno = curseg->segno;
811
812         /*
813          * __add_sum_entry should be resided under the curseg_mutex
814          * because, this function updates a summary entry in the
815          * current summary block.
816          */
817         __add_sum_entry(sbi, type, sum);
818
819         mutex_lock(&sit_i->sentry_lock);
820         __refresh_next_blkoff(sbi, curseg);
821
822         stat_inc_block_count(sbi, curseg);
823
824         /*
825          * SIT information should be updated before segment allocation,
826          * since SSR needs latest valid block information.
827          */
828         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
829
830         if (!__has_curseg_space(sbi, type))
831                 sit_i->s_ops->allocate_segment(sbi, type, false);
832
833         locate_dirty_segment(sbi, old_cursegno);
834         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
835         mutex_unlock(&sit_i->sentry_lock);
836
837         if (p_type == NODE)
838                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
839
840         /* writeout dirty page into bdev */
841         submit_write_page(sbi, page, *new_blkaddr, p_type);
842
843         mutex_unlock(&curseg->curseg_mutex);
844 }
845
846 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
847 {
848         set_page_writeback(page);
849         submit_write_page(sbi, page, page->index, META);
850 }
851
852 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
853                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
854 {
855         struct f2fs_summary sum;
856         set_summary(&sum, nid, 0, 0);
857         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
858 }
859
860 void write_data_page(struct inode *inode, struct page *page,
861                 struct dnode_of_data *dn, block_t old_blkaddr,
862                 block_t *new_blkaddr)
863 {
864         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
865         struct f2fs_summary sum;
866         struct node_info ni;
867
868         BUG_ON(old_blkaddr == NULL_ADDR);
869         get_node_info(sbi, dn->nid, &ni);
870         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
871
872         do_write_page(sbi, page, old_blkaddr,
873                         new_blkaddr, &sum, DATA);
874 }
875
876 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
877                                         block_t old_blk_addr)
878 {
879         submit_write_page(sbi, page, old_blk_addr, DATA);
880 }
881
882 void recover_data_page(struct f2fs_sb_info *sbi,
883                         struct page *page, struct f2fs_summary *sum,
884                         block_t old_blkaddr, block_t new_blkaddr)
885 {
886         struct sit_info *sit_i = SIT_I(sbi);
887         struct curseg_info *curseg;
888         unsigned int segno, old_cursegno;
889         struct seg_entry *se;
890         int type;
891
892         segno = GET_SEGNO(sbi, new_blkaddr);
893         se = get_seg_entry(sbi, segno);
894         type = se->type;
895
896         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
897                 if (old_blkaddr == NULL_ADDR)
898                         type = CURSEG_COLD_DATA;
899                 else
900                         type = CURSEG_WARM_DATA;
901         }
902         curseg = CURSEG_I(sbi, type);
903
904         mutex_lock(&curseg->curseg_mutex);
905         mutex_lock(&sit_i->sentry_lock);
906
907         old_cursegno = curseg->segno;
908
909         /* change the current segment */
910         if (segno != curseg->segno) {
911                 curseg->next_segno = segno;
912                 change_curseg(sbi, type, true);
913         }
914
915         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
916                                         (sbi->blocks_per_seg - 1);
917         __add_sum_entry(sbi, type, sum);
918
919         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
920
921         locate_dirty_segment(sbi, old_cursegno);
922         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
923
924         mutex_unlock(&sit_i->sentry_lock);
925         mutex_unlock(&curseg->curseg_mutex);
926 }
927
928 void rewrite_node_page(struct f2fs_sb_info *sbi,
929                         struct page *page, struct f2fs_summary *sum,
930                         block_t old_blkaddr, block_t new_blkaddr)
931 {
932         struct sit_info *sit_i = SIT_I(sbi);
933         int type = CURSEG_WARM_NODE;
934         struct curseg_info *curseg;
935         unsigned int segno, old_cursegno;
936         block_t next_blkaddr = next_blkaddr_of_node(page);
937         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
938
939         curseg = CURSEG_I(sbi, type);
940
941         mutex_lock(&curseg->curseg_mutex);
942         mutex_lock(&sit_i->sentry_lock);
943
944         segno = GET_SEGNO(sbi, new_blkaddr);
945         old_cursegno = curseg->segno;
946
947         /* change the current segment */
948         if (segno != curseg->segno) {
949                 curseg->next_segno = segno;
950                 change_curseg(sbi, type, true);
951         }
952         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
953                                         (sbi->blocks_per_seg - 1);
954         __add_sum_entry(sbi, type, sum);
955
956         /* change the current log to the next block addr in advance */
957         if (next_segno != segno) {
958                 curseg->next_segno = next_segno;
959                 change_curseg(sbi, type, true);
960         }
961         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
962                                         (sbi->blocks_per_seg - 1);
963
964         /* rewrite node page */
965         set_page_writeback(page);
966         submit_write_page(sbi, page, new_blkaddr, NODE);
967         f2fs_submit_bio(sbi, NODE, true);
968         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
969
970         locate_dirty_segment(sbi, old_cursegno);
971         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
972
973         mutex_unlock(&sit_i->sentry_lock);
974         mutex_unlock(&curseg->curseg_mutex);
975 }
976
977 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
978 {
979         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
980         struct curseg_info *seg_i;
981         unsigned char *kaddr;
982         struct page *page;
983         block_t start;
984         int i, j, offset;
985
986         start = start_sum_block(sbi);
987
988         page = get_meta_page(sbi, start++);
989         kaddr = (unsigned char *)page_address(page);
990
991         /* Step 1: restore nat cache */
992         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
993         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
994
995         /* Step 2: restore sit cache */
996         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
997         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
998                                                 SUM_JOURNAL_SIZE);
999         offset = 2 * SUM_JOURNAL_SIZE;
1000
1001         /* Step 3: restore summary entries */
1002         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1003                 unsigned short blk_off;
1004                 unsigned int segno;
1005
1006                 seg_i = CURSEG_I(sbi, i);
1007                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1008                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1009                 seg_i->next_segno = segno;
1010                 reset_curseg(sbi, i, 0);
1011                 seg_i->alloc_type = ckpt->alloc_type[i];
1012                 seg_i->next_blkoff = blk_off;
1013
1014                 if (seg_i->alloc_type == SSR)
1015                         blk_off = sbi->blocks_per_seg;
1016
1017                 for (j = 0; j < blk_off; j++) {
1018                         struct f2fs_summary *s;
1019                         s = (struct f2fs_summary *)(kaddr + offset);
1020                         seg_i->sum_blk->entries[j] = *s;
1021                         offset += SUMMARY_SIZE;
1022                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1023                                                 SUM_FOOTER_SIZE)
1024                                 continue;
1025
1026                         f2fs_put_page(page, 1);
1027                         page = NULL;
1028
1029                         page = get_meta_page(sbi, start++);
1030                         kaddr = (unsigned char *)page_address(page);
1031                         offset = 0;
1032                 }
1033         }
1034         f2fs_put_page(page, 1);
1035         return 0;
1036 }
1037
1038 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1039 {
1040         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1041         struct f2fs_summary_block *sum;
1042         struct curseg_info *curseg;
1043         struct page *new;
1044         unsigned short blk_off;
1045         unsigned int segno = 0;
1046         block_t blk_addr = 0;
1047
1048         /* get segment number and block addr */
1049         if (IS_DATASEG(type)) {
1050                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1051                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1052                                                         CURSEG_HOT_DATA]);
1053                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1054                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1055                 else
1056                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1057         } else {
1058                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1059                                                         CURSEG_HOT_NODE]);
1060                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1061                                                         CURSEG_HOT_NODE]);
1062                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1063                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1064                                                         type - CURSEG_HOT_NODE);
1065                 else
1066                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1067         }
1068
1069         new = get_meta_page(sbi, blk_addr);
1070         sum = (struct f2fs_summary_block *)page_address(new);
1071
1072         if (IS_NODESEG(type)) {
1073                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1074                         struct f2fs_summary *ns = &sum->entries[0];
1075                         int i;
1076                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1077                                 ns->version = 0;
1078                                 ns->ofs_in_node = 0;
1079                         }
1080                 } else {
1081                         if (restore_node_summary(sbi, segno, sum)) {
1082                                 f2fs_put_page(new, 1);
1083                                 return -EINVAL;
1084                         }
1085                 }
1086         }
1087
1088         /* set uncompleted segment to curseg */
1089         curseg = CURSEG_I(sbi, type);
1090         mutex_lock(&curseg->curseg_mutex);
1091         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1092         curseg->next_segno = segno;
1093         reset_curseg(sbi, type, 0);
1094         curseg->alloc_type = ckpt->alloc_type[type];
1095         curseg->next_blkoff = blk_off;
1096         mutex_unlock(&curseg->curseg_mutex);
1097         f2fs_put_page(new, 1);
1098         return 0;
1099 }
1100
1101 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1102 {
1103         int type = CURSEG_HOT_DATA;
1104
1105         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1106                 /* restore for compacted data summary */
1107                 if (read_compacted_summaries(sbi))
1108                         return -EINVAL;
1109                 type = CURSEG_HOT_NODE;
1110         }
1111
1112         for (; type <= CURSEG_COLD_NODE; type++)
1113                 if (read_normal_summaries(sbi, type))
1114                         return -EINVAL;
1115         return 0;
1116 }
1117
1118 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1119 {
1120         struct page *page;
1121         unsigned char *kaddr;
1122         struct f2fs_summary *summary;
1123         struct curseg_info *seg_i;
1124         int written_size = 0;
1125         int i, j;
1126
1127         page = grab_meta_page(sbi, blkaddr++);
1128         kaddr = (unsigned char *)page_address(page);
1129
1130         /* Step 1: write nat cache */
1131         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1132         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1133         written_size += SUM_JOURNAL_SIZE;
1134
1135         /* Step 2: write sit cache */
1136         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1137         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1138                                                 SUM_JOURNAL_SIZE);
1139         written_size += SUM_JOURNAL_SIZE;
1140
1141         set_page_dirty(page);
1142
1143         /* Step 3: write summary entries */
1144         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1145                 unsigned short blkoff;
1146                 seg_i = CURSEG_I(sbi, i);
1147                 if (sbi->ckpt->alloc_type[i] == SSR)
1148                         blkoff = sbi->blocks_per_seg;
1149                 else
1150                         blkoff = curseg_blkoff(sbi, i);
1151
1152                 for (j = 0; j < blkoff; j++) {
1153                         if (!page) {
1154                                 page = grab_meta_page(sbi, blkaddr++);
1155                                 kaddr = (unsigned char *)page_address(page);
1156                                 written_size = 0;
1157                         }
1158                         summary = (struct f2fs_summary *)(kaddr + written_size);
1159                         *summary = seg_i->sum_blk->entries[j];
1160                         written_size += SUMMARY_SIZE;
1161                         set_page_dirty(page);
1162
1163                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1164                                                         SUM_FOOTER_SIZE)
1165                                 continue;
1166
1167                         f2fs_put_page(page, 1);
1168                         page = NULL;
1169                 }
1170         }
1171         if (page)
1172                 f2fs_put_page(page, 1);
1173 }
1174
1175 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1176                                         block_t blkaddr, int type)
1177 {
1178         int i, end;
1179         if (IS_DATASEG(type))
1180                 end = type + NR_CURSEG_DATA_TYPE;
1181         else
1182                 end = type + NR_CURSEG_NODE_TYPE;
1183
1184         for (i = type; i < end; i++) {
1185                 struct curseg_info *sum = CURSEG_I(sbi, i);
1186                 mutex_lock(&sum->curseg_mutex);
1187                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1188                 mutex_unlock(&sum->curseg_mutex);
1189         }
1190 }
1191
1192 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1193 {
1194         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1195                 write_compacted_summaries(sbi, start_blk);
1196         else
1197                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1198 }
1199
1200 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1201 {
1202         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1203                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1204 }
1205
1206 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1207                                         unsigned int val, int alloc)
1208 {
1209         int i;
1210
1211         if (type == NAT_JOURNAL) {
1212                 for (i = 0; i < nats_in_cursum(sum); i++) {
1213                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1214                                 return i;
1215                 }
1216                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1217                         return update_nats_in_cursum(sum, 1);
1218         } else if (type == SIT_JOURNAL) {
1219                 for (i = 0; i < sits_in_cursum(sum); i++)
1220                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1221                                 return i;
1222                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1223                         return update_sits_in_cursum(sum, 1);
1224         }
1225         return -1;
1226 }
1227
1228 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1229                                         unsigned int segno)
1230 {
1231         struct sit_info *sit_i = SIT_I(sbi);
1232         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1233         block_t blk_addr = sit_i->sit_base_addr + offset;
1234
1235         check_seg_range(sbi, segno);
1236
1237         /* calculate sit block address */
1238         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1239                 blk_addr += sit_i->sit_blocks;
1240
1241         return get_meta_page(sbi, blk_addr);
1242 }
1243
1244 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1245                                         unsigned int start)
1246 {
1247         struct sit_info *sit_i = SIT_I(sbi);
1248         struct page *src_page, *dst_page;
1249         pgoff_t src_off, dst_off;
1250         void *src_addr, *dst_addr;
1251
1252         src_off = current_sit_addr(sbi, start);
1253         dst_off = next_sit_addr(sbi, src_off);
1254
1255         /* get current sit block page without lock */
1256         src_page = get_meta_page(sbi, src_off);
1257         dst_page = grab_meta_page(sbi, dst_off);
1258         BUG_ON(PageDirty(src_page));
1259
1260         src_addr = page_address(src_page);
1261         dst_addr = page_address(dst_page);
1262         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1263
1264         set_page_dirty(dst_page);
1265         f2fs_put_page(src_page, 1);
1266
1267         set_to_next_sit(sit_i, start);
1268
1269         return dst_page;
1270 }
1271
1272 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1273 {
1274         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1275         struct f2fs_summary_block *sum = curseg->sum_blk;
1276         int i;
1277
1278         /*
1279          * If the journal area in the current summary is full of sit entries,
1280          * all the sit entries will be flushed. Otherwise the sit entries
1281          * are not able to replace with newly hot sit entries.
1282          */
1283         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1284                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1285                         unsigned int segno;
1286                         segno = le32_to_cpu(segno_in_journal(sum, i));
1287                         __mark_sit_entry_dirty(sbi, segno);
1288                 }
1289                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1290                 return true;
1291         }
1292         return false;
1293 }
1294
1295 /*
1296  * CP calls this function, which flushes SIT entries including sit_journal,
1297  * and moves prefree segs to free segs.
1298  */
1299 void flush_sit_entries(struct f2fs_sb_info *sbi)
1300 {
1301         struct sit_info *sit_i = SIT_I(sbi);
1302         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1303         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1304         struct f2fs_summary_block *sum = curseg->sum_blk;
1305         unsigned long nsegs = TOTAL_SEGS(sbi);
1306         struct page *page = NULL;
1307         struct f2fs_sit_block *raw_sit = NULL;
1308         unsigned int start = 0, end = 0;
1309         unsigned int segno = -1;
1310         bool flushed;
1311
1312         mutex_lock(&curseg->curseg_mutex);
1313         mutex_lock(&sit_i->sentry_lock);
1314
1315         /*
1316          * "flushed" indicates whether sit entries in journal are flushed
1317          * to the SIT area or not.
1318          */
1319         flushed = flush_sits_in_journal(sbi);
1320
1321         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1322                 struct seg_entry *se = get_seg_entry(sbi, segno);
1323                 int sit_offset, offset;
1324
1325                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1326
1327                 if (flushed)
1328                         goto to_sit_page;
1329
1330                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1331                 if (offset >= 0) {
1332                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1333                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1334                         goto flush_done;
1335                 }
1336 to_sit_page:
1337                 if (!page || (start > segno) || (segno > end)) {
1338                         if (page) {
1339                                 f2fs_put_page(page, 1);
1340                                 page = NULL;
1341                         }
1342
1343                         start = START_SEGNO(sit_i, segno);
1344                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1345
1346                         /* read sit block that will be updated */
1347                         page = get_next_sit_page(sbi, start);
1348                         raw_sit = page_address(page);
1349                 }
1350
1351                 /* udpate entry in SIT block */
1352                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1353 flush_done:
1354                 __clear_bit(segno, bitmap);
1355                 sit_i->dirty_sentries--;
1356         }
1357         mutex_unlock(&sit_i->sentry_lock);
1358         mutex_unlock(&curseg->curseg_mutex);
1359
1360         /* writeout last modified SIT block */
1361         f2fs_put_page(page, 1);
1362
1363         set_prefree_as_free_segments(sbi);
1364 }
1365
1366 static int build_sit_info(struct f2fs_sb_info *sbi)
1367 {
1368         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1369         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1370         struct sit_info *sit_i;
1371         unsigned int sit_segs, start;
1372         char *src_bitmap, *dst_bitmap;
1373         unsigned int bitmap_size;
1374
1375         /* allocate memory for SIT information */
1376         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1377         if (!sit_i)
1378                 return -ENOMEM;
1379
1380         SM_I(sbi)->sit_info = sit_i;
1381
1382         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1383         if (!sit_i->sentries)
1384                 return -ENOMEM;
1385
1386         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1387         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1388         if (!sit_i->dirty_sentries_bitmap)
1389                 return -ENOMEM;
1390
1391         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1392                 sit_i->sentries[start].cur_valid_map
1393                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1394                 sit_i->sentries[start].ckpt_valid_map
1395                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1396                 if (!sit_i->sentries[start].cur_valid_map
1397                                 || !sit_i->sentries[start].ckpt_valid_map)
1398                         return -ENOMEM;
1399         }
1400
1401         if (sbi->segs_per_sec > 1) {
1402                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1403                                         sizeof(struct sec_entry));
1404                 if (!sit_i->sec_entries)
1405                         return -ENOMEM;
1406         }
1407
1408         /* get information related with SIT */
1409         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1410
1411         /* setup SIT bitmap from ckeckpoint pack */
1412         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1413         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1414
1415         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1416         if (!dst_bitmap)
1417                 return -ENOMEM;
1418
1419         /* init SIT information */
1420         sit_i->s_ops = &default_salloc_ops;
1421
1422         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1423         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1424         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1425         sit_i->sit_bitmap = dst_bitmap;
1426         sit_i->bitmap_size = bitmap_size;
1427         sit_i->dirty_sentries = 0;
1428         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1429         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1430         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1431         mutex_init(&sit_i->sentry_lock);
1432         return 0;
1433 }
1434
1435 static int build_free_segmap(struct f2fs_sb_info *sbi)
1436 {
1437         struct f2fs_sm_info *sm_info = SM_I(sbi);
1438         struct free_segmap_info *free_i;
1439         unsigned int bitmap_size, sec_bitmap_size;
1440
1441         /* allocate memory for free segmap information */
1442         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1443         if (!free_i)
1444                 return -ENOMEM;
1445
1446         SM_I(sbi)->free_info = free_i;
1447
1448         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1449         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1450         if (!free_i->free_segmap)
1451                 return -ENOMEM;
1452
1453         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1454         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1455         if (!free_i->free_secmap)
1456                 return -ENOMEM;
1457
1458         /* set all segments as dirty temporarily */
1459         memset(free_i->free_segmap, 0xff, bitmap_size);
1460         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1461
1462         /* init free segmap information */
1463         free_i->start_segno =
1464                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1465         free_i->free_segments = 0;
1466         free_i->free_sections = 0;
1467         rwlock_init(&free_i->segmap_lock);
1468         return 0;
1469 }
1470
1471 static int build_curseg(struct f2fs_sb_info *sbi)
1472 {
1473         struct curseg_info *array;
1474         int i;
1475
1476         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1477         if (!array)
1478                 return -ENOMEM;
1479
1480         SM_I(sbi)->curseg_array = array;
1481
1482         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1483                 mutex_init(&array[i].curseg_mutex);
1484                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1485                 if (!array[i].sum_blk)
1486                         return -ENOMEM;
1487                 array[i].segno = NULL_SEGNO;
1488                 array[i].next_blkoff = 0;
1489         }
1490         return restore_curseg_summaries(sbi);
1491 }
1492
1493 static void build_sit_entries(struct f2fs_sb_info *sbi)
1494 {
1495         struct sit_info *sit_i = SIT_I(sbi);
1496         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1497         struct f2fs_summary_block *sum = curseg->sum_blk;
1498         unsigned int start;
1499
1500         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1501                 struct seg_entry *se = &sit_i->sentries[start];
1502                 struct f2fs_sit_block *sit_blk;
1503                 struct f2fs_sit_entry sit;
1504                 struct page *page;
1505                 int i;
1506
1507                 mutex_lock(&curseg->curseg_mutex);
1508                 for (i = 0; i < sits_in_cursum(sum); i++) {
1509                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1510                                 sit = sit_in_journal(sum, i);
1511                                 mutex_unlock(&curseg->curseg_mutex);
1512                                 goto got_it;
1513                         }
1514                 }
1515                 mutex_unlock(&curseg->curseg_mutex);
1516                 page = get_current_sit_page(sbi, start);
1517                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1518                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1519                 f2fs_put_page(page, 1);
1520 got_it:
1521                 check_block_count(sbi, start, &sit);
1522                 seg_info_from_raw_sit(se, &sit);
1523                 if (sbi->segs_per_sec > 1) {
1524                         struct sec_entry *e = get_sec_entry(sbi, start);
1525                         e->valid_blocks += se->valid_blocks;
1526                 }
1527         }
1528 }
1529
1530 static void init_free_segmap(struct f2fs_sb_info *sbi)
1531 {
1532         unsigned int start;
1533         int type;
1534
1535         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1536                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1537                 if (!sentry->valid_blocks)
1538                         __set_free(sbi, start);
1539         }
1540
1541         /* set use the current segments */
1542         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1543                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1544                 __set_test_and_inuse(sbi, curseg_t->segno);
1545         }
1546 }
1547
1548 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1549 {
1550         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1551         struct free_segmap_info *free_i = FREE_I(sbi);
1552         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1553         unsigned short valid_blocks;
1554
1555         while (1) {
1556                 /* find dirty segment based on free segmap */
1557                 segno = find_next_inuse(free_i, total_segs, offset);
1558                 if (segno >= total_segs)
1559                         break;
1560                 offset = segno + 1;
1561                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1562                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1563                         continue;
1564                 mutex_lock(&dirty_i->seglist_lock);
1565                 __locate_dirty_segment(sbi, segno, DIRTY);
1566                 mutex_unlock(&dirty_i->seglist_lock);
1567         }
1568 }
1569
1570 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1571 {
1572         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1573         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1574
1575         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1576         if (!dirty_i->victim_secmap)
1577                 return -ENOMEM;
1578         return 0;
1579 }
1580
1581 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1582 {
1583         struct dirty_seglist_info *dirty_i;
1584         unsigned int bitmap_size, i;
1585
1586         /* allocate memory for dirty segments list information */
1587         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1588         if (!dirty_i)
1589                 return -ENOMEM;
1590
1591         SM_I(sbi)->dirty_info = dirty_i;
1592         mutex_init(&dirty_i->seglist_lock);
1593
1594         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1595
1596         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1597                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1598                 if (!dirty_i->dirty_segmap[i])
1599                         return -ENOMEM;
1600         }
1601
1602         init_dirty_segmap(sbi);
1603         return init_victim_secmap(sbi);
1604 }
1605
1606 /*
1607  * Update min, max modified time for cost-benefit GC algorithm
1608  */
1609 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1610 {
1611         struct sit_info *sit_i = SIT_I(sbi);
1612         unsigned int segno;
1613
1614         mutex_lock(&sit_i->sentry_lock);
1615
1616         sit_i->min_mtime = LLONG_MAX;
1617
1618         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1619                 unsigned int i;
1620                 unsigned long long mtime = 0;
1621
1622                 for (i = 0; i < sbi->segs_per_sec; i++)
1623                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1624
1625                 mtime = div_u64(mtime, sbi->segs_per_sec);
1626
1627                 if (sit_i->min_mtime > mtime)
1628                         sit_i->min_mtime = mtime;
1629         }
1630         sit_i->max_mtime = get_mtime(sbi);
1631         mutex_unlock(&sit_i->sentry_lock);
1632 }
1633
1634 int build_segment_manager(struct f2fs_sb_info *sbi)
1635 {
1636         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1637         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1638         struct f2fs_sm_info *sm_info;
1639         int err;
1640
1641         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1642         if (!sm_info)
1643                 return -ENOMEM;
1644
1645         /* init sm info */
1646         sbi->sm_info = sm_info;
1647         INIT_LIST_HEAD(&sm_info->wblist_head);
1648         spin_lock_init(&sm_info->wblist_lock);
1649         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1650         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1651         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1652         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1653         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1654         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1655         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1656         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1657
1658         err = build_sit_info(sbi);
1659         if (err)
1660                 return err;
1661         err = build_free_segmap(sbi);
1662         if (err)
1663                 return err;
1664         err = build_curseg(sbi);
1665         if (err)
1666                 return err;
1667
1668         /* reinit free segmap based on SIT */
1669         build_sit_entries(sbi);
1670
1671         init_free_segmap(sbi);
1672         err = build_dirty_segmap(sbi);
1673         if (err)
1674                 return err;
1675
1676         init_min_max_mtime(sbi);
1677         return 0;
1678 }
1679
1680 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1681                 enum dirty_type dirty_type)
1682 {
1683         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1684
1685         mutex_lock(&dirty_i->seglist_lock);
1686         kfree(dirty_i->dirty_segmap[dirty_type]);
1687         dirty_i->nr_dirty[dirty_type] = 0;
1688         mutex_unlock(&dirty_i->seglist_lock);
1689 }
1690
1691 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1692 {
1693         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1694         kfree(dirty_i->victim_secmap);
1695 }
1696
1697 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1698 {
1699         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1700         int i;
1701
1702         if (!dirty_i)
1703                 return;
1704
1705         /* discard pre-free/dirty segments list */
1706         for (i = 0; i < NR_DIRTY_TYPE; i++)
1707                 discard_dirty_segmap(sbi, i);
1708
1709         destroy_victim_secmap(sbi);
1710         SM_I(sbi)->dirty_info = NULL;
1711         kfree(dirty_i);
1712 }
1713
1714 static void destroy_curseg(struct f2fs_sb_info *sbi)
1715 {
1716         struct curseg_info *array = SM_I(sbi)->curseg_array;
1717         int i;
1718
1719         if (!array)
1720                 return;
1721         SM_I(sbi)->curseg_array = NULL;
1722         for (i = 0; i < NR_CURSEG_TYPE; i++)
1723                 kfree(array[i].sum_blk);
1724         kfree(array);
1725 }
1726
1727 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1728 {
1729         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1730         if (!free_i)
1731                 return;
1732         SM_I(sbi)->free_info = NULL;
1733         kfree(free_i->free_segmap);
1734         kfree(free_i->free_secmap);
1735         kfree(free_i);
1736 }
1737
1738 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1739 {
1740         struct sit_info *sit_i = SIT_I(sbi);
1741         unsigned int start;
1742
1743         if (!sit_i)
1744                 return;
1745
1746         if (sit_i->sentries) {
1747                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1748                         kfree(sit_i->sentries[start].cur_valid_map);
1749                         kfree(sit_i->sentries[start].ckpt_valid_map);
1750                 }
1751         }
1752         vfree(sit_i->sentries);
1753         vfree(sit_i->sec_entries);
1754         kfree(sit_i->dirty_sentries_bitmap);
1755
1756         SM_I(sbi)->sit_info = NULL;
1757         kfree(sit_i->sit_bitmap);
1758         kfree(sit_i);
1759 }
1760
1761 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1762 {
1763         struct f2fs_sm_info *sm_info = SM_I(sbi);
1764         destroy_dirty_segmap(sbi);
1765         destroy_curseg(sbi);
1766         destroy_free_segmap(sbi);
1767         destroy_sit_info(sbi);
1768         sbi->sm_info = NULL;
1769         kfree(sm_info);
1770 }