]> git.karo-electronics.de Git - linux-beck.git/blob - fs/f2fs/segment.h
f2fs: bug fix on bit overflow from 32bits to 64bits
[linux-beck.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    100     /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)                                        \
61         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
62         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
63                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)                                   \
65         ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
67         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno)                               \
70         ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
76         (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
78         (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno)               \
80         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi)                        \
82         ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr)                    \
84         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi) (sbi->total_sections)
87
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
89         (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
90 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
91         (sectors >> (sbi)->log_sectors_per_block)
92 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
93         (min((int)max_hw_blocks, BIO_MAX_PAGES))
94
95 /* during checkpoint, bio_private is used to synchronize the last bio */
96 struct bio_private {
97         struct f2fs_sb_info *sbi;
98         bool is_sync;
99         void *wait;
100 };
101
102 /*
103  * indicate a block allocation direction: RIGHT and LEFT.
104  * RIGHT means allocating new sections towards the end of volume.
105  * LEFT means the opposite direction.
106  */
107 enum {
108         ALLOC_RIGHT = 0,
109         ALLOC_LEFT
110 };
111
112 /*
113  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
114  * LFS writes data sequentially with cleaning operations.
115  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
116  */
117 enum {
118         LFS = 0,
119         SSR
120 };
121
122 /*
123  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
124  * GC_CB is based on cost-benefit algorithm.
125  * GC_GREEDY is based on greedy algorithm.
126  */
127 enum {
128         GC_CB = 0,
129         GC_GREEDY
130 };
131
132 /*
133  * BG_GC means the background cleaning job.
134  * FG_GC means the on-demand cleaning job.
135  */
136 enum {
137         BG_GC = 0,
138         FG_GC
139 };
140
141 /* for a function parameter to select a victim segment */
142 struct victim_sel_policy {
143         int alloc_mode;                 /* LFS or SSR */
144         int gc_mode;                    /* GC_CB or GC_GREEDY */
145         unsigned long *dirty_segmap;    /* dirty segment bitmap */
146         unsigned int max_search;        /* maximum # of segments to search */
147         unsigned int offset;            /* last scanned bitmap offset */
148         unsigned int ofs_unit;          /* bitmap search unit */
149         unsigned int min_cost;          /* minimum cost */
150         unsigned int min_segno;         /* segment # having min. cost */
151 };
152
153 struct seg_entry {
154         unsigned short valid_blocks;    /* # of valid blocks */
155         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
156         /*
157          * # of valid blocks and the validity bitmap stored in the the last
158          * checkpoint pack. This information is used by the SSR mode.
159          */
160         unsigned short ckpt_valid_blocks;
161         unsigned char *ckpt_valid_map;
162         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
163         unsigned long long mtime;       /* modification time of the segment */
164 };
165
166 struct sec_entry {
167         unsigned int valid_blocks;      /* # of valid blocks in a section */
168 };
169
170 struct segment_allocation {
171         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
172 };
173
174 struct sit_info {
175         const struct segment_allocation *s_ops;
176
177         block_t sit_base_addr;          /* start block address of SIT area */
178         block_t sit_blocks;             /* # of blocks used by SIT area */
179         block_t written_valid_blocks;   /* # of valid blocks in main area */
180         char *sit_bitmap;               /* SIT bitmap pointer */
181         unsigned int bitmap_size;       /* SIT bitmap size */
182
183         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
184         unsigned int dirty_sentries;            /* # of dirty sentries */
185         unsigned int sents_per_block;           /* # of SIT entries per block */
186         struct mutex sentry_lock;               /* to protect SIT cache */
187         struct seg_entry *sentries;             /* SIT segment-level cache */
188         struct sec_entry *sec_entries;          /* SIT section-level cache */
189
190         /* for cost-benefit algorithm in cleaning procedure */
191         unsigned long long elapsed_time;        /* elapsed time after mount */
192         unsigned long long mounted_time;        /* mount time */
193         unsigned long long min_mtime;           /* min. modification time */
194         unsigned long long max_mtime;           /* max. modification time */
195 };
196
197 struct free_segmap_info {
198         unsigned int start_segno;       /* start segment number logically */
199         unsigned int free_segments;     /* # of free segments */
200         unsigned int free_sections;     /* # of free sections */
201         rwlock_t segmap_lock;           /* free segmap lock */
202         unsigned long *free_segmap;     /* free segment bitmap */
203         unsigned long *free_secmap;     /* free section bitmap */
204 };
205
206 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
207 enum dirty_type {
208         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
209         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
210         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
211         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
212         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
213         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
214         DIRTY,                  /* to count # of dirty segments */
215         PRE,                    /* to count # of entirely obsolete segments */
216         NR_DIRTY_TYPE
217 };
218
219 struct dirty_seglist_info {
220         const struct victim_selection *v_ops;   /* victim selction operation */
221         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
222         struct mutex seglist_lock;              /* lock for segment bitmaps */
223         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
224         unsigned long *victim_secmap;           /* background GC victims */
225 };
226
227 /* victim selection function for cleaning and SSR */
228 struct victim_selection {
229         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
230                                                         int, int, char);
231 };
232
233 /* for active log information */
234 struct curseg_info {
235         struct mutex curseg_mutex;              /* lock for consistency */
236         struct f2fs_summary_block *sum_blk;     /* cached summary block */
237         unsigned char alloc_type;               /* current allocation type */
238         unsigned int segno;                     /* current segment number */
239         unsigned short next_blkoff;             /* next block offset to write */
240         unsigned int zone;                      /* current zone number */
241         unsigned int next_segno;                /* preallocated segment */
242 };
243
244 /*
245  * inline functions
246  */
247 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
248 {
249         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
250 }
251
252 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
253                                                 unsigned int segno)
254 {
255         struct sit_info *sit_i = SIT_I(sbi);
256         return &sit_i->sentries[segno];
257 }
258
259 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
260                                                 unsigned int segno)
261 {
262         struct sit_info *sit_i = SIT_I(sbi);
263         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
264 }
265
266 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
267                                 unsigned int segno, int section)
268 {
269         /*
270          * In order to get # of valid blocks in a section instantly from many
271          * segments, f2fs manages two counting structures separately.
272          */
273         if (section > 1)
274                 return get_sec_entry(sbi, segno)->valid_blocks;
275         else
276                 return get_seg_entry(sbi, segno)->valid_blocks;
277 }
278
279 static inline void seg_info_from_raw_sit(struct seg_entry *se,
280                                         struct f2fs_sit_entry *rs)
281 {
282         se->valid_blocks = GET_SIT_VBLOCKS(rs);
283         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
284         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
285         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
286         se->type = GET_SIT_TYPE(rs);
287         se->mtime = le64_to_cpu(rs->mtime);
288 }
289
290 static inline void seg_info_to_raw_sit(struct seg_entry *se,
291                                         struct f2fs_sit_entry *rs)
292 {
293         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
294                                         se->valid_blocks;
295         rs->vblocks = cpu_to_le16(raw_vblocks);
296         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
297         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
298         se->ckpt_valid_blocks = se->valid_blocks;
299         rs->mtime = cpu_to_le64(se->mtime);
300 }
301
302 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
303                 unsigned int max, unsigned int segno)
304 {
305         unsigned int ret;
306         read_lock(&free_i->segmap_lock);
307         ret = find_next_bit(free_i->free_segmap, max, segno);
308         read_unlock(&free_i->segmap_lock);
309         return ret;
310 }
311
312 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
313 {
314         struct free_segmap_info *free_i = FREE_I(sbi);
315         unsigned int secno = segno / sbi->segs_per_sec;
316         unsigned int start_segno = secno * sbi->segs_per_sec;
317         unsigned int next;
318
319         write_lock(&free_i->segmap_lock);
320         clear_bit(segno, free_i->free_segmap);
321         free_i->free_segments++;
322
323         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
324         if (next >= start_segno + sbi->segs_per_sec) {
325                 clear_bit(secno, free_i->free_secmap);
326                 free_i->free_sections++;
327         }
328         write_unlock(&free_i->segmap_lock);
329 }
330
331 static inline void __set_inuse(struct f2fs_sb_info *sbi,
332                 unsigned int segno)
333 {
334         struct free_segmap_info *free_i = FREE_I(sbi);
335         unsigned int secno = segno / sbi->segs_per_sec;
336         set_bit(segno, free_i->free_segmap);
337         free_i->free_segments--;
338         if (!test_and_set_bit(secno, free_i->free_secmap))
339                 free_i->free_sections--;
340 }
341
342 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
343                 unsigned int segno)
344 {
345         struct free_segmap_info *free_i = FREE_I(sbi);
346         unsigned int secno = segno / sbi->segs_per_sec;
347         unsigned int start_segno = secno * sbi->segs_per_sec;
348         unsigned int next;
349
350         write_lock(&free_i->segmap_lock);
351         if (test_and_clear_bit(segno, free_i->free_segmap)) {
352                 free_i->free_segments++;
353
354                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
355                                                                 start_segno);
356                 if (next >= start_segno + sbi->segs_per_sec) {
357                         if (test_and_clear_bit(secno, free_i->free_secmap))
358                                 free_i->free_sections++;
359                 }
360         }
361         write_unlock(&free_i->segmap_lock);
362 }
363
364 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
365                 unsigned int segno)
366 {
367         struct free_segmap_info *free_i = FREE_I(sbi);
368         unsigned int secno = segno / sbi->segs_per_sec;
369         write_lock(&free_i->segmap_lock);
370         if (!test_and_set_bit(segno, free_i->free_segmap)) {
371                 free_i->free_segments--;
372                 if (!test_and_set_bit(secno, free_i->free_secmap))
373                         free_i->free_sections--;
374         }
375         write_unlock(&free_i->segmap_lock);
376 }
377
378 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
379                 void *dst_addr)
380 {
381         struct sit_info *sit_i = SIT_I(sbi);
382         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
383 }
384
385 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
386 {
387         struct sit_info *sit_i = SIT_I(sbi);
388         block_t vblocks;
389
390         mutex_lock(&sit_i->sentry_lock);
391         vblocks = sit_i->written_valid_blocks;
392         mutex_unlock(&sit_i->sentry_lock);
393
394         return vblocks;
395 }
396
397 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
398 {
399         struct free_segmap_info *free_i = FREE_I(sbi);
400         unsigned int free_segs;
401
402         read_lock(&free_i->segmap_lock);
403         free_segs = free_i->free_segments;
404         read_unlock(&free_i->segmap_lock);
405
406         return free_segs;
407 }
408
409 static inline int reserved_segments(struct f2fs_sb_info *sbi)
410 {
411         return SM_I(sbi)->reserved_segments;
412 }
413
414 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
415 {
416         struct free_segmap_info *free_i = FREE_I(sbi);
417         unsigned int free_secs;
418
419         read_lock(&free_i->segmap_lock);
420         free_secs = free_i->free_sections;
421         read_unlock(&free_i->segmap_lock);
422
423         return free_secs;
424 }
425
426 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
427 {
428         return DIRTY_I(sbi)->nr_dirty[PRE];
429 }
430
431 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
432 {
433         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
434                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
435                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
436                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
437                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
438                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
439 }
440
441 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
442 {
443         return SM_I(sbi)->ovp_segments;
444 }
445
446 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
447 {
448         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
449 }
450
451 static inline int reserved_sections(struct f2fs_sb_info *sbi)
452 {
453         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
454 }
455
456 static inline bool need_SSR(struct f2fs_sb_info *sbi)
457 {
458         return ((prefree_segments(sbi) / sbi->segs_per_sec)
459                         + free_sections(sbi) < overprovision_sections(sbi));
460 }
461
462 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
463 {
464         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
465         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
466
467         if (sbi->por_doing)
468                 return false;
469
470         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
471                                                 reserved_sections(sbi)));
472 }
473
474 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
475 {
476         return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
477 }
478
479 static inline int utilization(struct f2fs_sb_info *sbi)
480 {
481         return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
482 }
483
484 /*
485  * Sometimes f2fs may be better to drop out-of-place update policy.
486  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
487  * data in the original place likewise other traditional file systems.
488  * But, currently set 100 in percentage, which means it is disabled.
489  * See below need_inplace_update().
490  */
491 #define MIN_IPU_UTIL            100
492 static inline bool need_inplace_update(struct inode *inode)
493 {
494         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
495         if (S_ISDIR(inode->i_mode))
496                 return false;
497         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
498                 return true;
499         return false;
500 }
501
502 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
503                 int type)
504 {
505         struct curseg_info *curseg = CURSEG_I(sbi, type);
506         return curseg->segno;
507 }
508
509 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
510                 int type)
511 {
512         struct curseg_info *curseg = CURSEG_I(sbi, type);
513         return curseg->alloc_type;
514 }
515
516 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
517 {
518         struct curseg_info *curseg = CURSEG_I(sbi, type);
519         return curseg->next_blkoff;
520 }
521
522 #ifdef CONFIG_F2FS_CHECK_FS
523 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
524 {
525         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
526         BUG_ON(segno > end_segno);
527 }
528
529 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
530 {
531         struct f2fs_sm_info *sm_info = SM_I(sbi);
532         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
533         block_t start_addr = sm_info->seg0_blkaddr;
534         block_t end_addr = start_addr + total_blks - 1;
535         BUG_ON(blk_addr < start_addr);
536         BUG_ON(blk_addr > end_addr);
537 }
538
539 /*
540  * Summary block is always treated as invalid block
541  */
542 static inline void check_block_count(struct f2fs_sb_info *sbi,
543                 int segno, struct f2fs_sit_entry *raw_sit)
544 {
545         struct f2fs_sm_info *sm_info = SM_I(sbi);
546         unsigned int end_segno = sm_info->segment_count - 1;
547         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
548         int valid_blocks = 0;
549         int cur_pos = 0, next_pos;
550
551         /* check segment usage */
552         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
553
554         /* check boundary of a given segment number */
555         BUG_ON(segno > end_segno);
556
557         /* check bitmap with valid block count */
558         do {
559                 if (is_valid) {
560                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
561                                         sbi->blocks_per_seg,
562                                         cur_pos);
563                         valid_blocks += next_pos - cur_pos;
564                 } else
565                         next_pos = find_next_bit_le(&raw_sit->valid_map,
566                                         sbi->blocks_per_seg,
567                                         cur_pos);
568                 cur_pos = next_pos;
569                 is_valid = !is_valid;
570         } while (cur_pos < sbi->blocks_per_seg);
571         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
572 }
573 #else
574 #define check_seg_range(sbi, segno)
575 #define verify_block_addr(sbi, blk_addr)
576 #define check_block_count(sbi, segno, raw_sit)
577 #endif
578
579 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
580                                                 unsigned int start)
581 {
582         struct sit_info *sit_i = SIT_I(sbi);
583         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
584         block_t blk_addr = sit_i->sit_base_addr + offset;
585
586         check_seg_range(sbi, start);
587
588         /* calculate sit block address */
589         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
590                 blk_addr += sit_i->sit_blocks;
591
592         return blk_addr;
593 }
594
595 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
596                                                 pgoff_t block_addr)
597 {
598         struct sit_info *sit_i = SIT_I(sbi);
599         block_addr -= sit_i->sit_base_addr;
600         if (block_addr < sit_i->sit_blocks)
601                 block_addr += sit_i->sit_blocks;
602         else
603                 block_addr -= sit_i->sit_blocks;
604
605         return block_addr + sit_i->sit_base_addr;
606 }
607
608 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
609 {
610         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
611
612         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
613                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
614         else
615                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
616 }
617
618 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
619 {
620         struct sit_info *sit_i = SIT_I(sbi);
621         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
622                                                 sit_i->mounted_time;
623 }
624
625 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
626                         unsigned int ofs_in_node, unsigned char version)
627 {
628         sum->nid = cpu_to_le32(nid);
629         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
630         sum->version = version;
631 }
632
633 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
634 {
635         return __start_cp_addr(sbi) +
636                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
637 }
638
639 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
640 {
641         return __start_cp_addr(sbi) +
642                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
643                                 - (base + 1) + type;
644 }
645
646 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
647 {
648         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
649                 return true;
650         return false;
651 }
652
653 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
654 {
655         struct block_device *bdev = sbi->sb->s_bdev;
656         struct request_queue *q = bdev_get_queue(bdev);
657         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
658 }