]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
Merge tag 'gfs2-4.11.addendum' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO                      ((unsigned int)(~0))
16 #define NULL_SECNO                      ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
26
27 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
29
30 #define IS_CURSEG(sbi, seg)                                             \
31         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
32          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
33          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
34          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
35          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
36          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
37
38 #define IS_CURSEC(sbi, secno)                                           \
39         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
46           sbi->segs_per_sec) || \
47          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
48           sbi->segs_per_sec) || \
49          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
50           sbi->segs_per_sec))   \
51
52 #define MAIN_BLKADDR(sbi)       (SM_I(sbi)->main_blkaddr)
53 #define SEG0_BLKADDR(sbi)       (SM_I(sbi)->seg0_blkaddr)
54
55 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
56 #define MAIN_SECS(sbi)  (sbi->total_sections)
57
58 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
59 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
60
61 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62 #define SEGMENT_SIZE(sbi)       (1ULL << (sbi->log_blocksize +          \
63                                         sbi->log_blocks_per_seg))
64
65 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
66          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
67
68 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
69         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
70
71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
73         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
75         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
76
77 #define GET_SEGNO(sbi, blk_addr)                                        \
78         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
79         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
80                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81 #define GET_SECNO(sbi, segno)                                   \
82         ((segno) / sbi->segs_per_sec)
83 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
84         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
85
86 #define GET_SUM_BLOCK(sbi, segno)                               \
87         ((sbi->sm_info->ssa_blkaddr) + segno)
88
89 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
90 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
91
92 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
93         (segno % sit_i->sents_per_block)
94 #define SIT_BLOCK_OFFSET(segno)                                 \
95         (segno / SIT_ENTRY_PER_BLOCK)
96 #define START_SEGNO(segno)              \
97         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98 #define SIT_BLK_CNT(sbi)                        \
99         ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100 #define f2fs_bitmap_size(nr)                    \
101         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
102
103 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
104         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105 #define SECTOR_TO_BLOCK(sectors)                                        \
106         (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107
108 /*
109  * indicate a block allocation direction: RIGHT and LEFT.
110  * RIGHT means allocating new sections towards the end of volume.
111  * LEFT means the opposite direction.
112  */
113 enum {
114         ALLOC_RIGHT = 0,
115         ALLOC_LEFT
116 };
117
118 /*
119  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120  * LFS writes data sequentially with cleaning operations.
121  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122  */
123 enum {
124         LFS = 0,
125         SSR
126 };
127
128 /*
129  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130  * GC_CB is based on cost-benefit algorithm.
131  * GC_GREEDY is based on greedy algorithm.
132  */
133 enum {
134         GC_CB = 0,
135         GC_GREEDY
136 };
137
138 /*
139  * BG_GC means the background cleaning job.
140  * FG_GC means the on-demand cleaning job.
141  * FORCE_FG_GC means on-demand cleaning job in background.
142  */
143 enum {
144         BG_GC = 0,
145         FG_GC,
146         FORCE_FG_GC,
147 };
148
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy {
151         int alloc_mode;                 /* LFS or SSR */
152         int gc_mode;                    /* GC_CB or GC_GREEDY */
153         unsigned long *dirty_segmap;    /* dirty segment bitmap */
154         unsigned int max_search;        /* maximum # of segments to search */
155         unsigned int offset;            /* last scanned bitmap offset */
156         unsigned int ofs_unit;          /* bitmap search unit */
157         unsigned int min_cost;          /* minimum cost */
158         unsigned int min_segno;         /* segment # having min. cost */
159 };
160
161 struct seg_entry {
162         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
163         unsigned int valid_blocks:10;   /* # of valid blocks */
164         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
165         unsigned int padding:6;         /* padding */
166         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
167         /*
168          * # of valid blocks and the validity bitmap stored in the the last
169          * checkpoint pack. This information is used by the SSR mode.
170          */
171         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
172         unsigned char *discard_map;
173         unsigned long long mtime;       /* modification time of the segment */
174 };
175
176 struct sec_entry {
177         unsigned int valid_blocks;      /* # of valid blocks in a section */
178 };
179
180 struct segment_allocation {
181         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182 };
183
184 /*
185  * this value is set in page as a private data which indicate that
186  * the page is atomically written, and it is in inmem_pages list.
187  */
188 #define ATOMIC_WRITTEN_PAGE             ((unsigned long)-1)
189
190 #define IS_ATOMIC_WRITTEN_PAGE(page)                    \
191                 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192
193 struct inmem_pages {
194         struct list_head list;
195         struct page *page;
196         block_t old_addr;               /* for revoking when fail to commit */
197 };
198
199 struct sit_info {
200         const struct segment_allocation *s_ops;
201
202         block_t sit_base_addr;          /* start block address of SIT area */
203         block_t sit_blocks;             /* # of blocks used by SIT area */
204         block_t written_valid_blocks;   /* # of valid blocks in main area */
205         char *sit_bitmap;               /* SIT bitmap pointer */
206         unsigned int bitmap_size;       /* SIT bitmap size */
207
208         unsigned long *tmp_map;                 /* bitmap for temporal use */
209         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
210         unsigned int dirty_sentries;            /* # of dirty sentries */
211         unsigned int sents_per_block;           /* # of SIT entries per block */
212         struct mutex sentry_lock;               /* to protect SIT cache */
213         struct seg_entry *sentries;             /* SIT segment-level cache */
214         struct sec_entry *sec_entries;          /* SIT section-level cache */
215
216         /* for cost-benefit algorithm in cleaning procedure */
217         unsigned long long elapsed_time;        /* elapsed time after mount */
218         unsigned long long mounted_time;        /* mount time */
219         unsigned long long min_mtime;           /* min. modification time */
220         unsigned long long max_mtime;           /* max. modification time */
221 };
222
223 struct free_segmap_info {
224         unsigned int start_segno;       /* start segment number logically */
225         unsigned int free_segments;     /* # of free segments */
226         unsigned int free_sections;     /* # of free sections */
227         spinlock_t segmap_lock;         /* free segmap lock */
228         unsigned long *free_segmap;     /* free segment bitmap */
229         unsigned long *free_secmap;     /* free section bitmap */
230 };
231
232 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233 enum dirty_type {
234         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
235         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
236         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
237         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
238         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
239         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
240         DIRTY,                  /* to count # of dirty segments */
241         PRE,                    /* to count # of entirely obsolete segments */
242         NR_DIRTY_TYPE
243 };
244
245 struct dirty_seglist_info {
246         const struct victim_selection *v_ops;   /* victim selction operation */
247         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
248         struct mutex seglist_lock;              /* lock for segment bitmaps */
249         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
250         unsigned long *victim_secmap;           /* background GC victims */
251 };
252
253 /* victim selection function for cleaning and SSR */
254 struct victim_selection {
255         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256                                                         int, int, char);
257 };
258
259 /* for active log information */
260 struct curseg_info {
261         struct mutex curseg_mutex;              /* lock for consistency */
262         struct f2fs_summary_block *sum_blk;     /* cached summary block */
263         struct rw_semaphore journal_rwsem;      /* protect journal area */
264         struct f2fs_journal *journal;           /* cached journal info */
265         unsigned char alloc_type;               /* current allocation type */
266         unsigned int segno;                     /* current segment number */
267         unsigned short next_blkoff;             /* next block offset to write */
268         unsigned int zone;                      /* current zone number */
269         unsigned int next_segno;                /* preallocated segment */
270 };
271
272 struct sit_entry_set {
273         struct list_head set_list;      /* link with all sit sets */
274         unsigned int start_segno;       /* start segno of sits in set */
275         unsigned int entry_cnt;         /* the # of sit entries in set */
276 };
277
278 /*
279  * inline functions
280  */
281 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282 {
283         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284 }
285
286 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287                                                 unsigned int segno)
288 {
289         struct sit_info *sit_i = SIT_I(sbi);
290         return &sit_i->sentries[segno];
291 }
292
293 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294                                                 unsigned int segno)
295 {
296         struct sit_info *sit_i = SIT_I(sbi);
297         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298 }
299
300 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301                                 unsigned int segno, int section)
302 {
303         /*
304          * In order to get # of valid blocks in a section instantly from many
305          * segments, f2fs manages two counting structures separately.
306          */
307         if (section > 1)
308                 return get_sec_entry(sbi, segno)->valid_blocks;
309         else
310                 return get_seg_entry(sbi, segno)->valid_blocks;
311 }
312
313 static inline void seg_info_from_raw_sit(struct seg_entry *se,
314                                         struct f2fs_sit_entry *rs)
315 {
316         se->valid_blocks = GET_SIT_VBLOCKS(rs);
317         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
320         se->type = GET_SIT_TYPE(rs);
321         se->mtime = le64_to_cpu(rs->mtime);
322 }
323
324 static inline void seg_info_to_raw_sit(struct seg_entry *se,
325                                         struct f2fs_sit_entry *rs)
326 {
327         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328                                         se->valid_blocks;
329         rs->vblocks = cpu_to_le16(raw_vblocks);
330         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
331         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332         se->ckpt_valid_blocks = se->valid_blocks;
333         rs->mtime = cpu_to_le64(se->mtime);
334 }
335
336 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337                 unsigned int max, unsigned int segno)
338 {
339         unsigned int ret;
340         spin_lock(&free_i->segmap_lock);
341         ret = find_next_bit(free_i->free_segmap, max, segno);
342         spin_unlock(&free_i->segmap_lock);
343         return ret;
344 }
345
346 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347 {
348         struct free_segmap_info *free_i = FREE_I(sbi);
349         unsigned int secno = segno / sbi->segs_per_sec;
350         unsigned int start_segno = secno * sbi->segs_per_sec;
351         unsigned int next;
352
353         spin_lock(&free_i->segmap_lock);
354         clear_bit(segno, free_i->free_segmap);
355         free_i->free_segments++;
356
357         next = find_next_bit(free_i->free_segmap,
358                         start_segno + sbi->segs_per_sec, start_segno);
359         if (next >= start_segno + sbi->segs_per_sec) {
360                 clear_bit(secno, free_i->free_secmap);
361                 free_i->free_sections++;
362         }
363         spin_unlock(&free_i->segmap_lock);
364 }
365
366 static inline void __set_inuse(struct f2fs_sb_info *sbi,
367                 unsigned int segno)
368 {
369         struct free_segmap_info *free_i = FREE_I(sbi);
370         unsigned int secno = segno / sbi->segs_per_sec;
371         set_bit(segno, free_i->free_segmap);
372         free_i->free_segments--;
373         if (!test_and_set_bit(secno, free_i->free_secmap))
374                 free_i->free_sections--;
375 }
376
377 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378                 unsigned int segno)
379 {
380         struct free_segmap_info *free_i = FREE_I(sbi);
381         unsigned int secno = segno / sbi->segs_per_sec;
382         unsigned int start_segno = secno * sbi->segs_per_sec;
383         unsigned int next;
384
385         spin_lock(&free_i->segmap_lock);
386         if (test_and_clear_bit(segno, free_i->free_segmap)) {
387                 free_i->free_segments++;
388
389                 next = find_next_bit(free_i->free_segmap,
390                                 start_segno + sbi->segs_per_sec, start_segno);
391                 if (next >= start_segno + sbi->segs_per_sec) {
392                         if (test_and_clear_bit(secno, free_i->free_secmap))
393                                 free_i->free_sections++;
394                 }
395         }
396         spin_unlock(&free_i->segmap_lock);
397 }
398
399 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400                 unsigned int segno)
401 {
402         struct free_segmap_info *free_i = FREE_I(sbi);
403         unsigned int secno = segno / sbi->segs_per_sec;
404         spin_lock(&free_i->segmap_lock);
405         if (!test_and_set_bit(segno, free_i->free_segmap)) {
406                 free_i->free_segments--;
407                 if (!test_and_set_bit(secno, free_i->free_secmap))
408                         free_i->free_sections--;
409         }
410         spin_unlock(&free_i->segmap_lock);
411 }
412
413 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414                 void *dst_addr)
415 {
416         struct sit_info *sit_i = SIT_I(sbi);
417         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418 }
419
420 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421 {
422         return SIT_I(sbi)->written_valid_blocks;
423 }
424
425 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426 {
427         return FREE_I(sbi)->free_segments;
428 }
429
430 static inline int reserved_segments(struct f2fs_sb_info *sbi)
431 {
432         return SM_I(sbi)->reserved_segments;
433 }
434
435 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436 {
437         return FREE_I(sbi)->free_sections;
438 }
439
440 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441 {
442         return DIRTY_I(sbi)->nr_dirty[PRE];
443 }
444
445 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446 {
447         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453 }
454
455 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456 {
457         return SM_I(sbi)->ovp_segments;
458 }
459
460 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461 {
462         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463 }
464
465 static inline int reserved_sections(struct f2fs_sb_info *sbi)
466 {
467         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468 }
469
470 static inline bool need_SSR(struct f2fs_sb_info *sbi)
471 {
472         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
475
476         if (test_opt(sbi, LFS))
477                 return false;
478
479         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
480                                                 reserved_sections(sbi) + 1);
481 }
482
483 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
484                                         int freed, int needed)
485 {
486         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
487         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
488         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
489
490         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491                 return false;
492
493         return (free_sections(sbi) + freed) <=
494                 (node_secs + 2 * dent_secs + imeta_secs +
495                 reserved_sections(sbi) + needed);
496 }
497
498 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
499 {
500         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
501 }
502
503 static inline int utilization(struct f2fs_sb_info *sbi)
504 {
505         return div_u64((u64)valid_user_blocks(sbi) * 100,
506                                         sbi->user_block_count);
507 }
508
509 /*
510  * Sometimes f2fs may be better to drop out-of-place update policy.
511  * And, users can control the policy through sysfs entries.
512  * There are five policies with triggering conditions as follows.
513  * F2FS_IPU_FORCE - all the time,
514  * F2FS_IPU_SSR - if SSR mode is activated,
515  * F2FS_IPU_UTIL - if FS utilization is over threashold,
516  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
517  *                     threashold,
518  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
519  *                     storages. IPU will be triggered only if the # of dirty
520  *                     pages over min_fsync_blocks.
521  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
522  */
523 #define DEF_MIN_IPU_UTIL        70
524 #define DEF_MIN_FSYNC_BLOCKS    8
525
526 enum {
527         F2FS_IPU_FORCE,
528         F2FS_IPU_SSR,
529         F2FS_IPU_UTIL,
530         F2FS_IPU_SSR_UTIL,
531         F2FS_IPU_FSYNC,
532 };
533
534 static inline bool need_inplace_update(struct inode *inode)
535 {
536         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
537         unsigned int policy = SM_I(sbi)->ipu_policy;
538
539         /* IPU can be done only for the user data */
540         if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
541                 return false;
542
543         if (test_opt(sbi, LFS))
544                 return false;
545
546         if (policy & (0x1 << F2FS_IPU_FORCE))
547                 return true;
548         if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
549                 return true;
550         if (policy & (0x1 << F2FS_IPU_UTIL) &&
551                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
552                 return true;
553         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
554                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
555                 return true;
556
557         /* this is only set during fdatasync */
558         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
559                         is_inode_flag_set(inode, FI_NEED_IPU))
560                 return true;
561
562         return false;
563 }
564
565 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
566                 int type)
567 {
568         struct curseg_info *curseg = CURSEG_I(sbi, type);
569         return curseg->segno;
570 }
571
572 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
573                 int type)
574 {
575         struct curseg_info *curseg = CURSEG_I(sbi, type);
576         return curseg->alloc_type;
577 }
578
579 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
580 {
581         struct curseg_info *curseg = CURSEG_I(sbi, type);
582         return curseg->next_blkoff;
583 }
584
585 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
586 {
587         f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
588 }
589
590 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
591 {
592         BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
593                         || blk_addr >= MAX_BLKADDR(sbi));
594 }
595
596 /*
597  * Summary block is always treated as an invalid block
598  */
599 static inline void check_block_count(struct f2fs_sb_info *sbi,
600                 int segno, struct f2fs_sit_entry *raw_sit)
601 {
602 #ifdef CONFIG_F2FS_CHECK_FS
603         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
604         int valid_blocks = 0;
605         int cur_pos = 0, next_pos;
606
607         /* check bitmap with valid block count */
608         do {
609                 if (is_valid) {
610                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
611                                         sbi->blocks_per_seg,
612                                         cur_pos);
613                         valid_blocks += next_pos - cur_pos;
614                 } else
615                         next_pos = find_next_bit_le(&raw_sit->valid_map,
616                                         sbi->blocks_per_seg,
617                                         cur_pos);
618                 cur_pos = next_pos;
619                 is_valid = !is_valid;
620         } while (cur_pos < sbi->blocks_per_seg);
621         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
622 #endif
623         /* check segment usage, and check boundary of a given segment number */
624         f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
625                                         || segno > TOTAL_SEGS(sbi) - 1);
626 }
627
628 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629                                                 unsigned int start)
630 {
631         struct sit_info *sit_i = SIT_I(sbi);
632         unsigned int offset = SIT_BLOCK_OFFSET(start);
633         block_t blk_addr = sit_i->sit_base_addr + offset;
634
635         check_seg_range(sbi, start);
636
637         /* calculate sit block address */
638         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639                 blk_addr += sit_i->sit_blocks;
640
641         return blk_addr;
642 }
643
644 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645                                                 pgoff_t block_addr)
646 {
647         struct sit_info *sit_i = SIT_I(sbi);
648         block_addr -= sit_i->sit_base_addr;
649         if (block_addr < sit_i->sit_blocks)
650                 block_addr += sit_i->sit_blocks;
651         else
652                 block_addr -= sit_i->sit_blocks;
653
654         return block_addr + sit_i->sit_base_addr;
655 }
656
657 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
658 {
659         unsigned int block_off = SIT_BLOCK_OFFSET(start);
660
661         f2fs_change_bit(block_off, sit_i->sit_bitmap);
662 }
663
664 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
665 {
666         struct sit_info *sit_i = SIT_I(sbi);
667         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668                                                 sit_i->mounted_time;
669 }
670
671 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672                         unsigned int ofs_in_node, unsigned char version)
673 {
674         sum->nid = cpu_to_le32(nid);
675         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676         sum->version = version;
677 }
678
679 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
680 {
681         return __start_cp_addr(sbi) +
682                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
683 }
684
685 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
686 {
687         return __start_cp_addr(sbi) +
688                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689                                 - (base + 1) + type;
690 }
691
692 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
693 {
694         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
695                 return true;
696         return false;
697 }
698
699 /*
700  * It is very important to gather dirty pages and write at once, so that we can
701  * submit a big bio without interfering other data writes.
702  * By default, 512 pages for directory data,
703  * 512 pages (2MB) * 3 for three types of nodes, and
704  * max_bio_blocks for meta are set.
705  */
706 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
707 {
708         if (sbi->sb->s_bdi->wb.dirty_exceeded)
709                 return 0;
710
711         if (type == DATA)
712                 return sbi->blocks_per_seg;
713         else if (type == NODE)
714                 return 8 * sbi->blocks_per_seg;
715         else if (type == META)
716                 return 8 * BIO_MAX_PAGES;
717         else
718                 return 0;
719 }
720
721 /*
722  * When writing pages, it'd better align nr_to_write for segment size.
723  */
724 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
725                                         struct writeback_control *wbc)
726 {
727         long nr_to_write, desired;
728
729         if (wbc->sync_mode != WB_SYNC_NONE)
730                 return 0;
731
732         nr_to_write = wbc->nr_to_write;
733         desired = BIO_MAX_PAGES;
734         if (type == NODE)
735                 desired <<= 1;
736
737         wbc->nr_to_write = desired;
738         return desired - nr_to_write;
739 }