]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/segment.c
f2fs: improve write performance under frequent fsync calls
[linux-beck.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include <trace/events/f2fs.h>
23
24 #define __reverse_ffz(x) __reverse_ffs(~(x))
25
26 static struct kmem_cache *discard_entry_slab;
27
28 /*
29  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30  * MSB and LSB are reversed in a byte by f2fs_set_bit.
31  */
32 static inline unsigned long __reverse_ffs(unsigned long word)
33 {
34         int num = 0;
35
36 #if BITS_PER_LONG == 64
37         if ((word & 0xffffffff) == 0) {
38                 num += 32;
39                 word >>= 32;
40         }
41 #endif
42         if ((word & 0xffff) == 0) {
43                 num += 16;
44                 word >>= 16;
45         }
46         if ((word & 0xff) == 0) {
47                 num += 8;
48                 word >>= 8;
49         }
50         if ((word & 0xf0) == 0)
51                 num += 4;
52         else
53                 word >>= 4;
54         if ((word & 0xc) == 0)
55                 num += 2;
56         else
57                 word >>= 2;
58         if ((word & 0x2) == 0)
59                 num += 1;
60         return num;
61 }
62
63 /*
64  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65  * f2fs_set_bit makes MSB and LSB reversed in a byte.
66  * Example:
67  *                             LSB <--> MSB
68  *   f2fs_set_bit(0, bitmap) => 0000 0001
69  *   f2fs_set_bit(7, bitmap) => 1000 0000
70  */
71 static unsigned long __find_rev_next_bit(const unsigned long *addr,
72                         unsigned long size, unsigned long offset)
73 {
74         const unsigned long *p = addr + BIT_WORD(offset);
75         unsigned long result = offset & ~(BITS_PER_LONG - 1);
76         unsigned long tmp;
77         unsigned long mask, submask;
78         unsigned long quot, rest;
79
80         if (offset >= size)
81                 return size;
82
83         size -= result;
84         offset %= BITS_PER_LONG;
85         if (!offset)
86                 goto aligned;
87
88         tmp = *(p++);
89         quot = (offset >> 3) << 3;
90         rest = offset & 0x7;
91         mask = ~0UL << quot;
92         submask = (unsigned char)(0xff << rest) >> rest;
93         submask <<= quot;
94         mask &= submask;
95         tmp &= mask;
96         if (size < BITS_PER_LONG)
97                 goto found_first;
98         if (tmp)
99                 goto found_middle;
100
101         size -= BITS_PER_LONG;
102         result += BITS_PER_LONG;
103 aligned:
104         while (size & ~(BITS_PER_LONG-1)) {
105                 tmp = *(p++);
106                 if (tmp)
107                         goto found_middle;
108                 result += BITS_PER_LONG;
109                 size -= BITS_PER_LONG;
110         }
111         if (!size)
112                 return result;
113         tmp = *p;
114 found_first:
115         tmp &= (~0UL >> (BITS_PER_LONG - size));
116         if (tmp == 0UL)         /* Are any bits set? */
117                 return result + size;   /* Nope. */
118 found_middle:
119         return result + __reverse_ffs(tmp);
120 }
121
122 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123                         unsigned long size, unsigned long offset)
124 {
125         const unsigned long *p = addr + BIT_WORD(offset);
126         unsigned long result = offset & ~(BITS_PER_LONG - 1);
127         unsigned long tmp;
128         unsigned long mask, submask;
129         unsigned long quot, rest;
130
131         if (offset >= size)
132                 return size;
133
134         size -= result;
135         offset %= BITS_PER_LONG;
136         if (!offset)
137                 goto aligned;
138
139         tmp = *(p++);
140         quot = (offset >> 3) << 3;
141         rest = offset & 0x7;
142         mask = ~(~0UL << quot);
143         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144         submask <<= quot;
145         mask += submask;
146         tmp |= mask;
147         if (size < BITS_PER_LONG)
148                 goto found_first;
149         if (~tmp)
150                 goto found_middle;
151
152         size -= BITS_PER_LONG;
153         result += BITS_PER_LONG;
154 aligned:
155         while (size & ~(BITS_PER_LONG - 1)) {
156                 tmp = *(p++);
157                 if (~tmp)
158                         goto found_middle;
159                 result += BITS_PER_LONG;
160                 size -= BITS_PER_LONG;
161         }
162         if (!size)
163                 return result;
164         tmp = *p;
165
166 found_first:
167         tmp |= ~0UL << size;
168         if (tmp == ~0UL)        /* Are any bits zero? */
169                 return result + size;   /* Nope. */
170 found_middle:
171         return result + __reverse_ffz(tmp);
172 }
173
174 /*
175  * This function balances dirty node and dentry pages.
176  * In addition, it controls garbage collection.
177  */
178 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179 {
180         /*
181          * We should do GC or end up with checkpoint, if there are so many dirty
182          * dir/node pages without enough free segments.
183          */
184         if (has_not_enough_free_secs(sbi, 0)) {
185                 mutex_lock(&sbi->gc_mutex);
186                 f2fs_gc(sbi);
187         }
188 }
189
190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191 {
192         /* check the # of cached NAT entries and prefree segments */
193         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194                                 excess_prefree_segs(sbi))
195                 f2fs_sync_fs(sbi->sb, true);
196 }
197
198 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199                 enum dirty_type dirty_type)
200 {
201         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202
203         /* need not be added */
204         if (IS_CURSEG(sbi, segno))
205                 return;
206
207         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208                 dirty_i->nr_dirty[dirty_type]++;
209
210         if (dirty_type == DIRTY) {
211                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
212                 enum dirty_type t = sentry->type;
213
214                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215                         dirty_i->nr_dirty[t]++;
216         }
217 }
218
219 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220                 enum dirty_type dirty_type)
221 {
222         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223
224         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225                 dirty_i->nr_dirty[dirty_type]--;
226
227         if (dirty_type == DIRTY) {
228                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
229                 enum dirty_type t = sentry->type;
230
231                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232                         dirty_i->nr_dirty[t]--;
233
234                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235                         clear_bit(GET_SECNO(sbi, segno),
236                                                 dirty_i->victim_secmap);
237         }
238 }
239
240 /*
241  * Should not occur error such as -ENOMEM.
242  * Adding dirty entry into seglist is not critical operation.
243  * If a given segment is one of current working segments, it won't be added.
244  */
245 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246 {
247         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248         unsigned short valid_blocks;
249
250         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251                 return;
252
253         mutex_lock(&dirty_i->seglist_lock);
254
255         valid_blocks = get_valid_blocks(sbi, segno, 0);
256
257         if (valid_blocks == 0) {
258                 __locate_dirty_segment(sbi, segno, PRE);
259                 __remove_dirty_segment(sbi, segno, DIRTY);
260         } else if (valid_blocks < sbi->blocks_per_seg) {
261                 __locate_dirty_segment(sbi, segno, DIRTY);
262         } else {
263                 /* Recovery routine with SSR needs this */
264                 __remove_dirty_segment(sbi, segno, DIRTY);
265         }
266
267         mutex_unlock(&dirty_i->seglist_lock);
268 }
269
270 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271                                 block_t blkstart, block_t blklen)
272 {
273         sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274         sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275         blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277 }
278
279 static void add_discard_addrs(struct f2fs_sb_info *sbi,
280                         unsigned int segno, struct seg_entry *se)
281 {
282         struct list_head *head = &SM_I(sbi)->discard_list;
283         struct discard_entry *new;
284         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285         int max_blocks = sbi->blocks_per_seg;
286         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288         unsigned long dmap[entries];
289         unsigned int start = 0, end = -1;
290         int i;
291
292         if (!test_opt(sbi, DISCARD))
293                 return;
294
295         /* zero block will be discarded through the prefree list */
296         if (!se->valid_blocks || se->valid_blocks == max_blocks)
297                 return;
298
299         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300         for (i = 0; i < entries; i++)
301                 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303         while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305                 if (start >= max_blocks)
306                         break;
307
308                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310                 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311                 INIT_LIST_HEAD(&new->list);
312                 new->blkaddr = START_BLOCK(sbi, segno) + start;
313                 new->len = end - start;
314
315                 list_add_tail(&new->list, head);
316                 SM_I(sbi)->nr_discards += end - start;
317         }
318 }
319
320 /*
321  * Should call clear_prefree_segments after checkpoint is done.
322  */
323 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324 {
325         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326         unsigned int segno = -1;
327         unsigned int total_segs = TOTAL_SEGS(sbi);
328
329         mutex_lock(&dirty_i->seglist_lock);
330         while (1) {
331                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332                                 segno + 1);
333                 if (segno >= total_segs)
334                         break;
335                 __set_test_and_free(sbi, segno);
336         }
337         mutex_unlock(&dirty_i->seglist_lock);
338 }
339
340 void clear_prefree_segments(struct f2fs_sb_info *sbi)
341 {
342         struct list_head *head = &(SM_I(sbi)->discard_list);
343         struct list_head *this, *next;
344         struct discard_entry *entry;
345         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347         unsigned int total_segs = TOTAL_SEGS(sbi);
348         unsigned int start = 0, end = -1;
349
350         mutex_lock(&dirty_i->seglist_lock);
351
352         while (1) {
353                 int i;
354                 start = find_next_bit(prefree_map, total_segs, end + 1);
355                 if (start >= total_segs)
356                         break;
357                 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358
359                 for (i = start; i < end; i++)
360                         clear_bit(i, prefree_map);
361
362                 dirty_i->nr_dirty[PRE] -= end - start;
363
364                 if (!test_opt(sbi, DISCARD))
365                         continue;
366
367                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368                                 (end - start) << sbi->log_blocks_per_seg);
369         }
370         mutex_unlock(&dirty_i->seglist_lock);
371
372         /* send small discards */
373         list_for_each_safe(this, next, head) {
374                 entry = list_entry(this, struct discard_entry, list);
375                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376                 list_del(&entry->list);
377                 SM_I(sbi)->nr_discards -= entry->len;
378                 kmem_cache_free(discard_entry_slab, entry);
379         }
380 }
381
382 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383 {
384         struct sit_info *sit_i = SIT_I(sbi);
385         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386                 sit_i->dirty_sentries++;
387 }
388
389 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390                                         unsigned int segno, int modified)
391 {
392         struct seg_entry *se = get_seg_entry(sbi, segno);
393         se->type = type;
394         if (modified)
395                 __mark_sit_entry_dirty(sbi, segno);
396 }
397
398 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399 {
400         struct seg_entry *se;
401         unsigned int segno, offset;
402         long int new_vblocks;
403
404         segno = GET_SEGNO(sbi, blkaddr);
405
406         se = get_seg_entry(sbi, segno);
407         new_vblocks = se->valid_blocks + del;
408         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409
410         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411                                 (new_vblocks > sbi->blocks_per_seg)));
412
413         se->valid_blocks = new_vblocks;
414         se->mtime = get_mtime(sbi);
415         SIT_I(sbi)->max_mtime = se->mtime;
416
417         /* Update valid block bitmap */
418         if (del > 0) {
419                 if (f2fs_set_bit(offset, se->cur_valid_map))
420                         BUG();
421         } else {
422                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
423                         BUG();
424         }
425         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426                 se->ckpt_valid_blocks += del;
427
428         __mark_sit_entry_dirty(sbi, segno);
429
430         /* update total number of valid blocks to be written in ckpt area */
431         SIT_I(sbi)->written_valid_blocks += del;
432
433         if (sbi->segs_per_sec > 1)
434                 get_sec_entry(sbi, segno)->valid_blocks += del;
435 }
436
437 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438                         block_t old_blkaddr, block_t new_blkaddr)
439 {
440         update_sit_entry(sbi, new_blkaddr, 1);
441         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442                 update_sit_entry(sbi, old_blkaddr, -1);
443 }
444
445 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446 {
447         unsigned int segno = GET_SEGNO(sbi, addr);
448         struct sit_info *sit_i = SIT_I(sbi);
449
450         f2fs_bug_on(addr == NULL_ADDR);
451         if (addr == NEW_ADDR)
452                 return;
453
454         /* add it into sit main buffer */
455         mutex_lock(&sit_i->sentry_lock);
456
457         update_sit_entry(sbi, addr, -1);
458
459         /* add it into dirty seglist */
460         locate_dirty_segment(sbi, segno);
461
462         mutex_unlock(&sit_i->sentry_lock);
463 }
464
465 /*
466  * This function should be resided under the curseg_mutex lock
467  */
468 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
469                                         struct f2fs_summary *sum)
470 {
471         struct curseg_info *curseg = CURSEG_I(sbi, type);
472         void *addr = curseg->sum_blk;
473         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
474         memcpy(addr, sum, sizeof(struct f2fs_summary));
475 }
476
477 /*
478  * Calculate the number of current summary pages for writing
479  */
480 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481 {
482         int valid_sum_count = 0;
483         int i, sum_in_page;
484
485         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486                 if (sbi->ckpt->alloc_type[i] == SSR)
487                         valid_sum_count += sbi->blocks_per_seg;
488                 else
489                         valid_sum_count += curseg_blkoff(sbi, i);
490         }
491
492         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494         if (valid_sum_count <= sum_in_page)
495                 return 1;
496         else if ((valid_sum_count - sum_in_page) <=
497                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
498                 return 2;
499         return 3;
500 }
501
502 /*
503  * Caller should put this summary page
504  */
505 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506 {
507         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508 }
509
510 static void write_sum_page(struct f2fs_sb_info *sbi,
511                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
512 {
513         struct page *page = grab_meta_page(sbi, blk_addr);
514         void *kaddr = page_address(page);
515         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516         set_page_dirty(page);
517         f2fs_put_page(page, 1);
518 }
519
520 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521 {
522         struct curseg_info *curseg = CURSEG_I(sbi, type);
523         unsigned int segno = curseg->segno + 1;
524         struct free_segmap_info *free_i = FREE_I(sbi);
525
526         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527                 return !test_bit(segno, free_i->free_segmap);
528         return 0;
529 }
530
531 /*
532  * Find a new segment from the free segments bitmap to right order
533  * This function should be returned with success, otherwise BUG
534  */
535 static void get_new_segment(struct f2fs_sb_info *sbi,
536                         unsigned int *newseg, bool new_sec, int dir)
537 {
538         struct free_segmap_info *free_i = FREE_I(sbi);
539         unsigned int segno, secno, zoneno;
540         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
541         unsigned int hint = *newseg / sbi->segs_per_sec;
542         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543         unsigned int left_start = hint;
544         bool init = true;
545         int go_left = 0;
546         int i;
547
548         write_lock(&free_i->segmap_lock);
549
550         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551                 segno = find_next_zero_bit(free_i->free_segmap,
552                                         TOTAL_SEGS(sbi), *newseg + 1);
553                 if (segno - *newseg < sbi->segs_per_sec -
554                                         (*newseg % sbi->segs_per_sec))
555                         goto got_it;
556         }
557 find_other_zone:
558         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559         if (secno >= TOTAL_SECS(sbi)) {
560                 if (dir == ALLOC_RIGHT) {
561                         secno = find_next_zero_bit(free_i->free_secmap,
562                                                         TOTAL_SECS(sbi), 0);
563                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
564                 } else {
565                         go_left = 1;
566                         left_start = hint - 1;
567                 }
568         }
569         if (go_left == 0)
570                 goto skip_left;
571
572         while (test_bit(left_start, free_i->free_secmap)) {
573                 if (left_start > 0) {
574                         left_start--;
575                         continue;
576                 }
577                 left_start = find_next_zero_bit(free_i->free_secmap,
578                                                         TOTAL_SECS(sbi), 0);
579                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
580                 break;
581         }
582         secno = left_start;
583 skip_left:
584         hint = secno;
585         segno = secno * sbi->segs_per_sec;
586         zoneno = secno / sbi->secs_per_zone;
587
588         /* give up on finding another zone */
589         if (!init)
590                 goto got_it;
591         if (sbi->secs_per_zone == 1)
592                 goto got_it;
593         if (zoneno == old_zoneno)
594                 goto got_it;
595         if (dir == ALLOC_LEFT) {
596                 if (!go_left && zoneno + 1 >= total_zones)
597                         goto got_it;
598                 if (go_left && zoneno == 0)
599                         goto got_it;
600         }
601         for (i = 0; i < NR_CURSEG_TYPE; i++)
602                 if (CURSEG_I(sbi, i)->zone == zoneno)
603                         break;
604
605         if (i < NR_CURSEG_TYPE) {
606                 /* zone is in user, try another */
607                 if (go_left)
608                         hint = zoneno * sbi->secs_per_zone - 1;
609                 else if (zoneno + 1 >= total_zones)
610                         hint = 0;
611                 else
612                         hint = (zoneno + 1) * sbi->secs_per_zone;
613                 init = false;
614                 goto find_other_zone;
615         }
616 got_it:
617         /* set it as dirty segment in free segmap */
618         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
619         __set_inuse(sbi, segno);
620         *newseg = segno;
621         write_unlock(&free_i->segmap_lock);
622 }
623
624 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625 {
626         struct curseg_info *curseg = CURSEG_I(sbi, type);
627         struct summary_footer *sum_footer;
628
629         curseg->segno = curseg->next_segno;
630         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631         curseg->next_blkoff = 0;
632         curseg->next_segno = NULL_SEGNO;
633
634         sum_footer = &(curseg->sum_blk->footer);
635         memset(sum_footer, 0, sizeof(struct summary_footer));
636         if (IS_DATASEG(type))
637                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638         if (IS_NODESEG(type))
639                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640         __set_sit_entry_type(sbi, type, curseg->segno, modified);
641 }
642
643 /*
644  * Allocate a current working segment.
645  * This function always allocates a free segment in LFS manner.
646  */
647 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648 {
649         struct curseg_info *curseg = CURSEG_I(sbi, type);
650         unsigned int segno = curseg->segno;
651         int dir = ALLOC_LEFT;
652
653         write_sum_page(sbi, curseg->sum_blk,
654                                 GET_SUM_BLOCK(sbi, segno));
655         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656                 dir = ALLOC_RIGHT;
657
658         if (test_opt(sbi, NOHEAP))
659                 dir = ALLOC_RIGHT;
660
661         get_new_segment(sbi, &segno, new_sec, dir);
662         curseg->next_segno = segno;
663         reset_curseg(sbi, type, 1);
664         curseg->alloc_type = LFS;
665 }
666
667 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668                         struct curseg_info *seg, block_t start)
669 {
670         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
671         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672         unsigned long target_map[entries];
673         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675         int i, pos;
676
677         for (i = 0; i < entries; i++)
678                 target_map[i] = ckpt_map[i] | cur_map[i];
679
680         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681
682         seg->next_blkoff = pos;
683 }
684
685 /*
686  * If a segment is written by LFS manner, next block offset is just obtained
687  * by increasing the current block offset. However, if a segment is written by
688  * SSR manner, next block offset obtained by calling __next_free_blkoff
689  */
690 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691                                 struct curseg_info *seg)
692 {
693         if (seg->alloc_type == SSR)
694                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695         else
696                 seg->next_blkoff++;
697 }
698
699 /*
700  * This function always allocates a used segment (from dirty seglist) by SSR
701  * manner, so it should recover the existing segment information of valid blocks
702  */
703 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704 {
705         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706         struct curseg_info *curseg = CURSEG_I(sbi, type);
707         unsigned int new_segno = curseg->next_segno;
708         struct f2fs_summary_block *sum_node;
709         struct page *sum_page;
710
711         write_sum_page(sbi, curseg->sum_blk,
712                                 GET_SUM_BLOCK(sbi, curseg->segno));
713         __set_test_and_inuse(sbi, new_segno);
714
715         mutex_lock(&dirty_i->seglist_lock);
716         __remove_dirty_segment(sbi, new_segno, PRE);
717         __remove_dirty_segment(sbi, new_segno, DIRTY);
718         mutex_unlock(&dirty_i->seglist_lock);
719
720         reset_curseg(sbi, type, 1);
721         curseg->alloc_type = SSR;
722         __next_free_blkoff(sbi, curseg, 0);
723
724         if (reuse) {
725                 sum_page = get_sum_page(sbi, new_segno);
726                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728                 f2fs_put_page(sum_page, 1);
729         }
730 }
731
732 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733 {
734         struct curseg_info *curseg = CURSEG_I(sbi, type);
735         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736
737         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738                 return v_ops->get_victim(sbi,
739                                 &(curseg)->next_segno, BG_GC, type, SSR);
740
741         /* For data segments, let's do SSR more intensively */
742         for (; type >= CURSEG_HOT_DATA; type--)
743                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744                                                 BG_GC, type, SSR))
745                         return 1;
746         return 0;
747 }
748
749 /*
750  * flush out current segment and replace it with new segment
751  * This function should be returned with success, otherwise BUG
752  */
753 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754                                                 int type, bool force)
755 {
756         struct curseg_info *curseg = CURSEG_I(sbi, type);
757
758         if (force)
759                 new_curseg(sbi, type, true);
760         else if (type == CURSEG_WARM_NODE)
761                 new_curseg(sbi, type, false);
762         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763                 new_curseg(sbi, type, false);
764         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765                 change_curseg(sbi, type, true);
766         else
767                 new_curseg(sbi, type, false);
768
769         stat_inc_seg_type(sbi, curseg);
770 }
771
772 void allocate_new_segments(struct f2fs_sb_info *sbi)
773 {
774         struct curseg_info *curseg;
775         unsigned int old_curseg;
776         int i;
777
778         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779                 curseg = CURSEG_I(sbi, i);
780                 old_curseg = curseg->segno;
781                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782                 locate_dirty_segment(sbi, old_curseg);
783         }
784 }
785
786 static const struct segment_allocation default_salloc_ops = {
787         .allocate_segment = allocate_segment_by_default,
788 };
789
790 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
791 {
792         struct curseg_info *curseg = CURSEG_I(sbi, type);
793         if (curseg->next_blkoff < sbi->blocks_per_seg)
794                 return true;
795         return false;
796 }
797
798 static int __get_segment_type_2(struct page *page, enum page_type p_type)
799 {
800         if (p_type == DATA)
801                 return CURSEG_HOT_DATA;
802         else
803                 return CURSEG_HOT_NODE;
804 }
805
806 static int __get_segment_type_4(struct page *page, enum page_type p_type)
807 {
808         if (p_type == DATA) {
809                 struct inode *inode = page->mapping->host;
810
811                 if (S_ISDIR(inode->i_mode))
812                         return CURSEG_HOT_DATA;
813                 else
814                         return CURSEG_COLD_DATA;
815         } else {
816                 if (IS_DNODE(page) && !is_cold_node(page))
817                         return CURSEG_HOT_NODE;
818                 else
819                         return CURSEG_COLD_NODE;
820         }
821 }
822
823 static int __get_segment_type_6(struct page *page, enum page_type p_type)
824 {
825         if (p_type == DATA) {
826                 struct inode *inode = page->mapping->host;
827
828                 if (S_ISDIR(inode->i_mode))
829                         return CURSEG_HOT_DATA;
830                 else if (is_cold_data(page) || file_is_cold(inode))
831                         return CURSEG_COLD_DATA;
832                 else
833                         return CURSEG_WARM_DATA;
834         } else {
835                 if (IS_DNODE(page))
836                         return is_cold_node(page) ? CURSEG_WARM_NODE :
837                                                 CURSEG_HOT_NODE;
838                 else
839                         return CURSEG_COLD_NODE;
840         }
841 }
842
843 static int __get_segment_type(struct page *page, enum page_type p_type)
844 {
845         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
846         switch (sbi->active_logs) {
847         case 2:
848                 return __get_segment_type_2(page, p_type);
849         case 4:
850                 return __get_segment_type_4(page, p_type);
851         }
852         /* NR_CURSEG_TYPE(6) logs by default */
853         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
854         return __get_segment_type_6(page, p_type);
855 }
856
857 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
858                 block_t old_blkaddr, block_t *new_blkaddr,
859                 struct f2fs_summary *sum, int type)
860 {
861         struct sit_info *sit_i = SIT_I(sbi);
862         struct curseg_info *curseg;
863         unsigned int old_cursegno;
864
865         curseg = CURSEG_I(sbi, type);
866
867         mutex_lock(&curseg->curseg_mutex);
868
869         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
870         old_cursegno = curseg->segno;
871
872         /*
873          * __add_sum_entry should be resided under the curseg_mutex
874          * because, this function updates a summary entry in the
875          * current summary block.
876          */
877         __add_sum_entry(sbi, type, sum);
878
879         mutex_lock(&sit_i->sentry_lock);
880         __refresh_next_blkoff(sbi, curseg);
881
882         stat_inc_block_count(sbi, curseg);
883
884         /*
885          * SIT information should be updated before segment allocation,
886          * since SSR needs latest valid block information.
887          */
888         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
889
890         if (!__has_curseg_space(sbi, type))
891                 sit_i->s_ops->allocate_segment(sbi, type, false);
892
893         locate_dirty_segment(sbi, old_cursegno);
894         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
895         mutex_unlock(&sit_i->sentry_lock);
896
897         if (page && IS_NODESEG(type))
898                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
899
900         mutex_unlock(&curseg->curseg_mutex);
901 }
902
903 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904                         block_t old_blkaddr, block_t *new_blkaddr,
905                         struct f2fs_summary *sum, struct f2fs_io_info *fio)
906 {
907         int type = __get_segment_type(page, fio->type);
908
909         allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910
911         /* writeout dirty page into bdev */
912         f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913 }
914
915 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
916 {
917         struct f2fs_io_info fio = {
918                 .type = META,
919                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
920         };
921
922         set_page_writeback(page);
923         f2fs_submit_page_mbio(sbi, page, page->index, &fio);
924 }
925
926 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927                 struct f2fs_io_info *fio,
928                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
929 {
930         struct f2fs_summary sum;
931         set_summary(&sum, nid, 0, 0);
932         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
933 }
934
935 void write_data_page(struct page *page, struct dnode_of_data *dn,
936                 block_t *new_blkaddr, struct f2fs_io_info *fio)
937 {
938         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
939         struct f2fs_summary sum;
940         struct node_info ni;
941
942         f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
943         get_node_info(sbi, dn->nid, &ni);
944         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
945
946         do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
947 }
948
949 void rewrite_data_page(struct page *page, block_t old_blkaddr, struct f2fs_io_info *fio)
950 {
951         struct inode *inode = page->mapping->host;
952         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
953         f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
954 }
955
956 void recover_data_page(struct f2fs_sb_info *sbi,
957                         struct page *page, struct f2fs_summary *sum,
958                         block_t old_blkaddr, block_t new_blkaddr)
959 {
960         struct sit_info *sit_i = SIT_I(sbi);
961         struct curseg_info *curseg;
962         unsigned int segno, old_cursegno;
963         struct seg_entry *se;
964         int type;
965
966         segno = GET_SEGNO(sbi, new_blkaddr);
967         se = get_seg_entry(sbi, segno);
968         type = se->type;
969
970         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
971                 if (old_blkaddr == NULL_ADDR)
972                         type = CURSEG_COLD_DATA;
973                 else
974                         type = CURSEG_WARM_DATA;
975         }
976         curseg = CURSEG_I(sbi, type);
977
978         mutex_lock(&curseg->curseg_mutex);
979         mutex_lock(&sit_i->sentry_lock);
980
981         old_cursegno = curseg->segno;
982
983         /* change the current segment */
984         if (segno != curseg->segno) {
985                 curseg->next_segno = segno;
986                 change_curseg(sbi, type, true);
987         }
988
989         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
990                                         (sbi->blocks_per_seg - 1);
991         __add_sum_entry(sbi, type, sum);
992
993         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
994
995         locate_dirty_segment(sbi, old_cursegno);
996         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
997
998         mutex_unlock(&sit_i->sentry_lock);
999         mutex_unlock(&curseg->curseg_mutex);
1000 }
1001
1002 void rewrite_node_page(struct f2fs_sb_info *sbi,
1003                         struct page *page, struct f2fs_summary *sum,
1004                         block_t old_blkaddr, block_t new_blkaddr)
1005 {
1006         struct sit_info *sit_i = SIT_I(sbi);
1007         int type = CURSEG_WARM_NODE;
1008         struct curseg_info *curseg;
1009         unsigned int segno, old_cursegno;
1010         block_t next_blkaddr = next_blkaddr_of_node(page);
1011         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1012         struct f2fs_io_info fio = {
1013                 .type = NODE,
1014                 .rw = WRITE_SYNC,
1015         };
1016
1017         curseg = CURSEG_I(sbi, type);
1018
1019         mutex_lock(&curseg->curseg_mutex);
1020         mutex_lock(&sit_i->sentry_lock);
1021
1022         segno = GET_SEGNO(sbi, new_blkaddr);
1023         old_cursegno = curseg->segno;
1024
1025         /* change the current segment */
1026         if (segno != curseg->segno) {
1027                 curseg->next_segno = segno;
1028                 change_curseg(sbi, type, true);
1029         }
1030         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1031                                         (sbi->blocks_per_seg - 1);
1032         __add_sum_entry(sbi, type, sum);
1033
1034         /* change the current log to the next block addr in advance */
1035         if (next_segno != segno) {
1036                 curseg->next_segno = next_segno;
1037                 change_curseg(sbi, type, true);
1038         }
1039         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1040                                         (sbi->blocks_per_seg - 1);
1041
1042         /* rewrite node page */
1043         set_page_writeback(page);
1044         f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1045         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1046         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1047
1048         locate_dirty_segment(sbi, old_cursegno);
1049         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1050
1051         mutex_unlock(&sit_i->sentry_lock);
1052         mutex_unlock(&curseg->curseg_mutex);
1053 }
1054
1055 void f2fs_wait_on_page_writeback(struct page *page,
1056                                 enum page_type type, bool sync)
1057 {
1058         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1059         if (PageWriteback(page)) {
1060                 f2fs_submit_merged_bio(sbi, type, WRITE);
1061                 wait_on_page_writeback(page);
1062         }
1063 }
1064
1065 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1066 {
1067         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1068         struct curseg_info *seg_i;
1069         unsigned char *kaddr;
1070         struct page *page;
1071         block_t start;
1072         int i, j, offset;
1073
1074         start = start_sum_block(sbi);
1075
1076         page = get_meta_page(sbi, start++);
1077         kaddr = (unsigned char *)page_address(page);
1078
1079         /* Step 1: restore nat cache */
1080         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1081         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1082
1083         /* Step 2: restore sit cache */
1084         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1085         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1086                                                 SUM_JOURNAL_SIZE);
1087         offset = 2 * SUM_JOURNAL_SIZE;
1088
1089         /* Step 3: restore summary entries */
1090         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1091                 unsigned short blk_off;
1092                 unsigned int segno;
1093
1094                 seg_i = CURSEG_I(sbi, i);
1095                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1096                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1097                 seg_i->next_segno = segno;
1098                 reset_curseg(sbi, i, 0);
1099                 seg_i->alloc_type = ckpt->alloc_type[i];
1100                 seg_i->next_blkoff = blk_off;
1101
1102                 if (seg_i->alloc_type == SSR)
1103                         blk_off = sbi->blocks_per_seg;
1104
1105                 for (j = 0; j < blk_off; j++) {
1106                         struct f2fs_summary *s;
1107                         s = (struct f2fs_summary *)(kaddr + offset);
1108                         seg_i->sum_blk->entries[j] = *s;
1109                         offset += SUMMARY_SIZE;
1110                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1111                                                 SUM_FOOTER_SIZE)
1112                                 continue;
1113
1114                         f2fs_put_page(page, 1);
1115                         page = NULL;
1116
1117                         page = get_meta_page(sbi, start++);
1118                         kaddr = (unsigned char *)page_address(page);
1119                         offset = 0;
1120                 }
1121         }
1122         f2fs_put_page(page, 1);
1123         return 0;
1124 }
1125
1126 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1127 {
1128         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1129         struct f2fs_summary_block *sum;
1130         struct curseg_info *curseg;
1131         struct page *new;
1132         unsigned short blk_off;
1133         unsigned int segno = 0;
1134         block_t blk_addr = 0;
1135
1136         /* get segment number and block addr */
1137         if (IS_DATASEG(type)) {
1138                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1139                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1140                                                         CURSEG_HOT_DATA]);
1141                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1142                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1143                 else
1144                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1145         } else {
1146                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1147                                                         CURSEG_HOT_NODE]);
1148                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1149                                                         CURSEG_HOT_NODE]);
1150                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1151                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1152                                                         type - CURSEG_HOT_NODE);
1153                 else
1154                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1155         }
1156
1157         new = get_meta_page(sbi, blk_addr);
1158         sum = (struct f2fs_summary_block *)page_address(new);
1159
1160         if (IS_NODESEG(type)) {
1161                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1162                         struct f2fs_summary *ns = &sum->entries[0];
1163                         int i;
1164                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1165                                 ns->version = 0;
1166                                 ns->ofs_in_node = 0;
1167                         }
1168                 } else {
1169                         if (restore_node_summary(sbi, segno, sum)) {
1170                                 f2fs_put_page(new, 1);
1171                                 return -EINVAL;
1172                         }
1173                 }
1174         }
1175
1176         /* set uncompleted segment to curseg */
1177         curseg = CURSEG_I(sbi, type);
1178         mutex_lock(&curseg->curseg_mutex);
1179         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1180         curseg->next_segno = segno;
1181         reset_curseg(sbi, type, 0);
1182         curseg->alloc_type = ckpt->alloc_type[type];
1183         curseg->next_blkoff = blk_off;
1184         mutex_unlock(&curseg->curseg_mutex);
1185         f2fs_put_page(new, 1);
1186         return 0;
1187 }
1188
1189 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1190 {
1191         int type = CURSEG_HOT_DATA;
1192
1193         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1194                 /* restore for compacted data summary */
1195                 if (read_compacted_summaries(sbi))
1196                         return -EINVAL;
1197                 type = CURSEG_HOT_NODE;
1198         }
1199
1200         for (; type <= CURSEG_COLD_NODE; type++)
1201                 if (read_normal_summaries(sbi, type))
1202                         return -EINVAL;
1203         return 0;
1204 }
1205
1206 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1207 {
1208         struct page *page;
1209         unsigned char *kaddr;
1210         struct f2fs_summary *summary;
1211         struct curseg_info *seg_i;
1212         int written_size = 0;
1213         int i, j;
1214
1215         page = grab_meta_page(sbi, blkaddr++);
1216         kaddr = (unsigned char *)page_address(page);
1217
1218         /* Step 1: write nat cache */
1219         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1220         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1221         written_size += SUM_JOURNAL_SIZE;
1222
1223         /* Step 2: write sit cache */
1224         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1225         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1226                                                 SUM_JOURNAL_SIZE);
1227         written_size += SUM_JOURNAL_SIZE;
1228
1229         /* Step 3: write summary entries */
1230         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1231                 unsigned short blkoff;
1232                 seg_i = CURSEG_I(sbi, i);
1233                 if (sbi->ckpt->alloc_type[i] == SSR)
1234                         blkoff = sbi->blocks_per_seg;
1235                 else
1236                         blkoff = curseg_blkoff(sbi, i);
1237
1238                 for (j = 0; j < blkoff; j++) {
1239                         if (!page) {
1240                                 page = grab_meta_page(sbi, blkaddr++);
1241                                 kaddr = (unsigned char *)page_address(page);
1242                                 written_size = 0;
1243                         }
1244                         summary = (struct f2fs_summary *)(kaddr + written_size);
1245                         *summary = seg_i->sum_blk->entries[j];
1246                         written_size += SUMMARY_SIZE;
1247
1248                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1249                                                         SUM_FOOTER_SIZE)
1250                                 continue;
1251
1252                         set_page_dirty(page);
1253                         f2fs_put_page(page, 1);
1254                         page = NULL;
1255                 }
1256         }
1257         if (page) {
1258                 set_page_dirty(page);
1259                 f2fs_put_page(page, 1);
1260         }
1261 }
1262
1263 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1264                                         block_t blkaddr, int type)
1265 {
1266         int i, end;
1267         if (IS_DATASEG(type))
1268                 end = type + NR_CURSEG_DATA_TYPE;
1269         else
1270                 end = type + NR_CURSEG_NODE_TYPE;
1271
1272         for (i = type; i < end; i++) {
1273                 struct curseg_info *sum = CURSEG_I(sbi, i);
1274                 mutex_lock(&sum->curseg_mutex);
1275                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1276                 mutex_unlock(&sum->curseg_mutex);
1277         }
1278 }
1279
1280 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1281 {
1282         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1283                 write_compacted_summaries(sbi, start_blk);
1284         else
1285                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1286 }
1287
1288 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1289 {
1290         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1291                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1292 }
1293
1294 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1295                                         unsigned int val, int alloc)
1296 {
1297         int i;
1298
1299         if (type == NAT_JOURNAL) {
1300                 for (i = 0; i < nats_in_cursum(sum); i++) {
1301                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1302                                 return i;
1303                 }
1304                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1305                         return update_nats_in_cursum(sum, 1);
1306         } else if (type == SIT_JOURNAL) {
1307                 for (i = 0; i < sits_in_cursum(sum); i++)
1308                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1309                                 return i;
1310                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1311                         return update_sits_in_cursum(sum, 1);
1312         }
1313         return -1;
1314 }
1315
1316 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1317                                         unsigned int segno)
1318 {
1319         struct sit_info *sit_i = SIT_I(sbi);
1320         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1321         block_t blk_addr = sit_i->sit_base_addr + offset;
1322
1323         check_seg_range(sbi, segno);
1324
1325         /* calculate sit block address */
1326         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1327                 blk_addr += sit_i->sit_blocks;
1328
1329         return get_meta_page(sbi, blk_addr);
1330 }
1331
1332 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1333                                         unsigned int start)
1334 {
1335         struct sit_info *sit_i = SIT_I(sbi);
1336         struct page *src_page, *dst_page;
1337         pgoff_t src_off, dst_off;
1338         void *src_addr, *dst_addr;
1339
1340         src_off = current_sit_addr(sbi, start);
1341         dst_off = next_sit_addr(sbi, src_off);
1342
1343         /* get current sit block page without lock */
1344         src_page = get_meta_page(sbi, src_off);
1345         dst_page = grab_meta_page(sbi, dst_off);
1346         f2fs_bug_on(PageDirty(src_page));
1347
1348         src_addr = page_address(src_page);
1349         dst_addr = page_address(dst_page);
1350         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1351
1352         set_page_dirty(dst_page);
1353         f2fs_put_page(src_page, 1);
1354
1355         set_to_next_sit(sit_i, start);
1356
1357         return dst_page;
1358 }
1359
1360 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1361 {
1362         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1363         struct f2fs_summary_block *sum = curseg->sum_blk;
1364         int i;
1365
1366         /*
1367          * If the journal area in the current summary is full of sit entries,
1368          * all the sit entries will be flushed. Otherwise the sit entries
1369          * are not able to replace with newly hot sit entries.
1370          */
1371         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1372                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1373                         unsigned int segno;
1374                         segno = le32_to_cpu(segno_in_journal(sum, i));
1375                         __mark_sit_entry_dirty(sbi, segno);
1376                 }
1377                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1378                 return true;
1379         }
1380         return false;
1381 }
1382
1383 /*
1384  * CP calls this function, which flushes SIT entries including sit_journal,
1385  * and moves prefree segs to free segs.
1386  */
1387 void flush_sit_entries(struct f2fs_sb_info *sbi)
1388 {
1389         struct sit_info *sit_i = SIT_I(sbi);
1390         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1391         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1392         struct f2fs_summary_block *sum = curseg->sum_blk;
1393         unsigned long nsegs = TOTAL_SEGS(sbi);
1394         struct page *page = NULL;
1395         struct f2fs_sit_block *raw_sit = NULL;
1396         unsigned int start = 0, end = 0;
1397         unsigned int segno = -1;
1398         bool flushed;
1399
1400         mutex_lock(&curseg->curseg_mutex);
1401         mutex_lock(&sit_i->sentry_lock);
1402
1403         /*
1404          * "flushed" indicates whether sit entries in journal are flushed
1405          * to the SIT area or not.
1406          */
1407         flushed = flush_sits_in_journal(sbi);
1408
1409         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1410                 struct seg_entry *se = get_seg_entry(sbi, segno);
1411                 int sit_offset, offset;
1412
1413                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1414
1415                 /* add discard candidates */
1416                 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1417                         add_discard_addrs(sbi, segno, se);
1418
1419                 if (flushed)
1420                         goto to_sit_page;
1421
1422                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1423                 if (offset >= 0) {
1424                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1425                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1426                         goto flush_done;
1427                 }
1428 to_sit_page:
1429                 if (!page || (start > segno) || (segno > end)) {
1430                         if (page) {
1431                                 f2fs_put_page(page, 1);
1432                                 page = NULL;
1433                         }
1434
1435                         start = START_SEGNO(sit_i, segno);
1436                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1437
1438                         /* read sit block that will be updated */
1439                         page = get_next_sit_page(sbi, start);
1440                         raw_sit = page_address(page);
1441                 }
1442
1443                 /* udpate entry in SIT block */
1444                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1445 flush_done:
1446                 __clear_bit(segno, bitmap);
1447                 sit_i->dirty_sentries--;
1448         }
1449         mutex_unlock(&sit_i->sentry_lock);
1450         mutex_unlock(&curseg->curseg_mutex);
1451
1452         /* writeout last modified SIT block */
1453         f2fs_put_page(page, 1);
1454
1455         set_prefree_as_free_segments(sbi);
1456 }
1457
1458 static int build_sit_info(struct f2fs_sb_info *sbi)
1459 {
1460         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1461         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1462         struct sit_info *sit_i;
1463         unsigned int sit_segs, start;
1464         char *src_bitmap, *dst_bitmap;
1465         unsigned int bitmap_size;
1466
1467         /* allocate memory for SIT information */
1468         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1469         if (!sit_i)
1470                 return -ENOMEM;
1471
1472         SM_I(sbi)->sit_info = sit_i;
1473
1474         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1475         if (!sit_i->sentries)
1476                 return -ENOMEM;
1477
1478         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1479         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1480         if (!sit_i->dirty_sentries_bitmap)
1481                 return -ENOMEM;
1482
1483         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1484                 sit_i->sentries[start].cur_valid_map
1485                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1486                 sit_i->sentries[start].ckpt_valid_map
1487                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1488                 if (!sit_i->sentries[start].cur_valid_map
1489                                 || !sit_i->sentries[start].ckpt_valid_map)
1490                         return -ENOMEM;
1491         }
1492
1493         if (sbi->segs_per_sec > 1) {
1494                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1495                                         sizeof(struct sec_entry));
1496                 if (!sit_i->sec_entries)
1497                         return -ENOMEM;
1498         }
1499
1500         /* get information related with SIT */
1501         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1502
1503         /* setup SIT bitmap from ckeckpoint pack */
1504         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1505         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1506
1507         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1508         if (!dst_bitmap)
1509                 return -ENOMEM;
1510
1511         /* init SIT information */
1512         sit_i->s_ops = &default_salloc_ops;
1513
1514         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1515         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1516         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1517         sit_i->sit_bitmap = dst_bitmap;
1518         sit_i->bitmap_size = bitmap_size;
1519         sit_i->dirty_sentries = 0;
1520         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1521         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1522         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1523         mutex_init(&sit_i->sentry_lock);
1524         return 0;
1525 }
1526
1527 static int build_free_segmap(struct f2fs_sb_info *sbi)
1528 {
1529         struct f2fs_sm_info *sm_info = SM_I(sbi);
1530         struct free_segmap_info *free_i;
1531         unsigned int bitmap_size, sec_bitmap_size;
1532
1533         /* allocate memory for free segmap information */
1534         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1535         if (!free_i)
1536                 return -ENOMEM;
1537
1538         SM_I(sbi)->free_info = free_i;
1539
1540         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1541         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1542         if (!free_i->free_segmap)
1543                 return -ENOMEM;
1544
1545         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1546         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1547         if (!free_i->free_secmap)
1548                 return -ENOMEM;
1549
1550         /* set all segments as dirty temporarily */
1551         memset(free_i->free_segmap, 0xff, bitmap_size);
1552         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1553
1554         /* init free segmap information */
1555         free_i->start_segno =
1556                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1557         free_i->free_segments = 0;
1558         free_i->free_sections = 0;
1559         rwlock_init(&free_i->segmap_lock);
1560         return 0;
1561 }
1562
1563 static int build_curseg(struct f2fs_sb_info *sbi)
1564 {
1565         struct curseg_info *array;
1566         int i;
1567
1568         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1569         if (!array)
1570                 return -ENOMEM;
1571
1572         SM_I(sbi)->curseg_array = array;
1573
1574         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1575                 mutex_init(&array[i].curseg_mutex);
1576                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1577                 if (!array[i].sum_blk)
1578                         return -ENOMEM;
1579                 array[i].segno = NULL_SEGNO;
1580                 array[i].next_blkoff = 0;
1581         }
1582         return restore_curseg_summaries(sbi);
1583 }
1584
1585 static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1586 {
1587         struct address_space *mapping = sbi->meta_inode->i_mapping;
1588         struct page *page;
1589         block_t blk_addr, prev_blk_addr = 0;
1590         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1591         int blkno = start;
1592         struct f2fs_io_info fio = {
1593                 .type = META,
1594                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1595         };
1596
1597         for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1598
1599                 blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1600
1601                 if (blkno != start && prev_blk_addr + 1 != blk_addr)
1602                         break;
1603                 prev_blk_addr = blk_addr;
1604 repeat:
1605                 page = grab_cache_page(mapping, blk_addr);
1606                 if (!page) {
1607                         cond_resched();
1608                         goto repeat;
1609                 }
1610                 if (PageUptodate(page)) {
1611                         mark_page_accessed(page);
1612                         f2fs_put_page(page, 1);
1613                         continue;
1614                 }
1615
1616                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
1617
1618                 mark_page_accessed(page);
1619                 f2fs_put_page(page, 0);
1620         }
1621
1622         f2fs_submit_merged_bio(sbi, META, READ);
1623         return blkno - start;
1624 }
1625
1626 static void build_sit_entries(struct f2fs_sb_info *sbi)
1627 {
1628         struct sit_info *sit_i = SIT_I(sbi);
1629         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1630         struct f2fs_summary_block *sum = curseg->sum_blk;
1631         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1632         unsigned int i, start, end;
1633         unsigned int readed, start_blk = 0;
1634         int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1635
1636         do {
1637                 readed = ra_sit_pages(sbi, start_blk, nrpages);
1638
1639                 start = start_blk * sit_i->sents_per_block;
1640                 end = (start_blk + readed) * sit_i->sents_per_block;
1641
1642                 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1643                         struct seg_entry *se = &sit_i->sentries[start];
1644                         struct f2fs_sit_block *sit_blk;
1645                         struct f2fs_sit_entry sit;
1646                         struct page *page;
1647
1648                         mutex_lock(&curseg->curseg_mutex);
1649                         for (i = 0; i < sits_in_cursum(sum); i++) {
1650                                 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1651                                         sit = sit_in_journal(sum, i);
1652                                         mutex_unlock(&curseg->curseg_mutex);
1653                                         goto got_it;
1654                                 }
1655                         }
1656                         mutex_unlock(&curseg->curseg_mutex);
1657
1658                         page = get_current_sit_page(sbi, start);
1659                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1660                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1661                         f2fs_put_page(page, 1);
1662 got_it:
1663                         check_block_count(sbi, start, &sit);
1664                         seg_info_from_raw_sit(se, &sit);
1665                         if (sbi->segs_per_sec > 1) {
1666                                 struct sec_entry *e = get_sec_entry(sbi, start);
1667                                 e->valid_blocks += se->valid_blocks;
1668                         }
1669                 }
1670                 start_blk += readed;
1671         } while (start_blk < sit_blk_cnt);
1672 }
1673
1674 static void init_free_segmap(struct f2fs_sb_info *sbi)
1675 {
1676         unsigned int start;
1677         int type;
1678
1679         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1680                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1681                 if (!sentry->valid_blocks)
1682                         __set_free(sbi, start);
1683         }
1684
1685         /* set use the current segments */
1686         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1687                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1688                 __set_test_and_inuse(sbi, curseg_t->segno);
1689         }
1690 }
1691
1692 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1693 {
1694         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1695         struct free_segmap_info *free_i = FREE_I(sbi);
1696         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1697         unsigned short valid_blocks;
1698
1699         while (1) {
1700                 /* find dirty segment based on free segmap */
1701                 segno = find_next_inuse(free_i, total_segs, offset);
1702                 if (segno >= total_segs)
1703                         break;
1704                 offset = segno + 1;
1705                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1706                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1707                         continue;
1708                 mutex_lock(&dirty_i->seglist_lock);
1709                 __locate_dirty_segment(sbi, segno, DIRTY);
1710                 mutex_unlock(&dirty_i->seglist_lock);
1711         }
1712 }
1713
1714 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1715 {
1716         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1717         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1718
1719         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1720         if (!dirty_i->victim_secmap)
1721                 return -ENOMEM;
1722         return 0;
1723 }
1724
1725 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1726 {
1727         struct dirty_seglist_info *dirty_i;
1728         unsigned int bitmap_size, i;
1729
1730         /* allocate memory for dirty segments list information */
1731         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1732         if (!dirty_i)
1733                 return -ENOMEM;
1734
1735         SM_I(sbi)->dirty_info = dirty_i;
1736         mutex_init(&dirty_i->seglist_lock);
1737
1738         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1739
1740         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1741                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1742                 if (!dirty_i->dirty_segmap[i])
1743                         return -ENOMEM;
1744         }
1745
1746         init_dirty_segmap(sbi);
1747         return init_victim_secmap(sbi);
1748 }
1749
1750 /*
1751  * Update min, max modified time for cost-benefit GC algorithm
1752  */
1753 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1754 {
1755         struct sit_info *sit_i = SIT_I(sbi);
1756         unsigned int segno;
1757
1758         mutex_lock(&sit_i->sentry_lock);
1759
1760         sit_i->min_mtime = LLONG_MAX;
1761
1762         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1763                 unsigned int i;
1764                 unsigned long long mtime = 0;
1765
1766                 for (i = 0; i < sbi->segs_per_sec; i++)
1767                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1768
1769                 mtime = div_u64(mtime, sbi->segs_per_sec);
1770
1771                 if (sit_i->min_mtime > mtime)
1772                         sit_i->min_mtime = mtime;
1773         }
1774         sit_i->max_mtime = get_mtime(sbi);
1775         mutex_unlock(&sit_i->sentry_lock);
1776 }
1777
1778 int build_segment_manager(struct f2fs_sb_info *sbi)
1779 {
1780         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1781         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1782         struct f2fs_sm_info *sm_info;
1783         int err;
1784
1785         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1786         if (!sm_info)
1787                 return -ENOMEM;
1788
1789         /* init sm info */
1790         sbi->sm_info = sm_info;
1791         INIT_LIST_HEAD(&sm_info->wblist_head);
1792         spin_lock_init(&sm_info->wblist_lock);
1793         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1794         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1795         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1796         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1797         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1798         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1799         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1800         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1801         sm_info->ipu_policy = F2FS_IPU_DISABLE;
1802         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1803
1804         INIT_LIST_HEAD(&sm_info->discard_list);
1805         sm_info->nr_discards = 0;
1806         sm_info->max_discards = 0;
1807
1808         err = build_sit_info(sbi);
1809         if (err)
1810                 return err;
1811         err = build_free_segmap(sbi);
1812         if (err)
1813                 return err;
1814         err = build_curseg(sbi);
1815         if (err)
1816                 return err;
1817
1818         /* reinit free segmap based on SIT */
1819         build_sit_entries(sbi);
1820
1821         init_free_segmap(sbi);
1822         err = build_dirty_segmap(sbi);
1823         if (err)
1824                 return err;
1825
1826         init_min_max_mtime(sbi);
1827         return 0;
1828 }
1829
1830 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1831                 enum dirty_type dirty_type)
1832 {
1833         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1834
1835         mutex_lock(&dirty_i->seglist_lock);
1836         kfree(dirty_i->dirty_segmap[dirty_type]);
1837         dirty_i->nr_dirty[dirty_type] = 0;
1838         mutex_unlock(&dirty_i->seglist_lock);
1839 }
1840
1841 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1842 {
1843         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1844         kfree(dirty_i->victim_secmap);
1845 }
1846
1847 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1848 {
1849         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1850         int i;
1851
1852         if (!dirty_i)
1853                 return;
1854
1855         /* discard pre-free/dirty segments list */
1856         for (i = 0; i < NR_DIRTY_TYPE; i++)
1857                 discard_dirty_segmap(sbi, i);
1858
1859         destroy_victim_secmap(sbi);
1860         SM_I(sbi)->dirty_info = NULL;
1861         kfree(dirty_i);
1862 }
1863
1864 static void destroy_curseg(struct f2fs_sb_info *sbi)
1865 {
1866         struct curseg_info *array = SM_I(sbi)->curseg_array;
1867         int i;
1868
1869         if (!array)
1870                 return;
1871         SM_I(sbi)->curseg_array = NULL;
1872         for (i = 0; i < NR_CURSEG_TYPE; i++)
1873                 kfree(array[i].sum_blk);
1874         kfree(array);
1875 }
1876
1877 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1878 {
1879         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1880         if (!free_i)
1881                 return;
1882         SM_I(sbi)->free_info = NULL;
1883         kfree(free_i->free_segmap);
1884         kfree(free_i->free_secmap);
1885         kfree(free_i);
1886 }
1887
1888 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1889 {
1890         struct sit_info *sit_i = SIT_I(sbi);
1891         unsigned int start;
1892
1893         if (!sit_i)
1894                 return;
1895
1896         if (sit_i->sentries) {
1897                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1898                         kfree(sit_i->sentries[start].cur_valid_map);
1899                         kfree(sit_i->sentries[start].ckpt_valid_map);
1900                 }
1901         }
1902         vfree(sit_i->sentries);
1903         vfree(sit_i->sec_entries);
1904         kfree(sit_i->dirty_sentries_bitmap);
1905
1906         SM_I(sbi)->sit_info = NULL;
1907         kfree(sit_i->sit_bitmap);
1908         kfree(sit_i);
1909 }
1910
1911 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1912 {
1913         struct f2fs_sm_info *sm_info = SM_I(sbi);
1914         if (!sm_info)
1915                 return;
1916         destroy_dirty_segmap(sbi);
1917         destroy_curseg(sbi);
1918         destroy_free_segmap(sbi);
1919         destroy_sit_info(sbi);
1920         sbi->sm_info = NULL;
1921         kfree(sm_info);
1922 }
1923
1924 int __init create_segment_manager_caches(void)
1925 {
1926         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1927                         sizeof(struct discard_entry), NULL);
1928         if (!discard_entry_slab)
1929                 return -ENOMEM;
1930         return 0;
1931 }
1932
1933 void destroy_segment_manager_caches(void)
1934 {
1935         kmem_cache_destroy(discard_entry_slab);
1936 }