]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
Merge branch 'for-3.13/logitech' into for-next
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 /* L: Logical segment # in volume, R: Relative segment # in main area */
18 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
19 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
20
21 #define IS_DATASEG(t)                                                   \
22         ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
23         (t == CURSEG_WARM_DATA))
24
25 #define IS_NODESEG(t)                                                   \
26         ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
27         (t == CURSEG_WARM_NODE))
28
29 #define IS_CURSEG(sbi, seg)                                             \
30         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
33          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
34          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
35          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
36
37 #define IS_CURSEC(sbi, secno)                                           \
38         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
39           sbi->segs_per_sec) || \
40          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
41           sbi->segs_per_sec) || \
42          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
43           sbi->segs_per_sec) || \
44          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
45           sbi->segs_per_sec) || \
46          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
47           sbi->segs_per_sec) || \
48          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
49           sbi->segs_per_sec))   \
50
51 #define START_BLOCK(sbi, segno)                                         \
52         (SM_I(sbi)->seg0_blkaddr +                                      \
53          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
54 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
55         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
56
57 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
58
59 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
60         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
61 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
62         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
63 #define GET_SEGNO(sbi, blk_addr)                                        \
64         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
65         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
66                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)                                   \
68         ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
70         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno)                               \
73         ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
79         (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
81         (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(sit_i, segno)               \
83         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define f2fs_bitmap_size(nr)                    \
85         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
86 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
87 #define TOTAL_SECS(sbi) (sbi->total_sections)
88
89 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
90         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
91 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
92         (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93
94 /* during checkpoint, bio_private is used to synchronize the last bio */
95 struct bio_private {
96         struct f2fs_sb_info *sbi;
97         bool is_sync;
98         void *wait;
99 };
100
101 /*
102  * indicate a block allocation direction: RIGHT and LEFT.
103  * RIGHT means allocating new sections towards the end of volume.
104  * LEFT means the opposite direction.
105  */
106 enum {
107         ALLOC_RIGHT = 0,
108         ALLOC_LEFT
109 };
110
111 /*
112  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
113  * LFS writes data sequentially with cleaning operations.
114  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
115  */
116 enum {
117         LFS = 0,
118         SSR
119 };
120
121 /*
122  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
123  * GC_CB is based on cost-benefit algorithm.
124  * GC_GREEDY is based on greedy algorithm.
125  */
126 enum {
127         GC_CB = 0,
128         GC_GREEDY
129 };
130
131 /*
132  * BG_GC means the background cleaning job.
133  * FG_GC means the on-demand cleaning job.
134  */
135 enum {
136         BG_GC = 0,
137         FG_GC
138 };
139
140 /* for a function parameter to select a victim segment */
141 struct victim_sel_policy {
142         int alloc_mode;                 /* LFS or SSR */
143         int gc_mode;                    /* GC_CB or GC_GREEDY */
144         unsigned long *dirty_segmap;    /* dirty segment bitmap */
145         unsigned int max_search;        /* maximum # of segments to search */
146         unsigned int offset;            /* last scanned bitmap offset */
147         unsigned int ofs_unit;          /* bitmap search unit */
148         unsigned int min_cost;          /* minimum cost */
149         unsigned int min_segno;         /* segment # having min. cost */
150 };
151
152 struct seg_entry {
153         unsigned short valid_blocks;    /* # of valid blocks */
154         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
155         /*
156          * # of valid blocks and the validity bitmap stored in the the last
157          * checkpoint pack. This information is used by the SSR mode.
158          */
159         unsigned short ckpt_valid_blocks;
160         unsigned char *ckpt_valid_map;
161         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
162         unsigned long long mtime;       /* modification time of the segment */
163 };
164
165 struct sec_entry {
166         unsigned int valid_blocks;      /* # of valid blocks in a section */
167 };
168
169 struct segment_allocation {
170         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
171 };
172
173 struct sit_info {
174         const struct segment_allocation *s_ops;
175
176         block_t sit_base_addr;          /* start block address of SIT area */
177         block_t sit_blocks;             /* # of blocks used by SIT area */
178         block_t written_valid_blocks;   /* # of valid blocks in main area */
179         char *sit_bitmap;               /* SIT bitmap pointer */
180         unsigned int bitmap_size;       /* SIT bitmap size */
181
182         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
183         unsigned int dirty_sentries;            /* # of dirty sentries */
184         unsigned int sents_per_block;           /* # of SIT entries per block */
185         struct mutex sentry_lock;               /* to protect SIT cache */
186         struct seg_entry *sentries;             /* SIT segment-level cache */
187         struct sec_entry *sec_entries;          /* SIT section-level cache */
188
189         /* for cost-benefit algorithm in cleaning procedure */
190         unsigned long long elapsed_time;        /* elapsed time after mount */
191         unsigned long long mounted_time;        /* mount time */
192         unsigned long long min_mtime;           /* min. modification time */
193         unsigned long long max_mtime;           /* max. modification time */
194 };
195
196 struct free_segmap_info {
197         unsigned int start_segno;       /* start segment number logically */
198         unsigned int free_segments;     /* # of free segments */
199         unsigned int free_sections;     /* # of free sections */
200         rwlock_t segmap_lock;           /* free segmap lock */
201         unsigned long *free_segmap;     /* free segment bitmap */
202         unsigned long *free_secmap;     /* free section bitmap */
203 };
204
205 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
206 enum dirty_type {
207         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
208         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
209         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
210         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
211         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
212         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
213         DIRTY,                  /* to count # of dirty segments */
214         PRE,                    /* to count # of entirely obsolete segments */
215         NR_DIRTY_TYPE
216 };
217
218 struct dirty_seglist_info {
219         const struct victim_selection *v_ops;   /* victim selction operation */
220         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
221         struct mutex seglist_lock;              /* lock for segment bitmaps */
222         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
223         unsigned long *victim_secmap;           /* background GC victims */
224 };
225
226 /* victim selection function for cleaning and SSR */
227 struct victim_selection {
228         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
229                                                         int, int, char);
230 };
231
232 /* for active log information */
233 struct curseg_info {
234         struct mutex curseg_mutex;              /* lock for consistency */
235         struct f2fs_summary_block *sum_blk;     /* cached summary block */
236         unsigned char alloc_type;               /* current allocation type */
237         unsigned int segno;                     /* current segment number */
238         unsigned short next_blkoff;             /* next block offset to write */
239         unsigned int zone;                      /* current zone number */
240         unsigned int next_segno;                /* preallocated segment */
241 };
242
243 /*
244  * inline functions
245  */
246 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
247 {
248         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
249 }
250
251 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
252                                                 unsigned int segno)
253 {
254         struct sit_info *sit_i = SIT_I(sbi);
255         return &sit_i->sentries[segno];
256 }
257
258 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
259                                                 unsigned int segno)
260 {
261         struct sit_info *sit_i = SIT_I(sbi);
262         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
263 }
264
265 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
266                                 unsigned int segno, int section)
267 {
268         /*
269          * In order to get # of valid blocks in a section instantly from many
270          * segments, f2fs manages two counting structures separately.
271          */
272         if (section > 1)
273                 return get_sec_entry(sbi, segno)->valid_blocks;
274         else
275                 return get_seg_entry(sbi, segno)->valid_blocks;
276 }
277
278 static inline void seg_info_from_raw_sit(struct seg_entry *se,
279                                         struct f2fs_sit_entry *rs)
280 {
281         se->valid_blocks = GET_SIT_VBLOCKS(rs);
282         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
283         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
284         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
285         se->type = GET_SIT_TYPE(rs);
286         se->mtime = le64_to_cpu(rs->mtime);
287 }
288
289 static inline void seg_info_to_raw_sit(struct seg_entry *se,
290                                         struct f2fs_sit_entry *rs)
291 {
292         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
293                                         se->valid_blocks;
294         rs->vblocks = cpu_to_le16(raw_vblocks);
295         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
296         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
297         se->ckpt_valid_blocks = se->valid_blocks;
298         rs->mtime = cpu_to_le64(se->mtime);
299 }
300
301 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
302                 unsigned int max, unsigned int segno)
303 {
304         unsigned int ret;
305         read_lock(&free_i->segmap_lock);
306         ret = find_next_bit(free_i->free_segmap, max, segno);
307         read_unlock(&free_i->segmap_lock);
308         return ret;
309 }
310
311 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
312 {
313         struct free_segmap_info *free_i = FREE_I(sbi);
314         unsigned int secno = segno / sbi->segs_per_sec;
315         unsigned int start_segno = secno * sbi->segs_per_sec;
316         unsigned int next;
317
318         write_lock(&free_i->segmap_lock);
319         clear_bit(segno, free_i->free_segmap);
320         free_i->free_segments++;
321
322         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
323         if (next >= start_segno + sbi->segs_per_sec) {
324                 clear_bit(secno, free_i->free_secmap);
325                 free_i->free_sections++;
326         }
327         write_unlock(&free_i->segmap_lock);
328 }
329
330 static inline void __set_inuse(struct f2fs_sb_info *sbi,
331                 unsigned int segno)
332 {
333         struct free_segmap_info *free_i = FREE_I(sbi);
334         unsigned int secno = segno / sbi->segs_per_sec;
335         set_bit(segno, free_i->free_segmap);
336         free_i->free_segments--;
337         if (!test_and_set_bit(secno, free_i->free_secmap))
338                 free_i->free_sections--;
339 }
340
341 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
342                 unsigned int segno)
343 {
344         struct free_segmap_info *free_i = FREE_I(sbi);
345         unsigned int secno = segno / sbi->segs_per_sec;
346         unsigned int start_segno = secno * sbi->segs_per_sec;
347         unsigned int next;
348
349         write_lock(&free_i->segmap_lock);
350         if (test_and_clear_bit(segno, free_i->free_segmap)) {
351                 free_i->free_segments++;
352
353                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
354                                                                 start_segno);
355                 if (next >= start_segno + sbi->segs_per_sec) {
356                         if (test_and_clear_bit(secno, free_i->free_secmap))
357                                 free_i->free_sections++;
358                 }
359         }
360         write_unlock(&free_i->segmap_lock);
361 }
362
363 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
364                 unsigned int segno)
365 {
366         struct free_segmap_info *free_i = FREE_I(sbi);
367         unsigned int secno = segno / sbi->segs_per_sec;
368         write_lock(&free_i->segmap_lock);
369         if (!test_and_set_bit(segno, free_i->free_segmap)) {
370                 free_i->free_segments--;
371                 if (!test_and_set_bit(secno, free_i->free_secmap))
372                         free_i->free_sections--;
373         }
374         write_unlock(&free_i->segmap_lock);
375 }
376
377 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
378                 void *dst_addr)
379 {
380         struct sit_info *sit_i = SIT_I(sbi);
381         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
382 }
383
384 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
385 {
386         struct sit_info *sit_i = SIT_I(sbi);
387         block_t vblocks;
388
389         mutex_lock(&sit_i->sentry_lock);
390         vblocks = sit_i->written_valid_blocks;
391         mutex_unlock(&sit_i->sentry_lock);
392
393         return vblocks;
394 }
395
396 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
397 {
398         struct free_segmap_info *free_i = FREE_I(sbi);
399         unsigned int free_segs;
400
401         read_lock(&free_i->segmap_lock);
402         free_segs = free_i->free_segments;
403         read_unlock(&free_i->segmap_lock);
404
405         return free_segs;
406 }
407
408 static inline int reserved_segments(struct f2fs_sb_info *sbi)
409 {
410         return SM_I(sbi)->reserved_segments;
411 }
412
413 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
414 {
415         struct free_segmap_info *free_i = FREE_I(sbi);
416         unsigned int free_secs;
417
418         read_lock(&free_i->segmap_lock);
419         free_secs = free_i->free_sections;
420         read_unlock(&free_i->segmap_lock);
421
422         return free_secs;
423 }
424
425 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
426 {
427         return DIRTY_I(sbi)->nr_dirty[PRE];
428 }
429
430 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
431 {
432         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
433                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
434                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
435                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
436                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
437                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
438 }
439
440 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
441 {
442         return SM_I(sbi)->ovp_segments;
443 }
444
445 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
446 {
447         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
448 }
449
450 static inline int reserved_sections(struct f2fs_sb_info *sbi)
451 {
452         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
453 }
454
455 static inline bool need_SSR(struct f2fs_sb_info *sbi)
456 {
457         return ((prefree_segments(sbi) / sbi->segs_per_sec)
458                         + free_sections(sbi) < overprovision_sections(sbi));
459 }
460
461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
462 {
463         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
464         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
465
466         if (sbi->por_doing)
467                 return false;
468
469         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
470                                                 reserved_sections(sbi)));
471 }
472
473 static inline int utilization(struct f2fs_sb_info *sbi)
474 {
475         return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
476 }
477
478 /*
479  * Sometimes f2fs may be better to drop out-of-place update policy.
480  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
481  * data in the original place likewise other traditional file systems.
482  * But, currently set 100 in percentage, which means it is disabled.
483  * See below need_inplace_update().
484  */
485 #define MIN_IPU_UTIL            100
486 static inline bool need_inplace_update(struct inode *inode)
487 {
488         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
489         if (S_ISDIR(inode->i_mode))
490                 return false;
491         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
492                 return true;
493         return false;
494 }
495
496 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
497                 int type)
498 {
499         struct curseg_info *curseg = CURSEG_I(sbi, type);
500         return curseg->segno;
501 }
502
503 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
504                 int type)
505 {
506         struct curseg_info *curseg = CURSEG_I(sbi, type);
507         return curseg->alloc_type;
508 }
509
510 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
511 {
512         struct curseg_info *curseg = CURSEG_I(sbi, type);
513         return curseg->next_blkoff;
514 }
515
516 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
517 {
518         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
519         BUG_ON(segno > end_segno);
520 }
521
522 /*
523  * This function is used for only debugging.
524  * NOTE: In future, we have to remove this function.
525  */
526 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
527 {
528         struct f2fs_sm_info *sm_info = SM_I(sbi);
529         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
530         block_t start_addr = sm_info->seg0_blkaddr;
531         block_t end_addr = start_addr + total_blks - 1;
532         BUG_ON(blk_addr < start_addr);
533         BUG_ON(blk_addr > end_addr);
534 }
535
536 /*
537  * Summary block is always treated as invalid block
538  */
539 static inline void check_block_count(struct f2fs_sb_info *sbi,
540                 int segno, struct f2fs_sit_entry *raw_sit)
541 {
542         struct f2fs_sm_info *sm_info = SM_I(sbi);
543         unsigned int end_segno = sm_info->segment_count - 1;
544         int valid_blocks = 0;
545         int i;
546
547         /* check segment usage */
548         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
549
550         /* check boundary of a given segment number */
551         BUG_ON(segno > end_segno);
552
553         /* check bitmap with valid block count */
554         for (i = 0; i < sbi->blocks_per_seg; i++)
555                 if (f2fs_test_bit(i, raw_sit->valid_map))
556                         valid_blocks++;
557         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
558 }
559
560 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
561                                                 unsigned int start)
562 {
563         struct sit_info *sit_i = SIT_I(sbi);
564         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
565         block_t blk_addr = sit_i->sit_base_addr + offset;
566
567         check_seg_range(sbi, start);
568
569         /* calculate sit block address */
570         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
571                 blk_addr += sit_i->sit_blocks;
572
573         return blk_addr;
574 }
575
576 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
577                                                 pgoff_t block_addr)
578 {
579         struct sit_info *sit_i = SIT_I(sbi);
580         block_addr -= sit_i->sit_base_addr;
581         if (block_addr < sit_i->sit_blocks)
582                 block_addr += sit_i->sit_blocks;
583         else
584                 block_addr -= sit_i->sit_blocks;
585
586         return block_addr + sit_i->sit_base_addr;
587 }
588
589 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
590 {
591         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
592
593         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
594                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
595         else
596                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
597 }
598
599 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
600 {
601         struct sit_info *sit_i = SIT_I(sbi);
602         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
603                                                 sit_i->mounted_time;
604 }
605
606 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
607                         unsigned int ofs_in_node, unsigned char version)
608 {
609         sum->nid = cpu_to_le32(nid);
610         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
611         sum->version = version;
612 }
613
614 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
615 {
616         return __start_cp_addr(sbi) +
617                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
618 }
619
620 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
621 {
622         return __start_cp_addr(sbi) +
623                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
624                                 - (base + 1) + type;
625 }
626
627 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
628 {
629         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
630                 return true;
631         return false;
632 }
633
634 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
635 {
636         struct block_device *bdev = sbi->sb->s_bdev;
637         struct request_queue *q = bdev_get_queue(bdev);
638         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
639 }