]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
4588545b30304b2b97a184256b10be18554b7862
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
61         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
62
63 #define GET_SEGNO(sbi, blk_addr)                                        \
64         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
65         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
66                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)                                   \
68         ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
70         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno)                               \
73         ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
79         (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(segno)                                 \
81         (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(segno)              \
83         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
84 #define SIT_BLK_CNT(sbi)                        \
85         ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr)                    \
87         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
90 #define TOTAL_BLKS(sbi) (SM_I(sbi)->segment_count << sbi->log_blocks_per_seg)
91
92 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
93         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
94 #define SECTOR_TO_BLOCK(sectors)                                        \
95         (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
96 #define MAX_BIO_BLOCKS(sbi)                                             \
97         ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
98
99 /*
100  * indicate a block allocation direction: RIGHT and LEFT.
101  * RIGHT means allocating new sections towards the end of volume.
102  * LEFT means the opposite direction.
103  */
104 enum {
105         ALLOC_RIGHT = 0,
106         ALLOC_LEFT
107 };
108
109 /*
110  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
111  * LFS writes data sequentially with cleaning operations.
112  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
113  */
114 enum {
115         LFS = 0,
116         SSR
117 };
118
119 /*
120  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
121  * GC_CB is based on cost-benefit algorithm.
122  * GC_GREEDY is based on greedy algorithm.
123  */
124 enum {
125         GC_CB = 0,
126         GC_GREEDY
127 };
128
129 /*
130  * BG_GC means the background cleaning job.
131  * FG_GC means the on-demand cleaning job.
132  */
133 enum {
134         BG_GC = 0,
135         FG_GC
136 };
137
138 /* for a function parameter to select a victim segment */
139 struct victim_sel_policy {
140         int alloc_mode;                 /* LFS or SSR */
141         int gc_mode;                    /* GC_CB or GC_GREEDY */
142         unsigned long *dirty_segmap;    /* dirty segment bitmap */
143         unsigned int max_search;        /* maximum # of segments to search */
144         unsigned int offset;            /* last scanned bitmap offset */
145         unsigned int ofs_unit;          /* bitmap search unit */
146         unsigned int min_cost;          /* minimum cost */
147         unsigned int min_segno;         /* segment # having min. cost */
148 };
149
150 struct seg_entry {
151         unsigned short valid_blocks;    /* # of valid blocks */
152         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
153         /*
154          * # of valid blocks and the validity bitmap stored in the the last
155          * checkpoint pack. This information is used by the SSR mode.
156          */
157         unsigned short ckpt_valid_blocks;
158         unsigned char *ckpt_valid_map;
159         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
160         unsigned long long mtime;       /* modification time of the segment */
161 };
162
163 struct sec_entry {
164         unsigned int valid_blocks;      /* # of valid blocks in a section */
165 };
166
167 struct segment_allocation {
168         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
169 };
170
171 struct sit_info {
172         const struct segment_allocation *s_ops;
173
174         block_t sit_base_addr;          /* start block address of SIT area */
175         block_t sit_blocks;             /* # of blocks used by SIT area */
176         block_t written_valid_blocks;   /* # of valid blocks in main area */
177         char *sit_bitmap;               /* SIT bitmap pointer */
178         unsigned int bitmap_size;       /* SIT bitmap size */
179
180         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
181         unsigned int dirty_sentries;            /* # of dirty sentries */
182         unsigned int sents_per_block;           /* # of SIT entries per block */
183         struct mutex sentry_lock;               /* to protect SIT cache */
184         struct seg_entry *sentries;             /* SIT segment-level cache */
185         struct sec_entry *sec_entries;          /* SIT section-level cache */
186
187         /* for cost-benefit algorithm in cleaning procedure */
188         unsigned long long elapsed_time;        /* elapsed time after mount */
189         unsigned long long mounted_time;        /* mount time */
190         unsigned long long min_mtime;           /* min. modification time */
191         unsigned long long max_mtime;           /* max. modification time */
192 };
193
194 struct free_segmap_info {
195         unsigned int start_segno;       /* start segment number logically */
196         unsigned int free_segments;     /* # of free segments */
197         unsigned int free_sections;     /* # of free sections */
198         rwlock_t segmap_lock;           /* free segmap lock */
199         unsigned long *free_segmap;     /* free segment bitmap */
200         unsigned long *free_secmap;     /* free section bitmap */
201 };
202
203 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
204 enum dirty_type {
205         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
206         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
207         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
208         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
209         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
210         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
211         DIRTY,                  /* to count # of dirty segments */
212         PRE,                    /* to count # of entirely obsolete segments */
213         NR_DIRTY_TYPE
214 };
215
216 struct dirty_seglist_info {
217         const struct victim_selection *v_ops;   /* victim selction operation */
218         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
219         struct mutex seglist_lock;              /* lock for segment bitmaps */
220         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
221         unsigned long *victim_secmap;           /* background GC victims */
222 };
223
224 /* victim selection function for cleaning and SSR */
225 struct victim_selection {
226         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
227                                                         int, int, char);
228 };
229
230 /* for active log information */
231 struct curseg_info {
232         struct mutex curseg_mutex;              /* lock for consistency */
233         struct f2fs_summary_block *sum_blk;     /* cached summary block */
234         unsigned char alloc_type;               /* current allocation type */
235         unsigned int segno;                     /* current segment number */
236         unsigned short next_blkoff;             /* next block offset to write */
237         unsigned int zone;                      /* current zone number */
238         unsigned int next_segno;                /* preallocated segment */
239 };
240
241 struct sit_entry_set {
242         struct list_head set_list;      /* link with all sit sets */
243         unsigned int start_segno;       /* start segno of sits in set */
244         unsigned int entry_cnt;         /* the # of sit entries in set */
245 };
246
247 /*
248  * inline functions
249  */
250 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
251 {
252         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
253 }
254
255 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
256                                                 unsigned int segno)
257 {
258         struct sit_info *sit_i = SIT_I(sbi);
259         return &sit_i->sentries[segno];
260 }
261
262 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
263                                                 unsigned int segno)
264 {
265         struct sit_info *sit_i = SIT_I(sbi);
266         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
267 }
268
269 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
270                                 unsigned int segno, int section)
271 {
272         /*
273          * In order to get # of valid blocks in a section instantly from many
274          * segments, f2fs manages two counting structures separately.
275          */
276         if (section > 1)
277                 return get_sec_entry(sbi, segno)->valid_blocks;
278         else
279                 return get_seg_entry(sbi, segno)->valid_blocks;
280 }
281
282 static inline void seg_info_from_raw_sit(struct seg_entry *se,
283                                         struct f2fs_sit_entry *rs)
284 {
285         se->valid_blocks = GET_SIT_VBLOCKS(rs);
286         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
287         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
289         se->type = GET_SIT_TYPE(rs);
290         se->mtime = le64_to_cpu(rs->mtime);
291 }
292
293 static inline void seg_info_to_raw_sit(struct seg_entry *se,
294                                         struct f2fs_sit_entry *rs)
295 {
296         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
297                                         se->valid_blocks;
298         rs->vblocks = cpu_to_le16(raw_vblocks);
299         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
300         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301         se->ckpt_valid_blocks = se->valid_blocks;
302         rs->mtime = cpu_to_le64(se->mtime);
303 }
304
305 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
306                 unsigned int max, unsigned int segno)
307 {
308         unsigned int ret;
309         read_lock(&free_i->segmap_lock);
310         ret = find_next_bit(free_i->free_segmap, max, segno);
311         read_unlock(&free_i->segmap_lock);
312         return ret;
313 }
314
315 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
316 {
317         struct free_segmap_info *free_i = FREE_I(sbi);
318         unsigned int secno = segno / sbi->segs_per_sec;
319         unsigned int start_segno = secno * sbi->segs_per_sec;
320         unsigned int next;
321
322         write_lock(&free_i->segmap_lock);
323         clear_bit(segno, free_i->free_segmap);
324         free_i->free_segments++;
325
326         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
327         if (next >= start_segno + sbi->segs_per_sec) {
328                 clear_bit(secno, free_i->free_secmap);
329                 free_i->free_sections++;
330         }
331         write_unlock(&free_i->segmap_lock);
332 }
333
334 static inline void __set_inuse(struct f2fs_sb_info *sbi,
335                 unsigned int segno)
336 {
337         struct free_segmap_info *free_i = FREE_I(sbi);
338         unsigned int secno = segno / sbi->segs_per_sec;
339         set_bit(segno, free_i->free_segmap);
340         free_i->free_segments--;
341         if (!test_and_set_bit(secno, free_i->free_secmap))
342                 free_i->free_sections--;
343 }
344
345 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
346                 unsigned int segno)
347 {
348         struct free_segmap_info *free_i = FREE_I(sbi);
349         unsigned int secno = segno / sbi->segs_per_sec;
350         unsigned int start_segno = secno * sbi->segs_per_sec;
351         unsigned int next;
352
353         write_lock(&free_i->segmap_lock);
354         if (test_and_clear_bit(segno, free_i->free_segmap)) {
355                 free_i->free_segments++;
356
357                 next = find_next_bit(free_i->free_segmap,
358                                 start_segno + sbi->segs_per_sec, start_segno);
359                 if (next >= start_segno + sbi->segs_per_sec) {
360                         if (test_and_clear_bit(secno, free_i->free_secmap))
361                                 free_i->free_sections++;
362                 }
363         }
364         write_unlock(&free_i->segmap_lock);
365 }
366
367 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
368                 unsigned int segno)
369 {
370         struct free_segmap_info *free_i = FREE_I(sbi);
371         unsigned int secno = segno / sbi->segs_per_sec;
372         write_lock(&free_i->segmap_lock);
373         if (!test_and_set_bit(segno, free_i->free_segmap)) {
374                 free_i->free_segments--;
375                 if (!test_and_set_bit(secno, free_i->free_secmap))
376                         free_i->free_sections--;
377         }
378         write_unlock(&free_i->segmap_lock);
379 }
380
381 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
382                 void *dst_addr)
383 {
384         struct sit_info *sit_i = SIT_I(sbi);
385         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
386 }
387
388 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
389 {
390         return SIT_I(sbi)->written_valid_blocks;
391 }
392
393 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
394 {
395         return FREE_I(sbi)->free_segments;
396 }
397
398 static inline int reserved_segments(struct f2fs_sb_info *sbi)
399 {
400         return SM_I(sbi)->reserved_segments;
401 }
402
403 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
404 {
405         return FREE_I(sbi)->free_sections;
406 }
407
408 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
409 {
410         return DIRTY_I(sbi)->nr_dirty[PRE];
411 }
412
413 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
414 {
415         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
416                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
417                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
418                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
419                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
420                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
421 }
422
423 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
424 {
425         return SM_I(sbi)->ovp_segments;
426 }
427
428 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
429 {
430         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
431 }
432
433 static inline int reserved_sections(struct f2fs_sb_info *sbi)
434 {
435         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
436 }
437
438 static inline bool need_SSR(struct f2fs_sb_info *sbi)
439 {
440         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
441         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
442         return free_sections(sbi) <= (node_secs + 2 * dent_secs +
443                                                 reserved_sections(sbi) + 1);
444 }
445
446 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
447 {
448         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
449         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
450
451         if (unlikely(sbi->por_doing))
452                 return false;
453
454         return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
455                                                 reserved_sections(sbi));
456 }
457
458 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
459 {
460         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
461 }
462
463 static inline int utilization(struct f2fs_sb_info *sbi)
464 {
465         return div_u64((u64)valid_user_blocks(sbi) * 100,
466                                         sbi->user_block_count);
467 }
468
469 /*
470  * Sometimes f2fs may be better to drop out-of-place update policy.
471  * And, users can control the policy through sysfs entries.
472  * There are five policies with triggering conditions as follows.
473  * F2FS_IPU_FORCE - all the time,
474  * F2FS_IPU_SSR - if SSR mode is activated,
475  * F2FS_IPU_UTIL - if FS utilization is over threashold,
476  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
477  *                     threashold,
478  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
479  *                     storages. IPU will be triggered only if the # of dirty
480  *                     pages over min_fsync_blocks.
481  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
482  */
483 #define DEF_MIN_IPU_UTIL        70
484 #define DEF_MIN_FSYNC_BLOCKS    8
485
486 enum {
487         F2FS_IPU_FORCE,
488         F2FS_IPU_SSR,
489         F2FS_IPU_UTIL,
490         F2FS_IPU_SSR_UTIL,
491         F2FS_IPU_FSYNC,
492 };
493
494 static inline bool need_inplace_update(struct inode *inode)
495 {
496         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
497         unsigned int policy = SM_I(sbi)->ipu_policy;
498
499         /* IPU can be done only for the user data */
500         if (S_ISDIR(inode->i_mode))
501                 return false;
502
503         if (policy & (0x1 << F2FS_IPU_FORCE))
504                 return true;
505         if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
506                 return true;
507         if (policy & (0x1 << F2FS_IPU_UTIL) &&
508                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
509                 return true;
510         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
511                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
512                 return true;
513
514         /* this is only set during fdatasync */
515         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
516                         is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
517                 return true;
518
519         return false;
520 }
521
522 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
523                 int type)
524 {
525         struct curseg_info *curseg = CURSEG_I(sbi, type);
526         return curseg->segno;
527 }
528
529 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
530                 int type)
531 {
532         struct curseg_info *curseg = CURSEG_I(sbi, type);
533         return curseg->alloc_type;
534 }
535
536 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
537 {
538         struct curseg_info *curseg = CURSEG_I(sbi, type);
539         return curseg->next_blkoff;
540 }
541
542 #ifdef CONFIG_F2FS_CHECK_FS
543 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
544 {
545         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
546         BUG_ON(segno > end_segno);
547 }
548
549 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
550 {
551         struct f2fs_sm_info *sm_info = SM_I(sbi);
552         block_t total_blks = TOTAL_BLKS(sbi);
553         block_t start_addr = sm_info->seg0_blkaddr;
554         block_t end_addr = start_addr + total_blks - 1;
555         BUG_ON(blk_addr < start_addr);
556         BUG_ON(blk_addr > end_addr);
557 }
558
559 /*
560  * Summary block is always treated as an invalid block
561  */
562 static inline void check_block_count(struct f2fs_sb_info *sbi,
563                 int segno, struct f2fs_sit_entry *raw_sit)
564 {
565         struct f2fs_sm_info *sm_info = SM_I(sbi);
566         unsigned int end_segno = sm_info->segment_count - 1;
567         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
568         int valid_blocks = 0;
569         int cur_pos = 0, next_pos;
570
571         /* check segment usage */
572         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
573
574         /* check boundary of a given segment number */
575         BUG_ON(segno > end_segno);
576
577         /* check bitmap with valid block count */
578         do {
579                 if (is_valid) {
580                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
581                                         sbi->blocks_per_seg,
582                                         cur_pos);
583                         valid_blocks += next_pos - cur_pos;
584                 } else
585                         next_pos = find_next_bit_le(&raw_sit->valid_map,
586                                         sbi->blocks_per_seg,
587                                         cur_pos);
588                 cur_pos = next_pos;
589                 is_valid = !is_valid;
590         } while (cur_pos < sbi->blocks_per_seg);
591         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
592 }
593 #else
594 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
595 {
596         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
597
598         if (segno > end_segno)
599                 sbi->need_fsck = true;
600 }
601
602 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
603 {
604         struct f2fs_sm_info *sm_info = SM_I(sbi);
605         block_t total_blks = TOTAL_BLKS(sbi);
606         block_t start_addr = sm_info->seg0_blkaddr;
607         block_t end_addr = start_addr + total_blks - 1;
608
609         if (blk_addr < start_addr || blk_addr > end_addr)
610                 sbi->need_fsck = true;
611 }
612
613 /*
614  * Summary block is always treated as an invalid block
615  */
616 static inline void check_block_count(struct f2fs_sb_info *sbi,
617                 int segno, struct f2fs_sit_entry *raw_sit)
618 {
619         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
620
621         /* check segment usage */
622         if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
623                 sbi->need_fsck = true;
624
625         /* check boundary of a given segment number */
626         if (segno > end_segno)
627                 sbi->need_fsck = true;
628 }
629 #endif
630
631 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
632                                                 unsigned int start)
633 {
634         struct sit_info *sit_i = SIT_I(sbi);
635         unsigned int offset = SIT_BLOCK_OFFSET(start);
636         block_t blk_addr = sit_i->sit_base_addr + offset;
637
638         check_seg_range(sbi, start);
639
640         /* calculate sit block address */
641         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
642                 blk_addr += sit_i->sit_blocks;
643
644         return blk_addr;
645 }
646
647 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
648                                                 pgoff_t block_addr)
649 {
650         struct sit_info *sit_i = SIT_I(sbi);
651         block_addr -= sit_i->sit_base_addr;
652         if (block_addr < sit_i->sit_blocks)
653                 block_addr += sit_i->sit_blocks;
654         else
655                 block_addr -= sit_i->sit_blocks;
656
657         return block_addr + sit_i->sit_base_addr;
658 }
659
660 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
661 {
662         unsigned int block_off = SIT_BLOCK_OFFSET(start);
663
664         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
665                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
666         else
667                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
668 }
669
670 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
671 {
672         struct sit_info *sit_i = SIT_I(sbi);
673         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
674                                                 sit_i->mounted_time;
675 }
676
677 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
678                         unsigned int ofs_in_node, unsigned char version)
679 {
680         sum->nid = cpu_to_le32(nid);
681         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
682         sum->version = version;
683 }
684
685 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
686 {
687         return __start_cp_addr(sbi) +
688                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
689 }
690
691 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
692 {
693         return __start_cp_addr(sbi) +
694                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
695                                 - (base + 1) + type;
696 }
697
698 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
699 {
700         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
701                 return true;
702         return false;
703 }
704
705 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
706 {
707         struct block_device *bdev = sbi->sb->s_bdev;
708         struct request_queue *q = bdev_get_queue(bdev);
709         return SECTOR_TO_BLOCK(queue_max_sectors(q));
710 }
711
712 /*
713  * It is very important to gather dirty pages and write at once, so that we can
714  * submit a big bio without interfering other data writes.
715  * By default, 512 pages for directory data,
716  * 512 pages (2MB) * 3 for three types of nodes, and
717  * max_bio_blocks for meta are set.
718  */
719 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
720 {
721         if (type == DATA)
722                 return sbi->blocks_per_seg;
723         else if (type == NODE)
724                 return 3 * sbi->blocks_per_seg;
725         else if (type == META)
726                 return MAX_BIO_BLOCKS(sbi);
727         else
728                 return 0;
729 }
730
731 /*
732  * When writing pages, it'd better align nr_to_write for segment size.
733  */
734 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
735                                         struct writeback_control *wbc)
736 {
737         long nr_to_write, desired;
738
739         if (wbc->sync_mode != WB_SYNC_NONE)
740                 return 0;
741
742         nr_to_write = wbc->nr_to_write;
743
744         if (type == DATA)
745                 desired = 4096;
746         else if (type == NODE)
747                 desired = 3 * max_hw_blocks(sbi);
748         else
749                 desired = MAX_BIO_BLOCKS(sbi);
750
751         wbc->nr_to_write = desired;
752         return desired - nr_to_write;
753 }