]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
f2fs: avoid unnecessary bio submit when wait page writeback
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include <trace/events/f2fs.h>
23
24 #define __reverse_ffz(x) __reverse_ffs(~(x))
25
26 static struct kmem_cache *discard_entry_slab;
27
28 /*
29  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30  * MSB and LSB are reversed in a byte by f2fs_set_bit.
31  */
32 static inline unsigned long __reverse_ffs(unsigned long word)
33 {
34         int num = 0;
35
36 #if BITS_PER_LONG == 64
37         if ((word & 0xffffffff) == 0) {
38                 num += 32;
39                 word >>= 32;
40         }
41 #endif
42         if ((word & 0xffff) == 0) {
43                 num += 16;
44                 word >>= 16;
45         }
46         if ((word & 0xff) == 0) {
47                 num += 8;
48                 word >>= 8;
49         }
50         if ((word & 0xf0) == 0)
51                 num += 4;
52         else
53                 word >>= 4;
54         if ((word & 0xc) == 0)
55                 num += 2;
56         else
57                 word >>= 2;
58         if ((word & 0x2) == 0)
59                 num += 1;
60         return num;
61 }
62
63 /*
64  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65  * f2fs_set_bit makes MSB and LSB reversed in a byte.
66  * Example:
67  *                             LSB <--> MSB
68  *   f2fs_set_bit(0, bitmap) => 0000 0001
69  *   f2fs_set_bit(7, bitmap) => 1000 0000
70  */
71 static unsigned long __find_rev_next_bit(const unsigned long *addr,
72                         unsigned long size, unsigned long offset)
73 {
74         const unsigned long *p = addr + BIT_WORD(offset);
75         unsigned long result = offset & ~(BITS_PER_LONG - 1);
76         unsigned long tmp;
77         unsigned long mask, submask;
78         unsigned long quot, rest;
79
80         if (offset >= size)
81                 return size;
82
83         size -= result;
84         offset %= BITS_PER_LONG;
85         if (!offset)
86                 goto aligned;
87
88         tmp = *(p++);
89         quot = (offset >> 3) << 3;
90         rest = offset & 0x7;
91         mask = ~0UL << quot;
92         submask = (unsigned char)(0xff << rest) >> rest;
93         submask <<= quot;
94         mask &= submask;
95         tmp &= mask;
96         if (size < BITS_PER_LONG)
97                 goto found_first;
98         if (tmp)
99                 goto found_middle;
100
101         size -= BITS_PER_LONG;
102         result += BITS_PER_LONG;
103 aligned:
104         while (size & ~(BITS_PER_LONG-1)) {
105                 tmp = *(p++);
106                 if (tmp)
107                         goto found_middle;
108                 result += BITS_PER_LONG;
109                 size -= BITS_PER_LONG;
110         }
111         if (!size)
112                 return result;
113         tmp = *p;
114 found_first:
115         tmp &= (~0UL >> (BITS_PER_LONG - size));
116         if (tmp == 0UL)         /* Are any bits set? */
117                 return result + size;   /* Nope. */
118 found_middle:
119         return result + __reverse_ffs(tmp);
120 }
121
122 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123                         unsigned long size, unsigned long offset)
124 {
125         const unsigned long *p = addr + BIT_WORD(offset);
126         unsigned long result = offset & ~(BITS_PER_LONG - 1);
127         unsigned long tmp;
128         unsigned long mask, submask;
129         unsigned long quot, rest;
130
131         if (offset >= size)
132                 return size;
133
134         size -= result;
135         offset %= BITS_PER_LONG;
136         if (!offset)
137                 goto aligned;
138
139         tmp = *(p++);
140         quot = (offset >> 3) << 3;
141         rest = offset & 0x7;
142         mask = ~(~0UL << quot);
143         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144         submask <<= quot;
145         mask += submask;
146         tmp |= mask;
147         if (size < BITS_PER_LONG)
148                 goto found_first;
149         if (~tmp)
150                 goto found_middle;
151
152         size -= BITS_PER_LONG;
153         result += BITS_PER_LONG;
154 aligned:
155         while (size & ~(BITS_PER_LONG - 1)) {
156                 tmp = *(p++);
157                 if (~tmp)
158                         goto found_middle;
159                 result += BITS_PER_LONG;
160                 size -= BITS_PER_LONG;
161         }
162         if (!size)
163                 return result;
164         tmp = *p;
165
166 found_first:
167         tmp |= ~0UL << size;
168         if (tmp == ~0UL)        /* Are any bits zero? */
169                 return result + size;   /* Nope. */
170 found_middle:
171         return result + __reverse_ffz(tmp);
172 }
173
174 /*
175  * This function balances dirty node and dentry pages.
176  * In addition, it controls garbage collection.
177  */
178 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179 {
180         /*
181          * We should do GC or end up with checkpoint, if there are so many dirty
182          * dir/node pages without enough free segments.
183          */
184         if (has_not_enough_free_secs(sbi, 0)) {
185                 mutex_lock(&sbi->gc_mutex);
186                 f2fs_gc(sbi);
187         }
188 }
189
190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191 {
192         /* check the # of cached NAT entries and prefree segments */
193         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194                                 excess_prefree_segs(sbi))
195                 f2fs_sync_fs(sbi->sb, true);
196 }
197
198 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199                 enum dirty_type dirty_type)
200 {
201         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202
203         /* need not be added */
204         if (IS_CURSEG(sbi, segno))
205                 return;
206
207         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208                 dirty_i->nr_dirty[dirty_type]++;
209
210         if (dirty_type == DIRTY) {
211                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
212                 enum dirty_type t = sentry->type;
213
214                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215                         dirty_i->nr_dirty[t]++;
216         }
217 }
218
219 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220                 enum dirty_type dirty_type)
221 {
222         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223
224         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225                 dirty_i->nr_dirty[dirty_type]--;
226
227         if (dirty_type == DIRTY) {
228                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
229                 enum dirty_type t = sentry->type;
230
231                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232                         dirty_i->nr_dirty[t]--;
233
234                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235                         clear_bit(GET_SECNO(sbi, segno),
236                                                 dirty_i->victim_secmap);
237         }
238 }
239
240 /*
241  * Should not occur error such as -ENOMEM.
242  * Adding dirty entry into seglist is not critical operation.
243  * If a given segment is one of current working segments, it won't be added.
244  */
245 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246 {
247         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248         unsigned short valid_blocks;
249
250         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251                 return;
252
253         mutex_lock(&dirty_i->seglist_lock);
254
255         valid_blocks = get_valid_blocks(sbi, segno, 0);
256
257         if (valid_blocks == 0) {
258                 __locate_dirty_segment(sbi, segno, PRE);
259                 __remove_dirty_segment(sbi, segno, DIRTY);
260         } else if (valid_blocks < sbi->blocks_per_seg) {
261                 __locate_dirty_segment(sbi, segno, DIRTY);
262         } else {
263                 /* Recovery routine with SSR needs this */
264                 __remove_dirty_segment(sbi, segno, DIRTY);
265         }
266
267         mutex_unlock(&dirty_i->seglist_lock);
268 }
269
270 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271                                 block_t blkstart, block_t blklen)
272 {
273         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275         blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277 }
278
279 static void add_discard_addrs(struct f2fs_sb_info *sbi,
280                         unsigned int segno, struct seg_entry *se)
281 {
282         struct list_head *head = &SM_I(sbi)->discard_list;
283         struct discard_entry *new;
284         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285         int max_blocks = sbi->blocks_per_seg;
286         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288         unsigned long dmap[entries];
289         unsigned int start = 0, end = -1;
290         int i;
291
292         if (!test_opt(sbi, DISCARD))
293                 return;
294
295         /* zero block will be discarded through the prefree list */
296         if (!se->valid_blocks || se->valid_blocks == max_blocks)
297                 return;
298
299         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300         for (i = 0; i < entries; i++)
301                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305                 if (start >= max_blocks)
306                         break;
307
308                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311                 INIT_LIST_HEAD(&new->list);
312                 new->blkaddr = START_BLOCK(sbi, segno) + start;
313                 new->len = end - start;
314
315                 list_add_tail(&new->list, head);
316                 SM_I(sbi)->nr_discards += end - start;
317         }
318 }
319
320 /*
321  * Should call clear_prefree_segments after checkpoint is done.
322  */
323 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324 {
325         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326         unsigned int segno = -1;
327         unsigned int total_segs = TOTAL_SEGS(sbi);
328
329         mutex_lock(&dirty_i->seglist_lock);
330         while (1) {
331                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332                                 segno + 1);
333                 if (segno >= total_segs)
334                         break;
335                 __set_test_and_free(sbi, segno);
336         }
337         mutex_unlock(&dirty_i->seglist_lock);
338 }
339
340 void clear_prefree_segments(struct f2fs_sb_info *sbi)
341 {
342         struct list_head *head = &(SM_I(sbi)->discard_list);
343         struct list_head *this, *next;
344         struct discard_entry *entry;
345         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347         unsigned int total_segs = TOTAL_SEGS(sbi);
348         unsigned int start = 0, end = -1;
349
350         mutex_lock(&dirty_i->seglist_lock);
351
352         while (1) {
353                 int i;
354                 start = find_next_bit(prefree_map, total_segs, end + 1);
355                 if (start >= total_segs)
356                         break;
357                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358
359                 for (i = start; i < end; i++)
360                         clear_bit(i, prefree_map);
361
362                 dirty_i->nr_dirty[PRE] -= end - start;
363
364                 if (!test_opt(sbi, DISCARD))
365                         continue;
366
367                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368                                 (end - start) << sbi->log_blocks_per_seg);
369         }
370         mutex_unlock(&dirty_i->seglist_lock);
371
372         /* send small discards */
373         list_for_each_safe(this, next, head) {
374                 entry = list_entry(this, struct discard_entry, list);
375                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376                 list_del(&entry->list);
377                 SM_I(sbi)->nr_discards -= entry->len;
378                 kmem_cache_free(discard_entry_slab, entry);
379         }
380 }
381
382 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383 {
384         struct sit_info *sit_i = SIT_I(sbi);
385         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386                 sit_i->dirty_sentries++;
387 }
388
389 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390                                         unsigned int segno, int modified)
391 {
392         struct seg_entry *se = get_seg_entry(sbi, segno);
393         se->type = type;
394         if (modified)
395                 __mark_sit_entry_dirty(sbi, segno);
396 }
397
398 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399 {
400         struct seg_entry *se;
401         unsigned int segno, offset;
402         long int new_vblocks;
403
404         segno = GET_SEGNO(sbi, blkaddr);
405
406         se = get_seg_entry(sbi, segno);
407         new_vblocks = se->valid_blocks + del;
408         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
409
410         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411                                 (new_vblocks > sbi->blocks_per_seg)));
412
413         se->valid_blocks = new_vblocks;
414         se->mtime = get_mtime(sbi);
415         SIT_I(sbi)->max_mtime = se->mtime;
416
417         /* Update valid block bitmap */
418         if (del > 0) {
419                 if (f2fs_set_bit(offset, se->cur_valid_map))
420                         BUG();
421         } else {
422                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
423                         BUG();
424         }
425         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426                 se->ckpt_valid_blocks += del;
427
428         __mark_sit_entry_dirty(sbi, segno);
429
430         /* update total number of valid blocks to be written in ckpt area */
431         SIT_I(sbi)->written_valid_blocks += del;
432
433         if (sbi->segs_per_sec > 1)
434                 get_sec_entry(sbi, segno)->valid_blocks += del;
435 }
436
437 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
438 {
439         update_sit_entry(sbi, new, 1);
440         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
441                 update_sit_entry(sbi, old, -1);
442
443         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
444         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
445 }
446
447 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
448 {
449         unsigned int segno = GET_SEGNO(sbi, addr);
450         struct sit_info *sit_i = SIT_I(sbi);
451
452         f2fs_bug_on(addr == NULL_ADDR);
453         if (addr == NEW_ADDR)
454                 return;
455
456         /* add it into sit main buffer */
457         mutex_lock(&sit_i->sentry_lock);
458
459         update_sit_entry(sbi, addr, -1);
460
461         /* add it into dirty seglist */
462         locate_dirty_segment(sbi, segno);
463
464         mutex_unlock(&sit_i->sentry_lock);
465 }
466
467 /*
468  * This function should be resided under the curseg_mutex lock
469  */
470 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
471                                         struct f2fs_summary *sum)
472 {
473         struct curseg_info *curseg = CURSEG_I(sbi, type);
474         void *addr = curseg->sum_blk;
475         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
476         memcpy(addr, sum, sizeof(struct f2fs_summary));
477 }
478
479 /*
480  * Calculate the number of current summary pages for writing
481  */
482 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
483 {
484         int valid_sum_count = 0;
485         int i, sum_in_page;
486
487         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
488                 if (sbi->ckpt->alloc_type[i] == SSR)
489                         valid_sum_count += sbi->blocks_per_seg;
490                 else
491                         valid_sum_count += curseg_blkoff(sbi, i);
492         }
493
494         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
495                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
496         if (valid_sum_count <= sum_in_page)
497                 return 1;
498         else if ((valid_sum_count - sum_in_page) <=
499                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
500                 return 2;
501         return 3;
502 }
503
504 /*
505  * Caller should put this summary page
506  */
507 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
508 {
509         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
510 }
511
512 static void write_sum_page(struct f2fs_sb_info *sbi,
513                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
514 {
515         struct page *page = grab_meta_page(sbi, blk_addr);
516         void *kaddr = page_address(page);
517         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
518         set_page_dirty(page);
519         f2fs_put_page(page, 1);
520 }
521
522 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
523 {
524         struct curseg_info *curseg = CURSEG_I(sbi, type);
525         unsigned int segno = curseg->segno + 1;
526         struct free_segmap_info *free_i = FREE_I(sbi);
527
528         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
529                 return !test_bit(segno, free_i->free_segmap);
530         return 0;
531 }
532
533 /*
534  * Find a new segment from the free segments bitmap to right order
535  * This function should be returned with success, otherwise BUG
536  */
537 static void get_new_segment(struct f2fs_sb_info *sbi,
538                         unsigned int *newseg, bool new_sec, int dir)
539 {
540         struct free_segmap_info *free_i = FREE_I(sbi);
541         unsigned int segno, secno, zoneno;
542         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
543         unsigned int hint = *newseg / sbi->segs_per_sec;
544         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
545         unsigned int left_start = hint;
546         bool init = true;
547         int go_left = 0;
548         int i;
549
550         write_lock(&free_i->segmap_lock);
551
552         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
553                 segno = find_next_zero_bit(free_i->free_segmap,
554                                         TOTAL_SEGS(sbi), *newseg + 1);
555                 if (segno - *newseg < sbi->segs_per_sec -
556                                         (*newseg % sbi->segs_per_sec))
557                         goto got_it;
558         }
559 find_other_zone:
560         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
561         if (secno >= TOTAL_SECS(sbi)) {
562                 if (dir == ALLOC_RIGHT) {
563                         secno = find_next_zero_bit(free_i->free_secmap,
564                                                         TOTAL_SECS(sbi), 0);
565                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
566                 } else {
567                         go_left = 1;
568                         left_start = hint - 1;
569                 }
570         }
571         if (go_left == 0)
572                 goto skip_left;
573
574         while (test_bit(left_start, free_i->free_secmap)) {
575                 if (left_start > 0) {
576                         left_start--;
577                         continue;
578                 }
579                 left_start = find_next_zero_bit(free_i->free_secmap,
580                                                         TOTAL_SECS(sbi), 0);
581                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
582                 break;
583         }
584         secno = left_start;
585 skip_left:
586         hint = secno;
587         segno = secno * sbi->segs_per_sec;
588         zoneno = secno / sbi->secs_per_zone;
589
590         /* give up on finding another zone */
591         if (!init)
592                 goto got_it;
593         if (sbi->secs_per_zone == 1)
594                 goto got_it;
595         if (zoneno == old_zoneno)
596                 goto got_it;
597         if (dir == ALLOC_LEFT) {
598                 if (!go_left && zoneno + 1 >= total_zones)
599                         goto got_it;
600                 if (go_left && zoneno == 0)
601                         goto got_it;
602         }
603         for (i = 0; i < NR_CURSEG_TYPE; i++)
604                 if (CURSEG_I(sbi, i)->zone == zoneno)
605                         break;
606
607         if (i < NR_CURSEG_TYPE) {
608                 /* zone is in user, try another */
609                 if (go_left)
610                         hint = zoneno * sbi->secs_per_zone - 1;
611                 else if (zoneno + 1 >= total_zones)
612                         hint = 0;
613                 else
614                         hint = (zoneno + 1) * sbi->secs_per_zone;
615                 init = false;
616                 goto find_other_zone;
617         }
618 got_it:
619         /* set it as dirty segment in free segmap */
620         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
621         __set_inuse(sbi, segno);
622         *newseg = segno;
623         write_unlock(&free_i->segmap_lock);
624 }
625
626 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
627 {
628         struct curseg_info *curseg = CURSEG_I(sbi, type);
629         struct summary_footer *sum_footer;
630
631         curseg->segno = curseg->next_segno;
632         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
633         curseg->next_blkoff = 0;
634         curseg->next_segno = NULL_SEGNO;
635
636         sum_footer = &(curseg->sum_blk->footer);
637         memset(sum_footer, 0, sizeof(struct summary_footer));
638         if (IS_DATASEG(type))
639                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
640         if (IS_NODESEG(type))
641                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
642         __set_sit_entry_type(sbi, type, curseg->segno, modified);
643 }
644
645 /*
646  * Allocate a current working segment.
647  * This function always allocates a free segment in LFS manner.
648  */
649 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
650 {
651         struct curseg_info *curseg = CURSEG_I(sbi, type);
652         unsigned int segno = curseg->segno;
653         int dir = ALLOC_LEFT;
654
655         write_sum_page(sbi, curseg->sum_blk,
656                                 GET_SUM_BLOCK(sbi, segno));
657         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
658                 dir = ALLOC_RIGHT;
659
660         if (test_opt(sbi, NOHEAP))
661                 dir = ALLOC_RIGHT;
662
663         get_new_segment(sbi, &segno, new_sec, dir);
664         curseg->next_segno = segno;
665         reset_curseg(sbi, type, 1);
666         curseg->alloc_type = LFS;
667 }
668
669 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
670                         struct curseg_info *seg, block_t start)
671 {
672         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
673         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
674         unsigned long target_map[entries];
675         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
676         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
677         int i, pos;
678
679         for (i = 0; i < entries; i++)
680                 target_map[i] = ckpt_map[i] | cur_map[i];
681
682         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
683
684         seg->next_blkoff = pos;
685 }
686
687 /*
688  * If a segment is written by LFS manner, next block offset is just obtained
689  * by increasing the current block offset. However, if a segment is written by
690  * SSR manner, next block offset obtained by calling __next_free_blkoff
691  */
692 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
693                                 struct curseg_info *seg)
694 {
695         if (seg->alloc_type == SSR)
696                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
697         else
698                 seg->next_blkoff++;
699 }
700
701 /*
702  * This function always allocates a used segment (from dirty seglist) by SSR
703  * manner, so it should recover the existing segment information of valid blocks
704  */
705 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
706 {
707         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
708         struct curseg_info *curseg = CURSEG_I(sbi, type);
709         unsigned int new_segno = curseg->next_segno;
710         struct f2fs_summary_block *sum_node;
711         struct page *sum_page;
712
713         write_sum_page(sbi, curseg->sum_blk,
714                                 GET_SUM_BLOCK(sbi, curseg->segno));
715         __set_test_and_inuse(sbi, new_segno);
716
717         mutex_lock(&dirty_i->seglist_lock);
718         __remove_dirty_segment(sbi, new_segno, PRE);
719         __remove_dirty_segment(sbi, new_segno, DIRTY);
720         mutex_unlock(&dirty_i->seglist_lock);
721
722         reset_curseg(sbi, type, 1);
723         curseg->alloc_type = SSR;
724         __next_free_blkoff(sbi, curseg, 0);
725
726         if (reuse) {
727                 sum_page = get_sum_page(sbi, new_segno);
728                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
729                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
730                 f2fs_put_page(sum_page, 1);
731         }
732 }
733
734 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
735 {
736         struct curseg_info *curseg = CURSEG_I(sbi, type);
737         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
738
739         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
740                 return v_ops->get_victim(sbi,
741                                 &(curseg)->next_segno, BG_GC, type, SSR);
742
743         /* For data segments, let's do SSR more intensively */
744         for (; type >= CURSEG_HOT_DATA; type--)
745                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
746                                                 BG_GC, type, SSR))
747                         return 1;
748         return 0;
749 }
750
751 /*
752  * flush out current segment and replace it with new segment
753  * This function should be returned with success, otherwise BUG
754  */
755 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
756                                                 int type, bool force)
757 {
758         struct curseg_info *curseg = CURSEG_I(sbi, type);
759
760         if (force)
761                 new_curseg(sbi, type, true);
762         else if (type == CURSEG_WARM_NODE)
763                 new_curseg(sbi, type, false);
764         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
765                 new_curseg(sbi, type, false);
766         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
767                 change_curseg(sbi, type, true);
768         else
769                 new_curseg(sbi, type, false);
770
771         stat_inc_seg_type(sbi, curseg);
772 }
773
774 void allocate_new_segments(struct f2fs_sb_info *sbi)
775 {
776         struct curseg_info *curseg;
777         unsigned int old_curseg;
778         int i;
779
780         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
781                 curseg = CURSEG_I(sbi, i);
782                 old_curseg = curseg->segno;
783                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
784                 locate_dirty_segment(sbi, old_curseg);
785         }
786 }
787
788 static const struct segment_allocation default_salloc_ops = {
789         .allocate_segment = allocate_segment_by_default,
790 };
791
792 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
793 {
794         struct curseg_info *curseg = CURSEG_I(sbi, type);
795         if (curseg->next_blkoff < sbi->blocks_per_seg)
796                 return true;
797         return false;
798 }
799
800 static int __get_segment_type_2(struct page *page, enum page_type p_type)
801 {
802         if (p_type == DATA)
803                 return CURSEG_HOT_DATA;
804         else
805                 return CURSEG_HOT_NODE;
806 }
807
808 static int __get_segment_type_4(struct page *page, enum page_type p_type)
809 {
810         if (p_type == DATA) {
811                 struct inode *inode = page->mapping->host;
812
813                 if (S_ISDIR(inode->i_mode))
814                         return CURSEG_HOT_DATA;
815                 else
816                         return CURSEG_COLD_DATA;
817         } else {
818                 if (IS_DNODE(page) && !is_cold_node(page))
819                         return CURSEG_HOT_NODE;
820                 else
821                         return CURSEG_COLD_NODE;
822         }
823 }
824
825 static int __get_segment_type_6(struct page *page, enum page_type p_type)
826 {
827         if (p_type == DATA) {
828                 struct inode *inode = page->mapping->host;
829
830                 if (S_ISDIR(inode->i_mode))
831                         return CURSEG_HOT_DATA;
832                 else if (is_cold_data(page) || file_is_cold(inode))
833                         return CURSEG_COLD_DATA;
834                 else
835                         return CURSEG_WARM_DATA;
836         } else {
837                 if (IS_DNODE(page))
838                         return is_cold_node(page) ? CURSEG_WARM_NODE :
839                                                 CURSEG_HOT_NODE;
840                 else
841                         return CURSEG_COLD_NODE;
842         }
843 }
844
845 static int __get_segment_type(struct page *page, enum page_type p_type)
846 {
847         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
848         switch (sbi->active_logs) {
849         case 2:
850                 return __get_segment_type_2(page, p_type);
851         case 4:
852                 return __get_segment_type_4(page, p_type);
853         }
854         /* NR_CURSEG_TYPE(6) logs by default */
855         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
856         return __get_segment_type_6(page, p_type);
857 }
858
859 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
860                 block_t old_blkaddr, block_t *new_blkaddr,
861                 struct f2fs_summary *sum, int type)
862 {
863         struct sit_info *sit_i = SIT_I(sbi);
864         struct curseg_info *curseg;
865         unsigned int old_cursegno;
866
867         curseg = CURSEG_I(sbi, type);
868
869         mutex_lock(&curseg->curseg_mutex);
870
871         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
872         old_cursegno = curseg->segno;
873
874         /*
875          * __add_sum_entry should be resided under the curseg_mutex
876          * because, this function updates a summary entry in the
877          * current summary block.
878          */
879         __add_sum_entry(sbi, type, sum);
880
881         mutex_lock(&sit_i->sentry_lock);
882         __refresh_next_blkoff(sbi, curseg);
883
884         stat_inc_block_count(sbi, curseg);
885
886         if (!__has_curseg_space(sbi, type))
887                 sit_i->s_ops->allocate_segment(sbi, type, false);
888         /*
889          * SIT information should be updated before segment allocation,
890          * since SSR needs latest valid block information.
891          */
892         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
893         locate_dirty_segment(sbi, old_cursegno);
894
895         mutex_unlock(&sit_i->sentry_lock);
896
897         if (page && IS_NODESEG(type))
898                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
899
900         mutex_unlock(&curseg->curseg_mutex);
901 }
902
903 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904                         block_t old_blkaddr, block_t *new_blkaddr,
905                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
906 {
907         int type = __get_segment_type(page, fio->type);
908
909         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910
911         /* writeout dirty page into bdev */
912         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913 }
914
915 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
916 {
917         struct f2fs_io_info fio = {
918                 .type = META,
919                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
920         };
921
922         set_page_writeback(page);
923         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
924 }
925
926 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927                 struct f2fs_io_info *fio,
928                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
929 {
930         struct f2fs_summary sum;
931         set_summary(&sum, nid, 0, 0);
932         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
933 }
934
935 void write_data_page(struct page *page, struct dnode_of_data *dn,
936                 block_t *new_blkaddr, struct f2fs_io_info *fio)
937 {
938         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
939         struct f2fs_summary sum;
940         struct node_info ni;
941
942         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
943         get_node_info(sbi, dn->nid, &ni);
944         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
945
946         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
947 }
948
949 void rewrite_data_page(struct page *page, block_t old_blkaddr,
950                                         struct f2fs_io_info *fio)
951 {
952         struct inode *inode = page->mapping->host;
953         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
954         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
955 }
956
957 void recover_data_page(struct f2fs_sb_info *sbi,
958                         struct page *page, struct f2fs_summary *sum,
959                         block_t old_blkaddr, block_t new_blkaddr)
960 {
961         struct sit_info *sit_i = SIT_I(sbi);
962         struct curseg_info *curseg;
963         unsigned int segno, old_cursegno;
964         struct seg_entry *se;
965         int type;
966
967         segno = GET_SEGNO(sbi, new_blkaddr);
968         se = get_seg_entry(sbi, segno);
969         type = se->type;
970
971         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
972                 if (old_blkaddr == NULL_ADDR)
973                         type = CURSEG_COLD_DATA;
974                 else
975                         type = CURSEG_WARM_DATA;
976         }
977         curseg = CURSEG_I(sbi, type);
978
979         mutex_lock(&curseg->curseg_mutex);
980         mutex_lock(&sit_i->sentry_lock);
981
982         old_cursegno = curseg->segno;
983
984         /* change the current segment */
985         if (segno != curseg->segno) {
986                 curseg->next_segno = segno;
987                 change_curseg(sbi, type, true);
988         }
989
990         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
991         __add_sum_entry(sbi, type, sum);
992
993         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
994         locate_dirty_segment(sbi, old_cursegno);
995
996         mutex_unlock(&sit_i->sentry_lock);
997         mutex_unlock(&curseg->curseg_mutex);
998 }
999
1000 void rewrite_node_page(struct f2fs_sb_info *sbi,
1001                         struct page *page, struct f2fs_summary *sum,
1002                         block_t old_blkaddr, block_t new_blkaddr)
1003 {
1004         struct sit_info *sit_i = SIT_I(sbi);
1005         int type = CURSEG_WARM_NODE;
1006         struct curseg_info *curseg;
1007         unsigned int segno, old_cursegno;
1008         block_t next_blkaddr = next_blkaddr_of_node(page);
1009         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1010         struct f2fs_io_info fio = {
1011                 .type = NODE,
1012                 .rw = WRITE_SYNC,
1013         };
1014
1015         curseg = CURSEG_I(sbi, type);
1016
1017         mutex_lock(&curseg->curseg_mutex);
1018         mutex_lock(&sit_i->sentry_lock);
1019
1020         segno = GET_SEGNO(sbi, new_blkaddr);
1021         old_cursegno = curseg->segno;
1022
1023         /* change the current segment */
1024         if (segno != curseg->segno) {
1025                 curseg->next_segno = segno;
1026                 change_curseg(sbi, type, true);
1027         }
1028         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1029         __add_sum_entry(sbi, type, sum);
1030
1031         /* change the current log to the next block addr in advance */
1032         if (next_segno != segno) {
1033                 curseg->next_segno = next_segno;
1034                 change_curseg(sbi, type, true);
1035         }
1036         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1037
1038         /* rewrite node page */
1039         set_page_writeback(page);
1040         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1041         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1042         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1043         locate_dirty_segment(sbi, old_cursegno);
1044
1045         mutex_unlock(&sit_i->sentry_lock);
1046         mutex_unlock(&curseg->curseg_mutex);
1047 }
1048
1049 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1050                                         struct page *page, enum page_type type)
1051 {
1052         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1053         struct f2fs_bio_info *io = &sbi->write_io[btype];
1054         struct bio *bio = io->bio;
1055         struct bio_vec *bvec;
1056         int i;
1057
1058         down_read(&io->io_rwsem);
1059         if (!bio)
1060                 goto out;
1061
1062         bio_for_each_segment_all(bvec, bio, i) {
1063                 if (page == bvec->bv_page) {
1064                         up_read(&io->io_rwsem);
1065                         return true;
1066                 }
1067         }
1068
1069 out:
1070         up_read(&io->io_rwsem);
1071         return false;
1072 }
1073
1074 void f2fs_wait_on_page_writeback(struct page *page,
1075                                 enum page_type type)
1076 {
1077         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1078         if (PageWriteback(page)) {
1079                 if (is_merged_page(sbi, page, type))
1080                         f2fs_submit_merged_bio(sbi, type, WRITE);
1081                 wait_on_page_writeback(page);
1082         }
1083 }
1084
1085 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1086 {
1087         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1088         struct curseg_info *seg_i;
1089         unsigned char *kaddr;
1090         struct page *page;
1091         block_t start;
1092         int i, j, offset;
1093
1094         start = start_sum_block(sbi);
1095
1096         page = get_meta_page(sbi, start++);
1097         kaddr = (unsigned char *)page_address(page);
1098
1099         /* Step 1: restore nat cache */
1100         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1101         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1102
1103         /* Step 2: restore sit cache */
1104         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1105         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1106                                                 SUM_JOURNAL_SIZE);
1107         offset = 2 * SUM_JOURNAL_SIZE;
1108
1109         /* Step 3: restore summary entries */
1110         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1111                 unsigned short blk_off;
1112                 unsigned int segno;
1113
1114                 seg_i = CURSEG_I(sbi, i);
1115                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1116                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1117                 seg_i->next_segno = segno;
1118                 reset_curseg(sbi, i, 0);
1119                 seg_i->alloc_type = ckpt->alloc_type[i];
1120                 seg_i->next_blkoff = blk_off;
1121
1122                 if (seg_i->alloc_type == SSR)
1123                         blk_off = sbi->blocks_per_seg;
1124
1125                 for (j = 0; j < blk_off; j++) {
1126                         struct f2fs_summary *s;
1127                         s = (struct f2fs_summary *)(kaddr + offset);
1128                         seg_i->sum_blk->entries[j] = *s;
1129                         offset += SUMMARY_SIZE;
1130                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1131                                                 SUM_FOOTER_SIZE)
1132                                 continue;
1133
1134                         f2fs_put_page(page, 1);
1135                         page = NULL;
1136
1137                         page = get_meta_page(sbi, start++);
1138                         kaddr = (unsigned char *)page_address(page);
1139                         offset = 0;
1140                 }
1141         }
1142         f2fs_put_page(page, 1);
1143         return 0;
1144 }
1145
1146 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1147 {
1148         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1149         struct f2fs_summary_block *sum;
1150         struct curseg_info *curseg;
1151         struct page *new;
1152         unsigned short blk_off;
1153         unsigned int segno = 0;
1154         block_t blk_addr = 0;
1155
1156         /* get segment number and block addr */
1157         if (IS_DATASEG(type)) {
1158                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1159                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1160                                                         CURSEG_HOT_DATA]);
1161                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1162                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1163                 else
1164                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1165         } else {
1166                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1167                                                         CURSEG_HOT_NODE]);
1168                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1169                                                         CURSEG_HOT_NODE]);
1170                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1171                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1172                                                         type - CURSEG_HOT_NODE);
1173                 else
1174                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1175         }
1176
1177         new = get_meta_page(sbi, blk_addr);
1178         sum = (struct f2fs_summary_block *)page_address(new);
1179
1180         if (IS_NODESEG(type)) {
1181                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1182                         struct f2fs_summary *ns = &sum->entries[0];
1183                         int i;
1184                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1185                                 ns->version = 0;
1186                                 ns->ofs_in_node = 0;
1187                         }
1188                 } else {
1189                         int err;
1190
1191                         err = restore_node_summary(sbi, segno, sum);
1192                         if (err) {
1193                                 f2fs_put_page(new, 1);
1194                                 return err;
1195                         }
1196                 }
1197         }
1198
1199         /* set uncompleted segment to curseg */
1200         curseg = CURSEG_I(sbi, type);
1201         mutex_lock(&curseg->curseg_mutex);
1202         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1203         curseg->next_segno = segno;
1204         reset_curseg(sbi, type, 0);
1205         curseg->alloc_type = ckpt->alloc_type[type];
1206         curseg->next_blkoff = blk_off;
1207         mutex_unlock(&curseg->curseg_mutex);
1208         f2fs_put_page(new, 1);
1209         return 0;
1210 }
1211
1212 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1213 {
1214         int type = CURSEG_HOT_DATA;
1215         int err;
1216
1217         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1218                 /* restore for compacted data summary */
1219                 if (read_compacted_summaries(sbi))
1220                         return -EINVAL;
1221                 type = CURSEG_HOT_NODE;
1222         }
1223
1224         for (; type <= CURSEG_COLD_NODE; type++) {
1225                 err = read_normal_summaries(sbi, type);
1226                 if (err)
1227                         return err;
1228         }
1229
1230         return 0;
1231 }
1232
1233 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1234 {
1235         struct page *page;
1236         unsigned char *kaddr;
1237         struct f2fs_summary *summary;
1238         struct curseg_info *seg_i;
1239         int written_size = 0;
1240         int i, j;
1241
1242         page = grab_meta_page(sbi, blkaddr++);
1243         kaddr = (unsigned char *)page_address(page);
1244
1245         /* Step 1: write nat cache */
1246         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1247         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1248         written_size += SUM_JOURNAL_SIZE;
1249
1250         /* Step 2: write sit cache */
1251         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1252         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1253                                                 SUM_JOURNAL_SIZE);
1254         written_size += SUM_JOURNAL_SIZE;
1255
1256         /* Step 3: write summary entries */
1257         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1258                 unsigned short blkoff;
1259                 seg_i = CURSEG_I(sbi, i);
1260                 if (sbi->ckpt->alloc_type[i] == SSR)
1261                         blkoff = sbi->blocks_per_seg;
1262                 else
1263                         blkoff = curseg_blkoff(sbi, i);
1264
1265                 for (j = 0; j < blkoff; j++) {
1266                         if (!page) {
1267                                 page = grab_meta_page(sbi, blkaddr++);
1268                                 kaddr = (unsigned char *)page_address(page);
1269                                 written_size = 0;
1270                         }
1271                         summary = (struct f2fs_summary *)(kaddr + written_size);
1272                         *summary = seg_i->sum_blk->entries[j];
1273                         written_size += SUMMARY_SIZE;
1274
1275                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1276                                                         SUM_FOOTER_SIZE)
1277                                 continue;
1278
1279                         set_page_dirty(page);
1280                         f2fs_put_page(page, 1);
1281                         page = NULL;
1282                 }
1283         }
1284         if (page) {
1285                 set_page_dirty(page);
1286                 f2fs_put_page(page, 1);
1287         }
1288 }
1289
1290 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1291                                         block_t blkaddr, int type)
1292 {
1293         int i, end;
1294         if (IS_DATASEG(type))
1295                 end = type + NR_CURSEG_DATA_TYPE;
1296         else
1297                 end = type + NR_CURSEG_NODE_TYPE;
1298
1299         for (i = type; i < end; i++) {
1300                 struct curseg_info *sum = CURSEG_I(sbi, i);
1301                 mutex_lock(&sum->curseg_mutex);
1302                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1303                 mutex_unlock(&sum->curseg_mutex);
1304         }
1305 }
1306
1307 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1308 {
1309         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1310                 write_compacted_summaries(sbi, start_blk);
1311         else
1312                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1313 }
1314
1315 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1316 {
1317         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1318                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1319 }
1320
1321 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1322                                         unsigned int val, int alloc)
1323 {
1324         int i;
1325
1326         if (type == NAT_JOURNAL) {
1327                 for (i = 0; i < nats_in_cursum(sum); i++) {
1328                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1329                                 return i;
1330                 }
1331                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1332                         return update_nats_in_cursum(sum, 1);
1333         } else if (type == SIT_JOURNAL) {
1334                 for (i = 0; i < sits_in_cursum(sum); i++)
1335                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1336                                 return i;
1337                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1338                         return update_sits_in_cursum(sum, 1);
1339         }
1340         return -1;
1341 }
1342
1343 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1344                                         unsigned int segno)
1345 {
1346         struct sit_info *sit_i = SIT_I(sbi);
1347         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1348         block_t blk_addr = sit_i->sit_base_addr + offset;
1349
1350         check_seg_range(sbi, segno);
1351
1352         /* calculate sit block address */
1353         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1354                 blk_addr += sit_i->sit_blocks;
1355
1356         return get_meta_page(sbi, blk_addr);
1357 }
1358
1359 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1360                                         unsigned int start)
1361 {
1362         struct sit_info *sit_i = SIT_I(sbi);
1363         struct page *src_page, *dst_page;
1364         pgoff_t src_off, dst_off;
1365         void *src_addr, *dst_addr;
1366
1367         src_off = current_sit_addr(sbi, start);
1368         dst_off = next_sit_addr(sbi, src_off);
1369
1370         /* get current sit block page without lock */
1371         src_page = get_meta_page(sbi, src_off);
1372         dst_page = grab_meta_page(sbi, dst_off);
1373         f2fs_bug_on(PageDirty(src_page));
1374
1375         src_addr = page_address(src_page);
1376         dst_addr = page_address(dst_page);
1377         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1378
1379         set_page_dirty(dst_page);
1380         f2fs_put_page(src_page, 1);
1381
1382         set_to_next_sit(sit_i, start);
1383
1384         return dst_page;
1385 }
1386
1387 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1388 {
1389         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1390         struct f2fs_summary_block *sum = curseg->sum_blk;
1391         int i;
1392
1393         /*
1394          * If the journal area in the current summary is full of sit entries,
1395          * all the sit entries will be flushed. Otherwise the sit entries
1396          * are not able to replace with newly hot sit entries.
1397          */
1398         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1399                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1400                         unsigned int segno;
1401                         segno = le32_to_cpu(segno_in_journal(sum, i));
1402                         __mark_sit_entry_dirty(sbi, segno);
1403                 }
1404                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1405                 return true;
1406         }
1407         return false;
1408 }
1409
1410 /*
1411  * CP calls this function, which flushes SIT entries including sit_journal,
1412  * and moves prefree segs to free segs.
1413  */
1414 void flush_sit_entries(struct f2fs_sb_info *sbi)
1415 {
1416         struct sit_info *sit_i = SIT_I(sbi);
1417         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1418         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1419         struct f2fs_summary_block *sum = curseg->sum_blk;
1420         unsigned long nsegs = TOTAL_SEGS(sbi);
1421         struct page *page = NULL;
1422         struct f2fs_sit_block *raw_sit = NULL;
1423         unsigned int start = 0, end = 0;
1424         unsigned int segno = -1;
1425         bool flushed;
1426
1427         mutex_lock(&curseg->curseg_mutex);
1428         mutex_lock(&sit_i->sentry_lock);
1429
1430         /*
1431          * "flushed" indicates whether sit entries in journal are flushed
1432          * to the SIT area or not.
1433          */
1434         flushed = flush_sits_in_journal(sbi);
1435
1436         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1437                 struct seg_entry *se = get_seg_entry(sbi, segno);
1438                 int sit_offset, offset;
1439
1440                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1441
1442                 /* add discard candidates */
1443                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1444                         add_discard_addrs(sbi, segno, se);
1445
1446                 if (flushed)
1447                         goto to_sit_page;
1448
1449                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1450                 if (offset >= 0) {
1451                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1452                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1453                         goto flush_done;
1454                 }
1455 to_sit_page:
1456                 if (!page || (start > segno) || (segno > end)) {
1457                         if (page) {
1458                                 f2fs_put_page(page, 1);
1459                                 page = NULL;
1460                         }
1461
1462                         start = START_SEGNO(sit_i, segno);
1463                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1464
1465                         /* read sit block that will be updated */
1466                         page = get_next_sit_page(sbi, start);
1467                         raw_sit = page_address(page);
1468                 }
1469
1470                 /* udpate entry in SIT block */
1471                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1472 flush_done:
1473                 __clear_bit(segno, bitmap);
1474                 sit_i->dirty_sentries--;
1475         }
1476         mutex_unlock(&sit_i->sentry_lock);
1477         mutex_unlock(&curseg->curseg_mutex);
1478
1479         /* writeout last modified SIT block */
1480         f2fs_put_page(page, 1);
1481
1482         set_prefree_as_free_segments(sbi);
1483 }
1484
1485 static int build_sit_info(struct f2fs_sb_info *sbi)
1486 {
1487         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1488         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1489         struct sit_info *sit_i;
1490         unsigned int sit_segs, start;
1491         char *src_bitmap, *dst_bitmap;
1492         unsigned int bitmap_size;
1493
1494         /* allocate memory for SIT information */
1495         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1496         if (!sit_i)
1497                 return -ENOMEM;
1498
1499         SM_I(sbi)->sit_info = sit_i;
1500
1501         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1502         if (!sit_i->sentries)
1503                 return -ENOMEM;
1504
1505         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1506         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1507         if (!sit_i->dirty_sentries_bitmap)
1508                 return -ENOMEM;
1509
1510         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1511                 sit_i->sentries[start].cur_valid_map
1512                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1513                 sit_i->sentries[start].ckpt_valid_map
1514                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1515                 if (!sit_i->sentries[start].cur_valid_map
1516                                 || !sit_i->sentries[start].ckpt_valid_map)
1517                         return -ENOMEM;
1518         }
1519
1520         if (sbi->segs_per_sec > 1) {
1521                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1522                                         sizeof(struct sec_entry));
1523                 if (!sit_i->sec_entries)
1524                         return -ENOMEM;
1525         }
1526
1527         /* get information related with SIT */
1528         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1529
1530         /* setup SIT bitmap from ckeckpoint pack */
1531         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1532         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1533
1534         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1535         if (!dst_bitmap)
1536                 return -ENOMEM;
1537
1538         /* init SIT information */
1539         sit_i->s_ops = &default_salloc_ops;
1540
1541         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1542         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1543         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1544         sit_i->sit_bitmap = dst_bitmap;
1545         sit_i->bitmap_size = bitmap_size;
1546         sit_i->dirty_sentries = 0;
1547         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1548         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1549         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1550         mutex_init(&sit_i->sentry_lock);
1551         return 0;
1552 }
1553
1554 static int build_free_segmap(struct f2fs_sb_info *sbi)
1555 {
1556         struct f2fs_sm_info *sm_info = SM_I(sbi);
1557         struct free_segmap_info *free_i;
1558         unsigned int bitmap_size, sec_bitmap_size;
1559
1560         /* allocate memory for free segmap information */
1561         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1562         if (!free_i)
1563                 return -ENOMEM;
1564
1565         SM_I(sbi)->free_info = free_i;
1566
1567         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1568         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1569         if (!free_i->free_segmap)
1570                 return -ENOMEM;
1571
1572         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1573         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1574         if (!free_i->free_secmap)
1575                 return -ENOMEM;
1576
1577         /* set all segments as dirty temporarily */
1578         memset(free_i->free_segmap, 0xff, bitmap_size);
1579         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1580
1581         /* init free segmap information */
1582         free_i->start_segno =
1583                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1584         free_i->free_segments = 0;
1585         free_i->free_sections = 0;
1586         rwlock_init(&free_i->segmap_lock);
1587         return 0;
1588 }
1589
1590 static int build_curseg(struct f2fs_sb_info *sbi)
1591 {
1592         struct curseg_info *array;
1593         int i;
1594
1595         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1596         if (!array)
1597                 return -ENOMEM;
1598
1599         SM_I(sbi)->curseg_array = array;
1600
1601         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1602                 mutex_init(&array[i].curseg_mutex);
1603                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1604                 if (!array[i].sum_blk)
1605                         return -ENOMEM;
1606                 array[i].segno = NULL_SEGNO;
1607                 array[i].next_blkoff = 0;
1608         }
1609         return restore_curseg_summaries(sbi);
1610 }
1611
1612 static void build_sit_entries(struct f2fs_sb_info *sbi)
1613 {
1614         struct sit_info *sit_i = SIT_I(sbi);
1615         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1616         struct f2fs_summary_block *sum = curseg->sum_blk;
1617         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1618         unsigned int i, start, end;
1619         unsigned int readed, start_blk = 0;
1620         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1621
1622         do {
1623                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1624
1625                 start = start_blk * sit_i->sents_per_block;
1626                 end = (start_blk + readed) * sit_i->sents_per_block;
1627
1628                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1629                         struct seg_entry *se = &sit_i->sentries[start];
1630                         struct f2fs_sit_block *sit_blk;
1631                         struct f2fs_sit_entry sit;
1632                         struct page *page;
1633
1634                         mutex_lock(&curseg->curseg_mutex);
1635                         for (i = 0; i < sits_in_cursum(sum); i++) {
1636                                 if (le32_to_cpu(segno_in_journal(sum, i))
1637                                                                 == start) {
1638                                         sit = sit_in_journal(sum, i);
1639                                         mutex_unlock(&curseg->curseg_mutex);
1640                                         goto got_it;
1641                                 }
1642                         }
1643                         mutex_unlock(&curseg->curseg_mutex);
1644
1645                         page = get_current_sit_page(sbi, start);
1646                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1647                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1648                         f2fs_put_page(page, 1);
1649 got_it:
1650                         check_block_count(sbi, start, &sit);
1651                         seg_info_from_raw_sit(se, &sit);
1652                         if (sbi->segs_per_sec > 1) {
1653                                 struct sec_entry *e = get_sec_entry(sbi, start);
1654                                 e->valid_blocks += se->valid_blocks;
1655                         }
1656                 }
1657                 start_blk += readed;
1658         } while (start_blk < sit_blk_cnt);
1659 }
1660
1661 static void init_free_segmap(struct f2fs_sb_info *sbi)
1662 {
1663         unsigned int start;
1664         int type;
1665
1666         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1667                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1668                 if (!sentry->valid_blocks)
1669                         __set_free(sbi, start);
1670         }
1671
1672         /* set use the current segments */
1673         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1674                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1675                 __set_test_and_inuse(sbi, curseg_t->segno);
1676         }
1677 }
1678
1679 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1680 {
1681         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1682         struct free_segmap_info *free_i = FREE_I(sbi);
1683         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1684         unsigned short valid_blocks;
1685
1686         while (1) {
1687                 /* find dirty segment based on free segmap */
1688                 segno = find_next_inuse(free_i, total_segs, offset);
1689                 if (segno >= total_segs)
1690                         break;
1691                 offset = segno + 1;
1692                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1693                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1694                         continue;
1695                 mutex_lock(&dirty_i->seglist_lock);
1696                 __locate_dirty_segment(sbi, segno, DIRTY);
1697                 mutex_unlock(&dirty_i->seglist_lock);
1698         }
1699 }
1700
1701 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1702 {
1703         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1704         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1705
1706         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1707         if (!dirty_i->victim_secmap)
1708                 return -ENOMEM;
1709         return 0;
1710 }
1711
1712 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1713 {
1714         struct dirty_seglist_info *dirty_i;
1715         unsigned int bitmap_size, i;
1716
1717         /* allocate memory for dirty segments list information */
1718         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1719         if (!dirty_i)
1720                 return -ENOMEM;
1721
1722         SM_I(sbi)->dirty_info = dirty_i;
1723         mutex_init(&dirty_i->seglist_lock);
1724
1725         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1726
1727         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1728                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1729                 if (!dirty_i->dirty_segmap[i])
1730                         return -ENOMEM;
1731         }
1732
1733         init_dirty_segmap(sbi);
1734         return init_victim_secmap(sbi);
1735 }
1736
1737 /*
1738  * Update min, max modified time for cost-benefit GC algorithm
1739  */
1740 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1741 {
1742         struct sit_info *sit_i = SIT_I(sbi);
1743         unsigned int segno;
1744
1745         mutex_lock(&sit_i->sentry_lock);
1746
1747         sit_i->min_mtime = LLONG_MAX;
1748
1749         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1750                 unsigned int i;
1751                 unsigned long long mtime = 0;
1752
1753                 for (i = 0; i < sbi->segs_per_sec; i++)
1754                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1755
1756                 mtime = div_u64(mtime, sbi->segs_per_sec);
1757
1758                 if (sit_i->min_mtime > mtime)
1759                         sit_i->min_mtime = mtime;
1760         }
1761         sit_i->max_mtime = get_mtime(sbi);
1762         mutex_unlock(&sit_i->sentry_lock);
1763 }
1764
1765 int build_segment_manager(struct f2fs_sb_info *sbi)
1766 {
1767         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1768         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1769         struct f2fs_sm_info *sm_info;
1770         int err;
1771
1772         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1773         if (!sm_info)
1774                 return -ENOMEM;
1775
1776         /* init sm info */
1777         sbi->sm_info = sm_info;
1778         INIT_LIST_HEAD(&sm_info->wblist_head);
1779         spin_lock_init(&sm_info->wblist_lock);
1780         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1781         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1782         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1783         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1784         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1785         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1786         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1787         sm_info->rec_prefree_segments = sm_info->main_segments *
1788                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1789         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1790         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1791
1792         INIT_LIST_HEAD(&sm_info->discard_list);
1793         sm_info->nr_discards = 0;
1794         sm_info->max_discards = 0;
1795
1796         err = build_sit_info(sbi);
1797         if (err)
1798                 return err;
1799         err = build_free_segmap(sbi);
1800         if (err)
1801                 return err;
1802         err = build_curseg(sbi);
1803         if (err)
1804                 return err;
1805
1806         /* reinit free segmap based on SIT */
1807         build_sit_entries(sbi);
1808
1809         init_free_segmap(sbi);
1810         err = build_dirty_segmap(sbi);
1811         if (err)
1812                 return err;
1813
1814         init_min_max_mtime(sbi);
1815         return 0;
1816 }
1817
1818 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1819                 enum dirty_type dirty_type)
1820 {
1821         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1822
1823         mutex_lock(&dirty_i->seglist_lock);
1824         kfree(dirty_i->dirty_segmap[dirty_type]);
1825         dirty_i->nr_dirty[dirty_type] = 0;
1826         mutex_unlock(&dirty_i->seglist_lock);
1827 }
1828
1829 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1830 {
1831         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1832         kfree(dirty_i->victim_secmap);
1833 }
1834
1835 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1836 {
1837         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1838         int i;
1839
1840         if (!dirty_i)
1841                 return;
1842
1843         /* discard pre-free/dirty segments list */
1844         for (i = 0; i < NR_DIRTY_TYPE; i++)
1845                 discard_dirty_segmap(sbi, i);
1846
1847         destroy_victim_secmap(sbi);
1848         SM_I(sbi)->dirty_info = NULL;
1849         kfree(dirty_i);
1850 }
1851
1852 static void destroy_curseg(struct f2fs_sb_info *sbi)
1853 {
1854         struct curseg_info *array = SM_I(sbi)->curseg_array;
1855         int i;
1856
1857         if (!array)
1858                 return;
1859         SM_I(sbi)->curseg_array = NULL;
1860         for (i = 0; i < NR_CURSEG_TYPE; i++)
1861                 kfree(array[i].sum_blk);
1862         kfree(array);
1863 }
1864
1865 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1866 {
1867         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1868         if (!free_i)
1869                 return;
1870         SM_I(sbi)->free_info = NULL;
1871         kfree(free_i->free_segmap);
1872         kfree(free_i->free_secmap);
1873         kfree(free_i);
1874 }
1875
1876 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1877 {
1878         struct sit_info *sit_i = SIT_I(sbi);
1879         unsigned int start;
1880
1881         if (!sit_i)
1882                 return;
1883
1884         if (sit_i->sentries) {
1885                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1886                         kfree(sit_i->sentries[start].cur_valid_map);
1887                         kfree(sit_i->sentries[start].ckpt_valid_map);
1888                 }
1889         }
1890         vfree(sit_i->sentries);
1891         vfree(sit_i->sec_entries);
1892         kfree(sit_i->dirty_sentries_bitmap);
1893
1894         SM_I(sbi)->sit_info = NULL;
1895         kfree(sit_i->sit_bitmap);
1896         kfree(sit_i);
1897 }
1898
1899 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1900 {
1901         struct f2fs_sm_info *sm_info = SM_I(sbi);
1902         if (!sm_info)
1903                 return;
1904         destroy_dirty_segmap(sbi);
1905         destroy_curseg(sbi);
1906         destroy_free_segmap(sbi);
1907         destroy_sit_info(sbi);
1908         sbi->sm_info = NULL;
1909         kfree(sm_info);
1910 }
1911
1912 int __init create_segment_manager_caches(void)
1913 {
1914         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1915                         sizeof(struct discard_entry));
1916         if (!discard_entry_slab)
1917                 return -ENOMEM;
1918         return 0;
1919 }
1920
1921 void destroy_segment_manager_caches(void)
1922 {
1923         kmem_cache_destroy(discard_entry_slab);
1924 }