]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/segment.c
f2fs: improve searching speed of __next_free_blkoff
[linux-beck.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 #define __reverse_ffz(x) __reverse_ffs(~(x))
24
25 /*
26  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
27  * MSB and LSB are reversed in a byte by f2fs_set_bit.
28  */
29 static inline unsigned long __reverse_ffs(unsigned long word)
30 {
31         int num = 0;
32
33 #if BITS_PER_LONG == 64
34         if ((word & 0xffffffff) == 0) {
35                 num += 32;
36                 word >>= 32;
37         }
38 #endif
39         if ((word & 0xffff) == 0) {
40                 num += 16;
41                 word >>= 16;
42         }
43         if ((word & 0xff) == 0) {
44                 num += 8;
45                 word >>= 8;
46         }
47         if ((word & 0xf0) == 0)
48                 num += 4;
49         else
50                 word >>= 4;
51         if ((word & 0xc) == 0)
52                 num += 2;
53         else
54                 word >>= 2;
55         if ((word & 0x2) == 0)
56                 num += 1;
57         return num;
58 }
59
60 /*
61  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
62  * f2fs_set_bit makes MSB and LSB reversed in a byte.
63  * Example:
64  *                             LSB <--> MSB
65  *   f2fs_set_bit(0, bitmap) => 0000 0001
66  *   f2fs_set_bit(7, bitmap) => 1000 0000
67  */
68 static unsigned long __find_rev_next_bit(const unsigned long *addr,
69                         unsigned long size, unsigned long offset)
70 {
71         const unsigned long *p = addr + BIT_WORD(offset);
72         unsigned long result = offset & ~(BITS_PER_LONG - 1);
73         unsigned long tmp;
74         unsigned long mask, submask;
75         unsigned long quot, rest;
76
77         if (offset >= size)
78                 return size;
79
80         size -= result;
81         offset %= BITS_PER_LONG;
82         if (!offset)
83                 goto aligned;
84
85         tmp = *(p++);
86         quot = (offset >> 3) << 3;
87         rest = offset & 0x7;
88         mask = ~0UL << quot;
89         submask = (unsigned char)(0xff << rest) >> rest;
90         submask <<= quot;
91         mask &= submask;
92         tmp &= mask;
93         if (size < BITS_PER_LONG)
94                 goto found_first;
95         if (tmp)
96                 goto found_middle;
97
98         size -= BITS_PER_LONG;
99         result += BITS_PER_LONG;
100 aligned:
101         while (size & ~(BITS_PER_LONG-1)) {
102                 tmp = *(p++);
103                 if (tmp)
104                         goto found_middle;
105                 result += BITS_PER_LONG;
106                 size -= BITS_PER_LONG;
107         }
108         if (!size)
109                 return result;
110         tmp = *p;
111 found_first:
112         tmp &= (~0UL >> (BITS_PER_LONG - size));
113         if (tmp == 0UL)         /* Are any bits set? */
114                 return result + size;   /* Nope. */
115 found_middle:
116         return result + __reverse_ffs(tmp);
117 }
118
119 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
120                         unsigned long size, unsigned long offset)
121 {
122         const unsigned long *p = addr + BIT_WORD(offset);
123         unsigned long result = offset & ~(BITS_PER_LONG - 1);
124         unsigned long tmp;
125         unsigned long mask, submask;
126         unsigned long quot, rest;
127
128         if (offset >= size)
129                 return size;
130
131         size -= result;
132         offset %= BITS_PER_LONG;
133         if (!offset)
134                 goto aligned;
135
136         tmp = *(p++);
137         quot = (offset >> 3) << 3;
138         rest = offset & 0x7;
139         mask = ~(~0UL << quot);
140         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
141         submask <<= quot;
142         mask += submask;
143         tmp |= mask;
144         if (size < BITS_PER_LONG)
145                 goto found_first;
146         if (~tmp)
147                 goto found_middle;
148
149         size -= BITS_PER_LONG;
150         result += BITS_PER_LONG;
151 aligned:
152         while (size & ~(BITS_PER_LONG - 1)) {
153                 tmp = *(p++);
154                 if (~tmp)
155                         goto found_middle;
156                 result += BITS_PER_LONG;
157                 size -= BITS_PER_LONG;
158         }
159         if (!size)
160                 return result;
161         tmp = *p;
162
163 found_first:
164         tmp |= ~0UL << size;
165         if (tmp == ~0UL)        /* Are any bits zero? */
166                 return result + size;   /* Nope. */
167 found_middle:
168         return result + __reverse_ffz(tmp);
169 }
170
171 /*
172  * This function balances dirty node and dentry pages.
173  * In addition, it controls garbage collection.
174  */
175 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
176 {
177         /*
178          * We should do GC or end up with checkpoint, if there are so many dirty
179          * dir/node pages without enough free segments.
180          */
181         if (has_not_enough_free_secs(sbi, 0)) {
182                 mutex_lock(&sbi->gc_mutex);
183                 f2fs_gc(sbi);
184         }
185 }
186
187 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
188 {
189         /* check the # of cached NAT entries and prefree segments */
190         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
191                                 excess_prefree_segs(sbi))
192                 f2fs_sync_fs(sbi->sb, true);
193 }
194
195 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
196                 enum dirty_type dirty_type)
197 {
198         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
199
200         /* need not be added */
201         if (IS_CURSEG(sbi, segno))
202                 return;
203
204         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
205                 dirty_i->nr_dirty[dirty_type]++;
206
207         if (dirty_type == DIRTY) {
208                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
209                 enum dirty_type t = sentry->type;
210
211                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
212                         dirty_i->nr_dirty[t]++;
213         }
214 }
215
216 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
217                 enum dirty_type dirty_type)
218 {
219         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
220
221         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
222                 dirty_i->nr_dirty[dirty_type]--;
223
224         if (dirty_type == DIRTY) {
225                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
226                 enum dirty_type t = sentry->type;
227
228                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
229                         dirty_i->nr_dirty[t]--;
230
231                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
232                         clear_bit(GET_SECNO(sbi, segno),
233                                                 dirty_i->victim_secmap);
234         }
235 }
236
237 /*
238  * Should not occur error such as -ENOMEM.
239  * Adding dirty entry into seglist is not critical operation.
240  * If a given segment is one of current working segments, it won't be added.
241  */
242 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
243 {
244         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
245         unsigned short valid_blocks;
246
247         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
248                 return;
249
250         mutex_lock(&dirty_i->seglist_lock);
251
252         valid_blocks = get_valid_blocks(sbi, segno, 0);
253
254         if (valid_blocks == 0) {
255                 __locate_dirty_segment(sbi, segno, PRE);
256                 __remove_dirty_segment(sbi, segno, DIRTY);
257         } else if (valid_blocks < sbi->blocks_per_seg) {
258                 __locate_dirty_segment(sbi, segno, DIRTY);
259         } else {
260                 /* Recovery routine with SSR needs this */
261                 __remove_dirty_segment(sbi, segno, DIRTY);
262         }
263
264         mutex_unlock(&dirty_i->seglist_lock);
265 }
266
267 /*
268  * Should call clear_prefree_segments after checkpoint is done.
269  */
270 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
271 {
272         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
273         unsigned int segno = -1;
274         unsigned int total_segs = TOTAL_SEGS(sbi);
275
276         mutex_lock(&dirty_i->seglist_lock);
277         while (1) {
278                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
279                                 segno + 1);
280                 if (segno >= total_segs)
281                         break;
282                 __set_test_and_free(sbi, segno);
283         }
284         mutex_unlock(&dirty_i->seglist_lock);
285 }
286
287 void clear_prefree_segments(struct f2fs_sb_info *sbi)
288 {
289         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
290         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
291         unsigned int total_segs = TOTAL_SEGS(sbi);
292         unsigned int start = 0, end = -1;
293
294         mutex_lock(&dirty_i->seglist_lock);
295
296         while (1) {
297                 int i;
298                 start = find_next_bit(prefree_map, total_segs, end + 1);
299                 if (start >= total_segs)
300                         break;
301                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
302
303                 for (i = start; i < end; i++)
304                         clear_bit(i, prefree_map);
305
306                 dirty_i->nr_dirty[PRE] -= end - start;
307
308                 if (!test_opt(sbi, DISCARD))
309                         continue;
310
311                 blkdev_issue_discard(sbi->sb->s_bdev,
312                                 START_BLOCK(sbi, start) <<
313                                 sbi->log_sectors_per_block,
314                                 (1 << (sbi->log_sectors_per_block +
315                                 sbi->log_blocks_per_seg)) * (end - start),
316                                 GFP_NOFS, 0);
317         }
318         mutex_unlock(&dirty_i->seglist_lock);
319 }
320
321 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
322 {
323         struct sit_info *sit_i = SIT_I(sbi);
324         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
325                 sit_i->dirty_sentries++;
326 }
327
328 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
329                                         unsigned int segno, int modified)
330 {
331         struct seg_entry *se = get_seg_entry(sbi, segno);
332         se->type = type;
333         if (modified)
334                 __mark_sit_entry_dirty(sbi, segno);
335 }
336
337 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
338 {
339         struct seg_entry *se;
340         unsigned int segno, offset;
341         long int new_vblocks;
342
343         segno = GET_SEGNO(sbi, blkaddr);
344
345         se = get_seg_entry(sbi, segno);
346         new_vblocks = se->valid_blocks + del;
347         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
348
349         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
350                                 (new_vblocks > sbi->blocks_per_seg)));
351
352         se->valid_blocks = new_vblocks;
353         se->mtime = get_mtime(sbi);
354         SIT_I(sbi)->max_mtime = se->mtime;
355
356         /* Update valid block bitmap */
357         if (del > 0) {
358                 if (f2fs_set_bit(offset, se->cur_valid_map))
359                         BUG();
360         } else {
361                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
362                         BUG();
363         }
364         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
365                 se->ckpt_valid_blocks += del;
366
367         __mark_sit_entry_dirty(sbi, segno);
368
369         /* update total number of valid blocks to be written in ckpt area */
370         SIT_I(sbi)->written_valid_blocks += del;
371
372         if (sbi->segs_per_sec > 1)
373                 get_sec_entry(sbi, segno)->valid_blocks += del;
374 }
375
376 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
377                         block_t old_blkaddr, block_t new_blkaddr)
378 {
379         update_sit_entry(sbi, new_blkaddr, 1);
380         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
381                 update_sit_entry(sbi, old_blkaddr, -1);
382 }
383
384 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
385 {
386         unsigned int segno = GET_SEGNO(sbi, addr);
387         struct sit_info *sit_i = SIT_I(sbi);
388
389         f2fs_bug_on(addr == NULL_ADDR);
390         if (addr == NEW_ADDR)
391                 return;
392
393         /* add it into sit main buffer */
394         mutex_lock(&sit_i->sentry_lock);
395
396         update_sit_entry(sbi, addr, -1);
397
398         /* add it into dirty seglist */
399         locate_dirty_segment(sbi, segno);
400
401         mutex_unlock(&sit_i->sentry_lock);
402 }
403
404 /*
405  * This function should be resided under the curseg_mutex lock
406  */
407 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
408                                         struct f2fs_summary *sum)
409 {
410         struct curseg_info *curseg = CURSEG_I(sbi, type);
411         void *addr = curseg->sum_blk;
412         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
413         memcpy(addr, sum, sizeof(struct f2fs_summary));
414 }
415
416 /*
417  * Calculate the number of current summary pages for writing
418  */
419 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
420 {
421         int valid_sum_count = 0;
422         int i, sum_in_page;
423
424         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
425                 if (sbi->ckpt->alloc_type[i] == SSR)
426                         valid_sum_count += sbi->blocks_per_seg;
427                 else
428                         valid_sum_count += curseg_blkoff(sbi, i);
429         }
430
431         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
432                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
433         if (valid_sum_count <= sum_in_page)
434                 return 1;
435         else if ((valid_sum_count - sum_in_page) <=
436                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
437                 return 2;
438         return 3;
439 }
440
441 /*
442  * Caller should put this summary page
443  */
444 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
445 {
446         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
447 }
448
449 static void write_sum_page(struct f2fs_sb_info *sbi,
450                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
451 {
452         struct page *page = grab_meta_page(sbi, blk_addr);
453         void *kaddr = page_address(page);
454         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
455         set_page_dirty(page);
456         f2fs_put_page(page, 1);
457 }
458
459 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
460 {
461         struct curseg_info *curseg = CURSEG_I(sbi, type);
462         unsigned int segno = curseg->segno + 1;
463         struct free_segmap_info *free_i = FREE_I(sbi);
464
465         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
466                 return !test_bit(segno, free_i->free_segmap);
467         return 0;
468 }
469
470 /*
471  * Find a new segment from the free segments bitmap to right order
472  * This function should be returned with success, otherwise BUG
473  */
474 static void get_new_segment(struct f2fs_sb_info *sbi,
475                         unsigned int *newseg, bool new_sec, int dir)
476 {
477         struct free_segmap_info *free_i = FREE_I(sbi);
478         unsigned int segno, secno, zoneno;
479         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
480         unsigned int hint = *newseg / sbi->segs_per_sec;
481         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
482         unsigned int left_start = hint;
483         bool init = true;
484         int go_left = 0;
485         int i;
486
487         write_lock(&free_i->segmap_lock);
488
489         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
490                 segno = find_next_zero_bit(free_i->free_segmap,
491                                         TOTAL_SEGS(sbi), *newseg + 1);
492                 if (segno - *newseg < sbi->segs_per_sec -
493                                         (*newseg % sbi->segs_per_sec))
494                         goto got_it;
495         }
496 find_other_zone:
497         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
498         if (secno >= TOTAL_SECS(sbi)) {
499                 if (dir == ALLOC_RIGHT) {
500                         secno = find_next_zero_bit(free_i->free_secmap,
501                                                         TOTAL_SECS(sbi), 0);
502                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
503                 } else {
504                         go_left = 1;
505                         left_start = hint - 1;
506                 }
507         }
508         if (go_left == 0)
509                 goto skip_left;
510
511         while (test_bit(left_start, free_i->free_secmap)) {
512                 if (left_start > 0) {
513                         left_start--;
514                         continue;
515                 }
516                 left_start = find_next_zero_bit(free_i->free_secmap,
517                                                         TOTAL_SECS(sbi), 0);
518                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
519                 break;
520         }
521         secno = left_start;
522 skip_left:
523         hint = secno;
524         segno = secno * sbi->segs_per_sec;
525         zoneno = secno / sbi->secs_per_zone;
526
527         /* give up on finding another zone */
528         if (!init)
529                 goto got_it;
530         if (sbi->secs_per_zone == 1)
531                 goto got_it;
532         if (zoneno == old_zoneno)
533                 goto got_it;
534         if (dir == ALLOC_LEFT) {
535                 if (!go_left && zoneno + 1 >= total_zones)
536                         goto got_it;
537                 if (go_left && zoneno == 0)
538                         goto got_it;
539         }
540         for (i = 0; i < NR_CURSEG_TYPE; i++)
541                 if (CURSEG_I(sbi, i)->zone == zoneno)
542                         break;
543
544         if (i < NR_CURSEG_TYPE) {
545                 /* zone is in user, try another */
546                 if (go_left)
547                         hint = zoneno * sbi->secs_per_zone - 1;
548                 else if (zoneno + 1 >= total_zones)
549                         hint = 0;
550                 else
551                         hint = (zoneno + 1) * sbi->secs_per_zone;
552                 init = false;
553                 goto find_other_zone;
554         }
555 got_it:
556         /* set it as dirty segment in free segmap */
557         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
558         __set_inuse(sbi, segno);
559         *newseg = segno;
560         write_unlock(&free_i->segmap_lock);
561 }
562
563 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
564 {
565         struct curseg_info *curseg = CURSEG_I(sbi, type);
566         struct summary_footer *sum_footer;
567
568         curseg->segno = curseg->next_segno;
569         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
570         curseg->next_blkoff = 0;
571         curseg->next_segno = NULL_SEGNO;
572
573         sum_footer = &(curseg->sum_blk->footer);
574         memset(sum_footer, 0, sizeof(struct summary_footer));
575         if (IS_DATASEG(type))
576                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
577         if (IS_NODESEG(type))
578                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
579         __set_sit_entry_type(sbi, type, curseg->segno, modified);
580 }
581
582 /*
583  * Allocate a current working segment.
584  * This function always allocates a free segment in LFS manner.
585  */
586 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
587 {
588         struct curseg_info *curseg = CURSEG_I(sbi, type);
589         unsigned int segno = curseg->segno;
590         int dir = ALLOC_LEFT;
591
592         write_sum_page(sbi, curseg->sum_blk,
593                                 GET_SUM_BLOCK(sbi, segno));
594         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
595                 dir = ALLOC_RIGHT;
596
597         if (test_opt(sbi, NOHEAP))
598                 dir = ALLOC_RIGHT;
599
600         get_new_segment(sbi, &segno, new_sec, dir);
601         curseg->next_segno = segno;
602         reset_curseg(sbi, type, 1);
603         curseg->alloc_type = LFS;
604 }
605
606 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
607                         struct curseg_info *seg, block_t start)
608 {
609         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
610         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
611         unsigned long target_map[entries];
612         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
613         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
614         int i, pos;
615
616         for (i = 0; i < entries; i++)
617                 target_map[i] = ckpt_map[i] | cur_map[i];
618
619         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
620
621         seg->next_blkoff = pos;
622 }
623
624 /*
625  * If a segment is written by LFS manner, next block offset is just obtained
626  * by increasing the current block offset. However, if a segment is written by
627  * SSR manner, next block offset obtained by calling __next_free_blkoff
628  */
629 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
630                                 struct curseg_info *seg)
631 {
632         if (seg->alloc_type == SSR)
633                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
634         else
635                 seg->next_blkoff++;
636 }
637
638 /*
639  * This function always allocates a used segment (from dirty seglist) by SSR
640  * manner, so it should recover the existing segment information of valid blocks
641  */
642 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
643 {
644         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
645         struct curseg_info *curseg = CURSEG_I(sbi, type);
646         unsigned int new_segno = curseg->next_segno;
647         struct f2fs_summary_block *sum_node;
648         struct page *sum_page;
649
650         write_sum_page(sbi, curseg->sum_blk,
651                                 GET_SUM_BLOCK(sbi, curseg->segno));
652         __set_test_and_inuse(sbi, new_segno);
653
654         mutex_lock(&dirty_i->seglist_lock);
655         __remove_dirty_segment(sbi, new_segno, PRE);
656         __remove_dirty_segment(sbi, new_segno, DIRTY);
657         mutex_unlock(&dirty_i->seglist_lock);
658
659         reset_curseg(sbi, type, 1);
660         curseg->alloc_type = SSR;
661         __next_free_blkoff(sbi, curseg, 0);
662
663         if (reuse) {
664                 sum_page = get_sum_page(sbi, new_segno);
665                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
666                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
667                 f2fs_put_page(sum_page, 1);
668         }
669 }
670
671 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
672 {
673         struct curseg_info *curseg = CURSEG_I(sbi, type);
674         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
675
676         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
677                 return v_ops->get_victim(sbi,
678                                 &(curseg)->next_segno, BG_GC, type, SSR);
679
680         /* For data segments, let's do SSR more intensively */
681         for (; type >= CURSEG_HOT_DATA; type--)
682                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
683                                                 BG_GC, type, SSR))
684                         return 1;
685         return 0;
686 }
687
688 /*
689  * flush out current segment and replace it with new segment
690  * This function should be returned with success, otherwise BUG
691  */
692 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
693                                                 int type, bool force)
694 {
695         struct curseg_info *curseg = CURSEG_I(sbi, type);
696
697         if (force)
698                 new_curseg(sbi, type, true);
699         else if (type == CURSEG_WARM_NODE)
700                 new_curseg(sbi, type, false);
701         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
702                 new_curseg(sbi, type, false);
703         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
704                 change_curseg(sbi, type, true);
705         else
706                 new_curseg(sbi, type, false);
707
708         stat_inc_seg_type(sbi, curseg);
709 }
710
711 void allocate_new_segments(struct f2fs_sb_info *sbi)
712 {
713         struct curseg_info *curseg;
714         unsigned int old_curseg;
715         int i;
716
717         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
718                 curseg = CURSEG_I(sbi, i);
719                 old_curseg = curseg->segno;
720                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
721                 locate_dirty_segment(sbi, old_curseg);
722         }
723 }
724
725 static const struct segment_allocation default_salloc_ops = {
726         .allocate_segment = allocate_segment_by_default,
727 };
728
729 static void f2fs_end_io_write(struct bio *bio, int err)
730 {
731         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
732         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
733         struct bio_private *p = bio->bi_private;
734
735         do {
736                 struct page *page = bvec->bv_page;
737
738                 if (--bvec >= bio->bi_io_vec)
739                         prefetchw(&bvec->bv_page->flags);
740                 if (!uptodate) {
741                         SetPageError(page);
742                         if (page->mapping)
743                                 set_bit(AS_EIO, &page->mapping->flags);
744                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
745                         p->sbi->sb->s_flags |= MS_RDONLY;
746                 }
747                 end_page_writeback(page);
748                 dec_page_count(p->sbi, F2FS_WRITEBACK);
749         } while (bvec >= bio->bi_io_vec);
750
751         if (p->is_sync)
752                 complete(p->wait);
753
754         if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
755                         !list_empty(&p->sbi->cp_wait.task_list))
756                 wake_up(&p->sbi->cp_wait);
757
758         kfree(p);
759         bio_put(bio);
760 }
761
762 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
763 {
764         struct bio *bio;
765
766         /* No failure on bio allocation */
767         bio = bio_alloc(GFP_NOIO, npages);
768         bio->bi_bdev = bdev;
769         bio->bi_private = NULL;
770
771         return bio;
772 }
773
774 static void do_submit_bio(struct f2fs_sb_info *sbi,
775                                 enum page_type type, bool sync)
776 {
777         int rw = sync ? WRITE_SYNC : WRITE;
778         enum page_type btype = type > META ? META : type;
779
780         if (type >= META_FLUSH)
781                 rw = WRITE_FLUSH_FUA;
782
783         if (btype == META)
784                 rw |= REQ_META;
785
786         if (sbi->bio[btype]) {
787                 struct bio_private *p = sbi->bio[btype]->bi_private;
788                 p->sbi = sbi;
789                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
790
791                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
792
793                 if (type == META_FLUSH) {
794                         DECLARE_COMPLETION_ONSTACK(wait);
795                         p->is_sync = true;
796                         p->wait = &wait;
797                         submit_bio(rw, sbi->bio[btype]);
798                         wait_for_completion(&wait);
799                 } else {
800                         p->is_sync = false;
801                         submit_bio(rw, sbi->bio[btype]);
802                 }
803                 sbi->bio[btype] = NULL;
804         }
805 }
806
807 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
808 {
809         down_write(&sbi->bio_sem);
810         do_submit_bio(sbi, type, sync);
811         up_write(&sbi->bio_sem);
812 }
813
814 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
815                                 block_t blk_addr, enum page_type type)
816 {
817         struct block_device *bdev = sbi->sb->s_bdev;
818         int bio_blocks;
819
820         verify_block_addr(sbi, blk_addr);
821
822         down_write(&sbi->bio_sem);
823
824         inc_page_count(sbi, F2FS_WRITEBACK);
825
826         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
827                 do_submit_bio(sbi, type, false);
828 alloc_new:
829         if (sbi->bio[type] == NULL) {
830                 struct bio_private *priv;
831 retry:
832                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
833                 if (!priv) {
834                         cond_resched();
835                         goto retry;
836                 }
837
838                 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
839                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
840                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
841                 sbi->bio[type]->bi_private = priv;
842                 /*
843                  * The end_io will be assigned at the sumbission phase.
844                  * Until then, let bio_add_page() merge consecutive IOs as much
845                  * as possible.
846                  */
847         }
848
849         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
850                                                         PAGE_CACHE_SIZE) {
851                 do_submit_bio(sbi, type, false);
852                 goto alloc_new;
853         }
854
855         sbi->last_block_in_bio[type] = blk_addr;
856
857         up_write(&sbi->bio_sem);
858         trace_f2fs_submit_write_page(page, blk_addr, type);
859 }
860
861 void f2fs_wait_on_page_writeback(struct page *page,
862                                 enum page_type type, bool sync)
863 {
864         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
865         if (PageWriteback(page)) {
866                 f2fs_submit_bio(sbi, type, sync);
867                 wait_on_page_writeback(page);
868         }
869 }
870
871 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
872 {
873         struct curseg_info *curseg = CURSEG_I(sbi, type);
874         if (curseg->next_blkoff < sbi->blocks_per_seg)
875                 return true;
876         return false;
877 }
878
879 static int __get_segment_type_2(struct page *page, enum page_type p_type)
880 {
881         if (p_type == DATA)
882                 return CURSEG_HOT_DATA;
883         else
884                 return CURSEG_HOT_NODE;
885 }
886
887 static int __get_segment_type_4(struct page *page, enum page_type p_type)
888 {
889         if (p_type == DATA) {
890                 struct inode *inode = page->mapping->host;
891
892                 if (S_ISDIR(inode->i_mode))
893                         return CURSEG_HOT_DATA;
894                 else
895                         return CURSEG_COLD_DATA;
896         } else {
897                 if (IS_DNODE(page) && !is_cold_node(page))
898                         return CURSEG_HOT_NODE;
899                 else
900                         return CURSEG_COLD_NODE;
901         }
902 }
903
904 static int __get_segment_type_6(struct page *page, enum page_type p_type)
905 {
906         if (p_type == DATA) {
907                 struct inode *inode = page->mapping->host;
908
909                 if (S_ISDIR(inode->i_mode))
910                         return CURSEG_HOT_DATA;
911                 else if (is_cold_data(page) || file_is_cold(inode))
912                         return CURSEG_COLD_DATA;
913                 else
914                         return CURSEG_WARM_DATA;
915         } else {
916                 if (IS_DNODE(page))
917                         return is_cold_node(page) ? CURSEG_WARM_NODE :
918                                                 CURSEG_HOT_NODE;
919                 else
920                         return CURSEG_COLD_NODE;
921         }
922 }
923
924 static int __get_segment_type(struct page *page, enum page_type p_type)
925 {
926         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
927         switch (sbi->active_logs) {
928         case 2:
929                 return __get_segment_type_2(page, p_type);
930         case 4:
931                 return __get_segment_type_4(page, p_type);
932         }
933         /* NR_CURSEG_TYPE(6) logs by default */
934         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
935         return __get_segment_type_6(page, p_type);
936 }
937
938 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
939                         block_t old_blkaddr, block_t *new_blkaddr,
940                         struct f2fs_summary *sum, enum page_type p_type)
941 {
942         struct sit_info *sit_i = SIT_I(sbi);
943         struct curseg_info *curseg;
944         unsigned int old_cursegno;
945         int type;
946
947         type = __get_segment_type(page, p_type);
948         curseg = CURSEG_I(sbi, type);
949
950         mutex_lock(&curseg->curseg_mutex);
951
952         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
953         old_cursegno = curseg->segno;
954
955         /*
956          * __add_sum_entry should be resided under the curseg_mutex
957          * because, this function updates a summary entry in the
958          * current summary block.
959          */
960         __add_sum_entry(sbi, type, sum);
961
962         mutex_lock(&sit_i->sentry_lock);
963         __refresh_next_blkoff(sbi, curseg);
964
965         stat_inc_block_count(sbi, curseg);
966
967         /*
968          * SIT information should be updated before segment allocation,
969          * since SSR needs latest valid block information.
970          */
971         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
972
973         if (!__has_curseg_space(sbi, type))
974                 sit_i->s_ops->allocate_segment(sbi, type, false);
975
976         locate_dirty_segment(sbi, old_cursegno);
977         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
978         mutex_unlock(&sit_i->sentry_lock);
979
980         if (p_type == NODE)
981                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
982
983         /* writeout dirty page into bdev */
984         submit_write_page(sbi, page, *new_blkaddr, p_type);
985
986         mutex_unlock(&curseg->curseg_mutex);
987 }
988
989 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
990 {
991         set_page_writeback(page);
992         submit_write_page(sbi, page, page->index, META);
993 }
994
995 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
996                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
997 {
998         struct f2fs_summary sum;
999         set_summary(&sum, nid, 0, 0);
1000         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
1001 }
1002
1003 void write_data_page(struct inode *inode, struct page *page,
1004                 struct dnode_of_data *dn, block_t old_blkaddr,
1005                 block_t *new_blkaddr)
1006 {
1007         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1008         struct f2fs_summary sum;
1009         struct node_info ni;
1010
1011         f2fs_bug_on(old_blkaddr == NULL_ADDR);
1012         get_node_info(sbi, dn->nid, &ni);
1013         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1014
1015         do_write_page(sbi, page, old_blkaddr,
1016                         new_blkaddr, &sum, DATA);
1017 }
1018
1019 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
1020                                         block_t old_blk_addr)
1021 {
1022         submit_write_page(sbi, page, old_blk_addr, DATA);
1023 }
1024
1025 void recover_data_page(struct f2fs_sb_info *sbi,
1026                         struct page *page, struct f2fs_summary *sum,
1027                         block_t old_blkaddr, block_t new_blkaddr)
1028 {
1029         struct sit_info *sit_i = SIT_I(sbi);
1030         struct curseg_info *curseg;
1031         unsigned int segno, old_cursegno;
1032         struct seg_entry *se;
1033         int type;
1034
1035         segno = GET_SEGNO(sbi, new_blkaddr);
1036         se = get_seg_entry(sbi, segno);
1037         type = se->type;
1038
1039         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1040                 if (old_blkaddr == NULL_ADDR)
1041                         type = CURSEG_COLD_DATA;
1042                 else
1043                         type = CURSEG_WARM_DATA;
1044         }
1045         curseg = CURSEG_I(sbi, type);
1046
1047         mutex_lock(&curseg->curseg_mutex);
1048         mutex_lock(&sit_i->sentry_lock);
1049
1050         old_cursegno = curseg->segno;
1051
1052         /* change the current segment */
1053         if (segno != curseg->segno) {
1054                 curseg->next_segno = segno;
1055                 change_curseg(sbi, type, true);
1056         }
1057
1058         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1059                                         (sbi->blocks_per_seg - 1);
1060         __add_sum_entry(sbi, type, sum);
1061
1062         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1063
1064         locate_dirty_segment(sbi, old_cursegno);
1065         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1066
1067         mutex_unlock(&sit_i->sentry_lock);
1068         mutex_unlock(&curseg->curseg_mutex);
1069 }
1070
1071 void rewrite_node_page(struct f2fs_sb_info *sbi,
1072                         struct page *page, struct f2fs_summary *sum,
1073                         block_t old_blkaddr, block_t new_blkaddr)
1074 {
1075         struct sit_info *sit_i = SIT_I(sbi);
1076         int type = CURSEG_WARM_NODE;
1077         struct curseg_info *curseg;
1078         unsigned int segno, old_cursegno;
1079         block_t next_blkaddr = next_blkaddr_of_node(page);
1080         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1081
1082         curseg = CURSEG_I(sbi, type);
1083
1084         mutex_lock(&curseg->curseg_mutex);
1085         mutex_lock(&sit_i->sentry_lock);
1086
1087         segno = GET_SEGNO(sbi, new_blkaddr);
1088         old_cursegno = curseg->segno;
1089
1090         /* change the current segment */
1091         if (segno != curseg->segno) {
1092                 curseg->next_segno = segno;
1093                 change_curseg(sbi, type, true);
1094         }
1095         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1096                                         (sbi->blocks_per_seg - 1);
1097         __add_sum_entry(sbi, type, sum);
1098
1099         /* change the current log to the next block addr in advance */
1100         if (next_segno != segno) {
1101                 curseg->next_segno = next_segno;
1102                 change_curseg(sbi, type, true);
1103         }
1104         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1105                                         (sbi->blocks_per_seg - 1);
1106
1107         /* rewrite node page */
1108         set_page_writeback(page);
1109         submit_write_page(sbi, page, new_blkaddr, NODE);
1110         f2fs_submit_bio(sbi, NODE, true);
1111         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1112
1113         locate_dirty_segment(sbi, old_cursegno);
1114         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1115
1116         mutex_unlock(&sit_i->sentry_lock);
1117         mutex_unlock(&curseg->curseg_mutex);
1118 }
1119
1120 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1121 {
1122         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1123         struct curseg_info *seg_i;
1124         unsigned char *kaddr;
1125         struct page *page;
1126         block_t start;
1127         int i, j, offset;
1128
1129         start = start_sum_block(sbi);
1130
1131         page = get_meta_page(sbi, start++);
1132         kaddr = (unsigned char *)page_address(page);
1133
1134         /* Step 1: restore nat cache */
1135         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1136         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1137
1138         /* Step 2: restore sit cache */
1139         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1140         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1141                                                 SUM_JOURNAL_SIZE);
1142         offset = 2 * SUM_JOURNAL_SIZE;
1143
1144         /* Step 3: restore summary entries */
1145         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1146                 unsigned short blk_off;
1147                 unsigned int segno;
1148
1149                 seg_i = CURSEG_I(sbi, i);
1150                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1151                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1152                 seg_i->next_segno = segno;
1153                 reset_curseg(sbi, i, 0);
1154                 seg_i->alloc_type = ckpt->alloc_type[i];
1155                 seg_i->next_blkoff = blk_off;
1156
1157                 if (seg_i->alloc_type == SSR)
1158                         blk_off = sbi->blocks_per_seg;
1159
1160                 for (j = 0; j < blk_off; j++) {
1161                         struct f2fs_summary *s;
1162                         s = (struct f2fs_summary *)(kaddr + offset);
1163                         seg_i->sum_blk->entries[j] = *s;
1164                         offset += SUMMARY_SIZE;
1165                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1166                                                 SUM_FOOTER_SIZE)
1167                                 continue;
1168
1169                         f2fs_put_page(page, 1);
1170                         page = NULL;
1171
1172                         page = get_meta_page(sbi, start++);
1173                         kaddr = (unsigned char *)page_address(page);
1174                         offset = 0;
1175                 }
1176         }
1177         f2fs_put_page(page, 1);
1178         return 0;
1179 }
1180
1181 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1182 {
1183         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1184         struct f2fs_summary_block *sum;
1185         struct curseg_info *curseg;
1186         struct page *new;
1187         unsigned short blk_off;
1188         unsigned int segno = 0;
1189         block_t blk_addr = 0;
1190
1191         /* get segment number and block addr */
1192         if (IS_DATASEG(type)) {
1193                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1194                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1195                                                         CURSEG_HOT_DATA]);
1196                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1197                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1198                 else
1199                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1200         } else {
1201                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1202                                                         CURSEG_HOT_NODE]);
1203                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1204                                                         CURSEG_HOT_NODE]);
1205                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1206                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1207                                                         type - CURSEG_HOT_NODE);
1208                 else
1209                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1210         }
1211
1212         new = get_meta_page(sbi, blk_addr);
1213         sum = (struct f2fs_summary_block *)page_address(new);
1214
1215         if (IS_NODESEG(type)) {
1216                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1217                         struct f2fs_summary *ns = &sum->entries[0];
1218                         int i;
1219                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1220                                 ns->version = 0;
1221                                 ns->ofs_in_node = 0;
1222                         }
1223                 } else {
1224                         if (restore_node_summary(sbi, segno, sum)) {
1225                                 f2fs_put_page(new, 1);
1226                                 return -EINVAL;
1227                         }
1228                 }
1229         }
1230
1231         /* set uncompleted segment to curseg */
1232         curseg = CURSEG_I(sbi, type);
1233         mutex_lock(&curseg->curseg_mutex);
1234         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1235         curseg->next_segno = segno;
1236         reset_curseg(sbi, type, 0);
1237         curseg->alloc_type = ckpt->alloc_type[type];
1238         curseg->next_blkoff = blk_off;
1239         mutex_unlock(&curseg->curseg_mutex);
1240         f2fs_put_page(new, 1);
1241         return 0;
1242 }
1243
1244 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1245 {
1246         int type = CURSEG_HOT_DATA;
1247
1248         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1249                 /* restore for compacted data summary */
1250                 if (read_compacted_summaries(sbi))
1251                         return -EINVAL;
1252                 type = CURSEG_HOT_NODE;
1253         }
1254
1255         for (; type <= CURSEG_COLD_NODE; type++)
1256                 if (read_normal_summaries(sbi, type))
1257                         return -EINVAL;
1258         return 0;
1259 }
1260
1261 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1262 {
1263         struct page *page;
1264         unsigned char *kaddr;
1265         struct f2fs_summary *summary;
1266         struct curseg_info *seg_i;
1267         int written_size = 0;
1268         int i, j;
1269
1270         page = grab_meta_page(sbi, blkaddr++);
1271         kaddr = (unsigned char *)page_address(page);
1272
1273         /* Step 1: write nat cache */
1274         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1275         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1276         written_size += SUM_JOURNAL_SIZE;
1277
1278         /* Step 2: write sit cache */
1279         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1280         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1281                                                 SUM_JOURNAL_SIZE);
1282         written_size += SUM_JOURNAL_SIZE;
1283
1284         /* Step 3: write summary entries */
1285         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1286                 unsigned short blkoff;
1287                 seg_i = CURSEG_I(sbi, i);
1288                 if (sbi->ckpt->alloc_type[i] == SSR)
1289                         blkoff = sbi->blocks_per_seg;
1290                 else
1291                         blkoff = curseg_blkoff(sbi, i);
1292
1293                 for (j = 0; j < blkoff; j++) {
1294                         if (!page) {
1295                                 page = grab_meta_page(sbi, blkaddr++);
1296                                 kaddr = (unsigned char *)page_address(page);
1297                                 written_size = 0;
1298                         }
1299                         summary = (struct f2fs_summary *)(kaddr + written_size);
1300                         *summary = seg_i->sum_blk->entries[j];
1301                         written_size += SUMMARY_SIZE;
1302
1303                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1304                                                         SUM_FOOTER_SIZE)
1305                                 continue;
1306
1307                         set_page_dirty(page);
1308                         f2fs_put_page(page, 1);
1309                         page = NULL;
1310                 }
1311         }
1312         if (page) {
1313                 set_page_dirty(page);
1314                 f2fs_put_page(page, 1);
1315         }
1316 }
1317
1318 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1319                                         block_t blkaddr, int type)
1320 {
1321         int i, end;
1322         if (IS_DATASEG(type))
1323                 end = type + NR_CURSEG_DATA_TYPE;
1324         else
1325                 end = type + NR_CURSEG_NODE_TYPE;
1326
1327         for (i = type; i < end; i++) {
1328                 struct curseg_info *sum = CURSEG_I(sbi, i);
1329                 mutex_lock(&sum->curseg_mutex);
1330                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1331                 mutex_unlock(&sum->curseg_mutex);
1332         }
1333 }
1334
1335 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1336 {
1337         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1338                 write_compacted_summaries(sbi, start_blk);
1339         else
1340                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1341 }
1342
1343 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1344 {
1345         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1346                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1347 }
1348
1349 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1350                                         unsigned int val, int alloc)
1351 {
1352         int i;
1353
1354         if (type == NAT_JOURNAL) {
1355                 for (i = 0; i < nats_in_cursum(sum); i++) {
1356                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1357                                 return i;
1358                 }
1359                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1360                         return update_nats_in_cursum(sum, 1);
1361         } else if (type == SIT_JOURNAL) {
1362                 for (i = 0; i < sits_in_cursum(sum); i++)
1363                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1364                                 return i;
1365                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1366                         return update_sits_in_cursum(sum, 1);
1367         }
1368         return -1;
1369 }
1370
1371 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1372                                         unsigned int segno)
1373 {
1374         struct sit_info *sit_i = SIT_I(sbi);
1375         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1376         block_t blk_addr = sit_i->sit_base_addr + offset;
1377
1378         check_seg_range(sbi, segno);
1379
1380         /* calculate sit block address */
1381         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1382                 blk_addr += sit_i->sit_blocks;
1383
1384         return get_meta_page(sbi, blk_addr);
1385 }
1386
1387 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1388                                         unsigned int start)
1389 {
1390         struct sit_info *sit_i = SIT_I(sbi);
1391         struct page *src_page, *dst_page;
1392         pgoff_t src_off, dst_off;
1393         void *src_addr, *dst_addr;
1394
1395         src_off = current_sit_addr(sbi, start);
1396         dst_off = next_sit_addr(sbi, src_off);
1397
1398         /* get current sit block page without lock */
1399         src_page = get_meta_page(sbi, src_off);
1400         dst_page = grab_meta_page(sbi, dst_off);
1401         f2fs_bug_on(PageDirty(src_page));
1402
1403         src_addr = page_address(src_page);
1404         dst_addr = page_address(dst_page);
1405         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1406
1407         set_page_dirty(dst_page);
1408         f2fs_put_page(src_page, 1);
1409
1410         set_to_next_sit(sit_i, start);
1411
1412         return dst_page;
1413 }
1414
1415 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1416 {
1417         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1418         struct f2fs_summary_block *sum = curseg->sum_blk;
1419         int i;
1420
1421         /*
1422          * If the journal area in the current summary is full of sit entries,
1423          * all the sit entries will be flushed. Otherwise the sit entries
1424          * are not able to replace with newly hot sit entries.
1425          */
1426         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1427                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1428                         unsigned int segno;
1429                         segno = le32_to_cpu(segno_in_journal(sum, i));
1430                         __mark_sit_entry_dirty(sbi, segno);
1431                 }
1432                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1433                 return true;
1434         }
1435         return false;
1436 }
1437
1438 /*
1439  * CP calls this function, which flushes SIT entries including sit_journal,
1440  * and moves prefree segs to free segs.
1441  */
1442 void flush_sit_entries(struct f2fs_sb_info *sbi)
1443 {
1444         struct sit_info *sit_i = SIT_I(sbi);
1445         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1446         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1447         struct f2fs_summary_block *sum = curseg->sum_blk;
1448         unsigned long nsegs = TOTAL_SEGS(sbi);
1449         struct page *page = NULL;
1450         struct f2fs_sit_block *raw_sit = NULL;
1451         unsigned int start = 0, end = 0;
1452         unsigned int segno = -1;
1453         bool flushed;
1454
1455         mutex_lock(&curseg->curseg_mutex);
1456         mutex_lock(&sit_i->sentry_lock);
1457
1458         /*
1459          * "flushed" indicates whether sit entries in journal are flushed
1460          * to the SIT area or not.
1461          */
1462         flushed = flush_sits_in_journal(sbi);
1463
1464         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1465                 struct seg_entry *se = get_seg_entry(sbi, segno);
1466                 int sit_offset, offset;
1467
1468                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1469
1470                 if (flushed)
1471                         goto to_sit_page;
1472
1473                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1474                 if (offset >= 0) {
1475                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1476                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1477                         goto flush_done;
1478                 }
1479 to_sit_page:
1480                 if (!page || (start > segno) || (segno > end)) {
1481                         if (page) {
1482                                 f2fs_put_page(page, 1);
1483                                 page = NULL;
1484                         }
1485
1486                         start = START_SEGNO(sit_i, segno);
1487                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1488
1489                         /* read sit block that will be updated */
1490                         page = get_next_sit_page(sbi, start);
1491                         raw_sit = page_address(page);
1492                 }
1493
1494                 /* udpate entry in SIT block */
1495                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1496 flush_done:
1497                 __clear_bit(segno, bitmap);
1498                 sit_i->dirty_sentries--;
1499         }
1500         mutex_unlock(&sit_i->sentry_lock);
1501         mutex_unlock(&curseg->curseg_mutex);
1502
1503         /* writeout last modified SIT block */
1504         f2fs_put_page(page, 1);
1505
1506         set_prefree_as_free_segments(sbi);
1507 }
1508
1509 static int build_sit_info(struct f2fs_sb_info *sbi)
1510 {
1511         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1512         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1513         struct sit_info *sit_i;
1514         unsigned int sit_segs, start;
1515         char *src_bitmap, *dst_bitmap;
1516         unsigned int bitmap_size;
1517
1518         /* allocate memory for SIT information */
1519         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1520         if (!sit_i)
1521                 return -ENOMEM;
1522
1523         SM_I(sbi)->sit_info = sit_i;
1524
1525         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1526         if (!sit_i->sentries)
1527                 return -ENOMEM;
1528
1529         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1530         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1531         if (!sit_i->dirty_sentries_bitmap)
1532                 return -ENOMEM;
1533
1534         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1535                 sit_i->sentries[start].cur_valid_map
1536                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1537                 sit_i->sentries[start].ckpt_valid_map
1538                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1539                 if (!sit_i->sentries[start].cur_valid_map
1540                                 || !sit_i->sentries[start].ckpt_valid_map)
1541                         return -ENOMEM;
1542         }
1543
1544         if (sbi->segs_per_sec > 1) {
1545                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1546                                         sizeof(struct sec_entry));
1547                 if (!sit_i->sec_entries)
1548                         return -ENOMEM;
1549         }
1550
1551         /* get information related with SIT */
1552         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1553
1554         /* setup SIT bitmap from ckeckpoint pack */
1555         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1556         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1557
1558         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1559         if (!dst_bitmap)
1560                 return -ENOMEM;
1561
1562         /* init SIT information */
1563         sit_i->s_ops = &default_salloc_ops;
1564
1565         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1566         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1567         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1568         sit_i->sit_bitmap = dst_bitmap;
1569         sit_i->bitmap_size = bitmap_size;
1570         sit_i->dirty_sentries = 0;
1571         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1572         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1573         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1574         mutex_init(&sit_i->sentry_lock);
1575         return 0;
1576 }
1577
1578 static int build_free_segmap(struct f2fs_sb_info *sbi)
1579 {
1580         struct f2fs_sm_info *sm_info = SM_I(sbi);
1581         struct free_segmap_info *free_i;
1582         unsigned int bitmap_size, sec_bitmap_size;
1583
1584         /* allocate memory for free segmap information */
1585         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1586         if (!free_i)
1587                 return -ENOMEM;
1588
1589         SM_I(sbi)->free_info = free_i;
1590
1591         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1592         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1593         if (!free_i->free_segmap)
1594                 return -ENOMEM;
1595
1596         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1597         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1598         if (!free_i->free_secmap)
1599                 return -ENOMEM;
1600
1601         /* set all segments as dirty temporarily */
1602         memset(free_i->free_segmap, 0xff, bitmap_size);
1603         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1604
1605         /* init free segmap information */
1606         free_i->start_segno =
1607                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1608         free_i->free_segments = 0;
1609         free_i->free_sections = 0;
1610         rwlock_init(&free_i->segmap_lock);
1611         return 0;
1612 }
1613
1614 static int build_curseg(struct f2fs_sb_info *sbi)
1615 {
1616         struct curseg_info *array;
1617         int i;
1618
1619         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1620         if (!array)
1621                 return -ENOMEM;
1622
1623         SM_I(sbi)->curseg_array = array;
1624
1625         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1626                 mutex_init(&array[i].curseg_mutex);
1627                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1628                 if (!array[i].sum_blk)
1629                         return -ENOMEM;
1630                 array[i].segno = NULL_SEGNO;
1631                 array[i].next_blkoff = 0;
1632         }
1633         return restore_curseg_summaries(sbi);
1634 }
1635
1636 static void build_sit_entries(struct f2fs_sb_info *sbi)
1637 {
1638         struct sit_info *sit_i = SIT_I(sbi);
1639         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1640         struct f2fs_summary_block *sum = curseg->sum_blk;
1641         unsigned int start;
1642
1643         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1644                 struct seg_entry *se = &sit_i->sentries[start];
1645                 struct f2fs_sit_block *sit_blk;
1646                 struct f2fs_sit_entry sit;
1647                 struct page *page;
1648                 int i;
1649
1650                 mutex_lock(&curseg->curseg_mutex);
1651                 for (i = 0; i < sits_in_cursum(sum); i++) {
1652                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1653                                 sit = sit_in_journal(sum, i);
1654                                 mutex_unlock(&curseg->curseg_mutex);
1655                                 goto got_it;
1656                         }
1657                 }
1658                 mutex_unlock(&curseg->curseg_mutex);
1659                 page = get_current_sit_page(sbi, start);
1660                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1661                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1662                 f2fs_put_page(page, 1);
1663 got_it:
1664                 check_block_count(sbi, start, &sit);
1665                 seg_info_from_raw_sit(se, &sit);
1666                 if (sbi->segs_per_sec > 1) {
1667                         struct sec_entry *e = get_sec_entry(sbi, start);
1668                         e->valid_blocks += se->valid_blocks;
1669                 }
1670         }
1671 }
1672
1673 static void init_free_segmap(struct f2fs_sb_info *sbi)
1674 {
1675         unsigned int start;
1676         int type;
1677
1678         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1679                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1680                 if (!sentry->valid_blocks)
1681                         __set_free(sbi, start);
1682         }
1683
1684         /* set use the current segments */
1685         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1686                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1687                 __set_test_and_inuse(sbi, curseg_t->segno);
1688         }
1689 }
1690
1691 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1692 {
1693         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1694         struct free_segmap_info *free_i = FREE_I(sbi);
1695         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1696         unsigned short valid_blocks;
1697
1698         while (1) {
1699                 /* find dirty segment based on free segmap */
1700                 segno = find_next_inuse(free_i, total_segs, offset);
1701                 if (segno >= total_segs)
1702                         break;
1703                 offset = segno + 1;
1704                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1705                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1706                         continue;
1707                 mutex_lock(&dirty_i->seglist_lock);
1708                 __locate_dirty_segment(sbi, segno, DIRTY);
1709                 mutex_unlock(&dirty_i->seglist_lock);
1710         }
1711 }
1712
1713 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1714 {
1715         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1716         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1717
1718         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1719         if (!dirty_i->victim_secmap)
1720                 return -ENOMEM;
1721         return 0;
1722 }
1723
1724 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1725 {
1726         struct dirty_seglist_info *dirty_i;
1727         unsigned int bitmap_size, i;
1728
1729         /* allocate memory for dirty segments list information */
1730         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1731         if (!dirty_i)
1732                 return -ENOMEM;
1733
1734         SM_I(sbi)->dirty_info = dirty_i;
1735         mutex_init(&dirty_i->seglist_lock);
1736
1737         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1738
1739         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1740                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1741                 if (!dirty_i->dirty_segmap[i])
1742                         return -ENOMEM;
1743         }
1744
1745         init_dirty_segmap(sbi);
1746         return init_victim_secmap(sbi);
1747 }
1748
1749 /*
1750  * Update min, max modified time for cost-benefit GC algorithm
1751  */
1752 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1753 {
1754         struct sit_info *sit_i = SIT_I(sbi);
1755         unsigned int segno;
1756
1757         mutex_lock(&sit_i->sentry_lock);
1758
1759         sit_i->min_mtime = LLONG_MAX;
1760
1761         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1762                 unsigned int i;
1763                 unsigned long long mtime = 0;
1764
1765                 for (i = 0; i < sbi->segs_per_sec; i++)
1766                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1767
1768                 mtime = div_u64(mtime, sbi->segs_per_sec);
1769
1770                 if (sit_i->min_mtime > mtime)
1771                         sit_i->min_mtime = mtime;
1772         }
1773         sit_i->max_mtime = get_mtime(sbi);
1774         mutex_unlock(&sit_i->sentry_lock);
1775 }
1776
1777 int build_segment_manager(struct f2fs_sb_info *sbi)
1778 {
1779         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1780         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1781         struct f2fs_sm_info *sm_info;
1782         int err;
1783
1784         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1785         if (!sm_info)
1786                 return -ENOMEM;
1787
1788         /* init sm info */
1789         sbi->sm_info = sm_info;
1790         INIT_LIST_HEAD(&sm_info->wblist_head);
1791         spin_lock_init(&sm_info->wblist_lock);
1792         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1793         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1794         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1795         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1796         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1797         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1798         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1799         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1800
1801         err = build_sit_info(sbi);
1802         if (err)
1803                 return err;
1804         err = build_free_segmap(sbi);
1805         if (err)
1806                 return err;
1807         err = build_curseg(sbi);
1808         if (err)
1809                 return err;
1810
1811         /* reinit free segmap based on SIT */
1812         build_sit_entries(sbi);
1813
1814         init_free_segmap(sbi);
1815         err = build_dirty_segmap(sbi);
1816         if (err)
1817                 return err;
1818
1819         init_min_max_mtime(sbi);
1820         return 0;
1821 }
1822
1823 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1824                 enum dirty_type dirty_type)
1825 {
1826         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1827
1828         mutex_lock(&dirty_i->seglist_lock);
1829         kfree(dirty_i->dirty_segmap[dirty_type]);
1830         dirty_i->nr_dirty[dirty_type] = 0;
1831         mutex_unlock(&dirty_i->seglist_lock);
1832 }
1833
1834 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1835 {
1836         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1837         kfree(dirty_i->victim_secmap);
1838 }
1839
1840 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1841 {
1842         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1843         int i;
1844
1845         if (!dirty_i)
1846                 return;
1847
1848         /* discard pre-free/dirty segments list */
1849         for (i = 0; i < NR_DIRTY_TYPE; i++)
1850                 discard_dirty_segmap(sbi, i);
1851
1852         destroy_victim_secmap(sbi);
1853         SM_I(sbi)->dirty_info = NULL;
1854         kfree(dirty_i);
1855 }
1856
1857 static void destroy_curseg(struct f2fs_sb_info *sbi)
1858 {
1859         struct curseg_info *array = SM_I(sbi)->curseg_array;
1860         int i;
1861
1862         if (!array)
1863                 return;
1864         SM_I(sbi)->curseg_array = NULL;
1865         for (i = 0; i < NR_CURSEG_TYPE; i++)
1866                 kfree(array[i].sum_blk);
1867         kfree(array);
1868 }
1869
1870 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1871 {
1872         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1873         if (!free_i)
1874                 return;
1875         SM_I(sbi)->free_info = NULL;
1876         kfree(free_i->free_segmap);
1877         kfree(free_i->free_secmap);
1878         kfree(free_i);
1879 }
1880
1881 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1882 {
1883         struct sit_info *sit_i = SIT_I(sbi);
1884         unsigned int start;
1885
1886         if (!sit_i)
1887                 return;
1888
1889         if (sit_i->sentries) {
1890                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1891                         kfree(sit_i->sentries[start].cur_valid_map);
1892                         kfree(sit_i->sentries[start].ckpt_valid_map);
1893                 }
1894         }
1895         vfree(sit_i->sentries);
1896         vfree(sit_i->sec_entries);
1897         kfree(sit_i->dirty_sentries_bitmap);
1898
1899         SM_I(sbi)->sit_info = NULL;
1900         kfree(sit_i->sit_bitmap);
1901         kfree(sit_i);
1902 }
1903
1904 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1905 {
1906         struct f2fs_sm_info *sm_info = SM_I(sbi);
1907         if (!sm_info)
1908                 return;
1909         destroy_dirty_segmap(sbi);
1910         destroy_curseg(sbi);
1911         destroy_free_segmap(sbi);
1912         destroy_sit_info(sbi);
1913         sbi->sm_info = NULL;
1914         kfree(sm_info);
1915 }