]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
06d903b5d6c8b138b4a7208648fdc56fdf6cecfc
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 enum {
43         Opt_gc_background,
44         Opt_disable_roll_forward,
45         Opt_norecovery,
46         Opt_discard,
47         Opt_noheap,
48         Opt_user_xattr,
49         Opt_nouser_xattr,
50         Opt_acl,
51         Opt_noacl,
52         Opt_active_logs,
53         Opt_disable_ext_identify,
54         Opt_inline_xattr,
55         Opt_inline_data,
56         Opt_inline_dentry,
57         Opt_flush_merge,
58         Opt_nobarrier,
59         Opt_fastboot,
60         Opt_err,
61 };
62
63 static match_table_t f2fs_tokens = {
64         {Opt_gc_background, "background_gc=%s"},
65         {Opt_disable_roll_forward, "disable_roll_forward"},
66         {Opt_norecovery, "norecovery"},
67         {Opt_discard, "discard"},
68         {Opt_noheap, "no_heap"},
69         {Opt_user_xattr, "user_xattr"},
70         {Opt_nouser_xattr, "nouser_xattr"},
71         {Opt_acl, "acl"},
72         {Opt_noacl, "noacl"},
73         {Opt_active_logs, "active_logs=%u"},
74         {Opt_disable_ext_identify, "disable_ext_identify"},
75         {Opt_inline_xattr, "inline_xattr"},
76         {Opt_inline_data, "inline_data"},
77         {Opt_inline_dentry, "inline_dentry"},
78         {Opt_flush_merge, "flush_merge"},
79         {Opt_nobarrier, "nobarrier"},
80         {Opt_fastboot, "fastboot"},
81         {Opt_err, NULL},
82 };
83
84 /* Sysfs support for f2fs */
85 enum {
86         GC_THREAD,      /* struct f2fs_gc_thread */
87         SM_INFO,        /* struct f2fs_sm_info */
88         NM_INFO,        /* struct f2fs_nm_info */
89         F2FS_SBI,       /* struct f2fs_sb_info */
90 };
91
92 struct f2fs_attr {
93         struct attribute attr;
94         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
95         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
96                          const char *, size_t);
97         int struct_type;
98         int offset;
99 };
100
101 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
102 {
103         if (struct_type == GC_THREAD)
104                 return (unsigned char *)sbi->gc_thread;
105         else if (struct_type == SM_INFO)
106                 return (unsigned char *)SM_I(sbi);
107         else if (struct_type == NM_INFO)
108                 return (unsigned char *)NM_I(sbi);
109         else if (struct_type == F2FS_SBI)
110                 return (unsigned char *)sbi;
111         return NULL;
112 }
113
114 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
115                         struct f2fs_sb_info *sbi, char *buf)
116 {
117         unsigned char *ptr = NULL;
118         unsigned int *ui;
119
120         ptr = __struct_ptr(sbi, a->struct_type);
121         if (!ptr)
122                 return -EINVAL;
123
124         ui = (unsigned int *)(ptr + a->offset);
125
126         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
127 }
128
129 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
130                         struct f2fs_sb_info *sbi,
131                         const char *buf, size_t count)
132 {
133         unsigned char *ptr;
134         unsigned long t;
135         unsigned int *ui;
136         ssize_t ret;
137
138         ptr = __struct_ptr(sbi, a->struct_type);
139         if (!ptr)
140                 return -EINVAL;
141
142         ui = (unsigned int *)(ptr + a->offset);
143
144         ret = kstrtoul(skip_spaces(buf), 0, &t);
145         if (ret < 0)
146                 return ret;
147         *ui = t;
148         return count;
149 }
150
151 static ssize_t f2fs_attr_show(struct kobject *kobj,
152                                 struct attribute *attr, char *buf)
153 {
154         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
155                                                                 s_kobj);
156         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
157
158         return a->show ? a->show(a, sbi, buf) : 0;
159 }
160
161 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
162                                                 const char *buf, size_t len)
163 {
164         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
165                                                                         s_kobj);
166         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
167
168         return a->store ? a->store(a, sbi, buf, len) : 0;
169 }
170
171 static void f2fs_sb_release(struct kobject *kobj)
172 {
173         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
174                                                                 s_kobj);
175         complete(&sbi->s_kobj_unregister);
176 }
177
178 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
179 static struct f2fs_attr f2fs_attr_##_name = {                   \
180         .attr = {.name = __stringify(_name), .mode = _mode },   \
181         .show   = _show,                                        \
182         .store  = _store,                                       \
183         .struct_type = _struct_type,                            \
184         .offset = _offset                                       \
185 }
186
187 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
188         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
189                 f2fs_sbi_show, f2fs_sbi_store,                  \
190                 offsetof(struct struct_name, elname))
191
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
193 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
194 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
195 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
199 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
201 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
202 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
203 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
204
205 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
206 static struct attribute *f2fs_attrs[] = {
207         ATTR_LIST(gc_min_sleep_time),
208         ATTR_LIST(gc_max_sleep_time),
209         ATTR_LIST(gc_no_gc_sleep_time),
210         ATTR_LIST(gc_idle),
211         ATTR_LIST(reclaim_segments),
212         ATTR_LIST(max_small_discards),
213         ATTR_LIST(ipu_policy),
214         ATTR_LIST(min_ipu_util),
215         ATTR_LIST(min_fsync_blocks),
216         ATTR_LIST(max_victim_search),
217         ATTR_LIST(dir_level),
218         ATTR_LIST(ram_thresh),
219         NULL,
220 };
221
222 static const struct sysfs_ops f2fs_attr_ops = {
223         .show   = f2fs_attr_show,
224         .store  = f2fs_attr_store,
225 };
226
227 static struct kobj_type f2fs_ktype = {
228         .default_attrs  = f2fs_attrs,
229         .sysfs_ops      = &f2fs_attr_ops,
230         .release        = f2fs_sb_release,
231 };
232
233 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
234 {
235         struct va_format vaf;
236         va_list args;
237
238         va_start(args, fmt);
239         vaf.fmt = fmt;
240         vaf.va = &args;
241         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
242         va_end(args);
243 }
244
245 static void init_once(void *foo)
246 {
247         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
248
249         inode_init_once(&fi->vfs_inode);
250 }
251
252 static int parse_options(struct super_block *sb, char *options)
253 {
254         struct f2fs_sb_info *sbi = F2FS_SB(sb);
255         substring_t args[MAX_OPT_ARGS];
256         char *p, *name;
257         int arg = 0;
258
259         if (!options)
260                 return 0;
261
262         while ((p = strsep(&options, ",")) != NULL) {
263                 int token;
264                 if (!*p)
265                         continue;
266                 /*
267                  * Initialize args struct so we know whether arg was
268                  * found; some options take optional arguments.
269                  */
270                 args[0].to = args[0].from = NULL;
271                 token = match_token(p, f2fs_tokens, args);
272
273                 switch (token) {
274                 case Opt_gc_background:
275                         name = match_strdup(&args[0]);
276
277                         if (!name)
278                                 return -ENOMEM;
279                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
280                                 set_opt(sbi, BG_GC);
281                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
282                                 clear_opt(sbi, BG_GC);
283                         else {
284                                 kfree(name);
285                                 return -EINVAL;
286                         }
287                         kfree(name);
288                         break;
289                 case Opt_disable_roll_forward:
290                         set_opt(sbi, DISABLE_ROLL_FORWARD);
291                         break;
292                 case Opt_norecovery:
293                         /* this option mounts f2fs with ro */
294                         set_opt(sbi, DISABLE_ROLL_FORWARD);
295                         if (!f2fs_readonly(sb))
296                                 return -EINVAL;
297                         break;
298                 case Opt_discard:
299                         set_opt(sbi, DISCARD);
300                         break;
301                 case Opt_noheap:
302                         set_opt(sbi, NOHEAP);
303                         break;
304 #ifdef CONFIG_F2FS_FS_XATTR
305                 case Opt_user_xattr:
306                         set_opt(sbi, XATTR_USER);
307                         break;
308                 case Opt_nouser_xattr:
309                         clear_opt(sbi, XATTR_USER);
310                         break;
311                 case Opt_inline_xattr:
312                         set_opt(sbi, INLINE_XATTR);
313                         break;
314 #else
315                 case Opt_user_xattr:
316                         f2fs_msg(sb, KERN_INFO,
317                                 "user_xattr options not supported");
318                         break;
319                 case Opt_nouser_xattr:
320                         f2fs_msg(sb, KERN_INFO,
321                                 "nouser_xattr options not supported");
322                         break;
323                 case Opt_inline_xattr:
324                         f2fs_msg(sb, KERN_INFO,
325                                 "inline_xattr options not supported");
326                         break;
327 #endif
328 #ifdef CONFIG_F2FS_FS_POSIX_ACL
329                 case Opt_acl:
330                         set_opt(sbi, POSIX_ACL);
331                         break;
332                 case Opt_noacl:
333                         clear_opt(sbi, POSIX_ACL);
334                         break;
335 #else
336                 case Opt_acl:
337                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
338                         break;
339                 case Opt_noacl:
340                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
341                         break;
342 #endif
343                 case Opt_active_logs:
344                         if (args->from && match_int(args, &arg))
345                                 return -EINVAL;
346                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
347                                 return -EINVAL;
348                         sbi->active_logs = arg;
349                         break;
350                 case Opt_disable_ext_identify:
351                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
352                         break;
353                 case Opt_inline_data:
354                         set_opt(sbi, INLINE_DATA);
355                         break;
356                 case Opt_inline_dentry:
357                         set_opt(sbi, INLINE_DENTRY);
358                         break;
359                 case Opt_flush_merge:
360                         set_opt(sbi, FLUSH_MERGE);
361                         break;
362                 case Opt_nobarrier:
363                         set_opt(sbi, NOBARRIER);
364                         break;
365                 case Opt_fastboot:
366                         set_opt(sbi, FASTBOOT);
367                         break;
368                 default:
369                         f2fs_msg(sb, KERN_ERR,
370                                 "Unrecognized mount option \"%s\" or missing value",
371                                 p);
372                         return -EINVAL;
373                 }
374         }
375         return 0;
376 }
377
378 static struct inode *f2fs_alloc_inode(struct super_block *sb)
379 {
380         struct f2fs_inode_info *fi;
381
382         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
383         if (!fi)
384                 return NULL;
385
386         init_once((void *) fi);
387
388         /* Initialize f2fs-specific inode info */
389         fi->vfs_inode.i_version = 1;
390         atomic_set(&fi->dirty_pages, 0);
391         fi->i_current_depth = 1;
392         fi->i_advise = 0;
393         rwlock_init(&fi->ext.ext_lock);
394         init_rwsem(&fi->i_sem);
395         INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
396         INIT_LIST_HEAD(&fi->inmem_pages);
397         mutex_init(&fi->inmem_lock);
398
399         set_inode_flag(fi, FI_NEW_INODE);
400
401         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
402                 set_inode_flag(fi, FI_INLINE_XATTR);
403
404         /* Will be used by directory only */
405         fi->i_dir_level = F2FS_SB(sb)->dir_level;
406
407         return &fi->vfs_inode;
408 }
409
410 static int f2fs_drop_inode(struct inode *inode)
411 {
412         /*
413          * This is to avoid a deadlock condition like below.
414          * writeback_single_inode(inode)
415          *  - f2fs_write_data_page
416          *    - f2fs_gc -> iput -> evict
417          *       - inode_wait_for_writeback(inode)
418          */
419         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
420                 return 0;
421         return generic_drop_inode(inode);
422 }
423
424 /*
425  * f2fs_dirty_inode() is called from __mark_inode_dirty()
426  *
427  * We should call set_dirty_inode to write the dirty inode through write_inode.
428  */
429 static void f2fs_dirty_inode(struct inode *inode, int flags)
430 {
431         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
432 }
433
434 static void f2fs_i_callback(struct rcu_head *head)
435 {
436         struct inode *inode = container_of(head, struct inode, i_rcu);
437         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
438 }
439
440 static void f2fs_destroy_inode(struct inode *inode)
441 {
442         call_rcu(&inode->i_rcu, f2fs_i_callback);
443 }
444
445 static void f2fs_put_super(struct super_block *sb)
446 {
447         struct f2fs_sb_info *sbi = F2FS_SB(sb);
448
449         if (sbi->s_proc) {
450                 remove_proc_entry("segment_info", sbi->s_proc);
451                 remove_proc_entry(sb->s_id, f2fs_proc_root);
452         }
453         kobject_del(&sbi->s_kobj);
454
455         f2fs_destroy_stats(sbi);
456         stop_gc_thread(sbi);
457
458         /*
459          * We don't need to do checkpoint when superblock is clean.
460          * But, the previous checkpoint was not done by umount, it needs to do
461          * clean checkpoint again.
462          */
463         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
464                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
465                 struct cp_control cpc = {
466                         .reason = CP_UMOUNT,
467                 };
468                 write_checkpoint(sbi, &cpc);
469         }
470
471         /*
472          * normally superblock is clean, so we need to release this.
473          * In addition, EIO will skip do checkpoint, we need this as well.
474          */
475         release_dirty_inode(sbi);
476         release_discard_addrs(sbi);
477
478         iput(sbi->node_inode);
479         iput(sbi->meta_inode);
480
481         /* destroy f2fs internal modules */
482         destroy_node_manager(sbi);
483         destroy_segment_manager(sbi);
484
485         kfree(sbi->ckpt);
486         kobject_put(&sbi->s_kobj);
487         wait_for_completion(&sbi->s_kobj_unregister);
488
489         sb->s_fs_info = NULL;
490         brelse(sbi->raw_super_buf);
491         kfree(sbi);
492 }
493
494 int f2fs_sync_fs(struct super_block *sb, int sync)
495 {
496         struct f2fs_sb_info *sbi = F2FS_SB(sb);
497
498         trace_f2fs_sync_fs(sb, sync);
499
500         if (sync) {
501                 struct cp_control cpc;
502
503                 cpc.reason = (test_opt(sbi, FASTBOOT) ||
504                                         is_sbi_flag_set(sbi, SBI_IS_CLOSE)) ?
505                                                 CP_UMOUNT : CP_SYNC;
506                 mutex_lock(&sbi->gc_mutex);
507                 write_checkpoint(sbi, &cpc);
508                 mutex_unlock(&sbi->gc_mutex);
509         } else {
510                 f2fs_balance_fs(sbi);
511         }
512         f2fs_trace_ios(NULL, NULL, 1);
513
514         return 0;
515 }
516
517 static int f2fs_freeze(struct super_block *sb)
518 {
519         int err;
520
521         if (f2fs_readonly(sb))
522                 return 0;
523
524         err = f2fs_sync_fs(sb, 1);
525         return err;
526 }
527
528 static int f2fs_unfreeze(struct super_block *sb)
529 {
530         return 0;
531 }
532
533 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
534 {
535         struct super_block *sb = dentry->d_sb;
536         struct f2fs_sb_info *sbi = F2FS_SB(sb);
537         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
538         block_t total_count, user_block_count, start_count, ovp_count;
539
540         total_count = le64_to_cpu(sbi->raw_super->block_count);
541         user_block_count = sbi->user_block_count;
542         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
543         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
544         buf->f_type = F2FS_SUPER_MAGIC;
545         buf->f_bsize = sbi->blocksize;
546
547         buf->f_blocks = total_count - start_count;
548         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
549         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
550
551         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
552         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
553
554         buf->f_namelen = F2FS_NAME_LEN;
555         buf->f_fsid.val[0] = (u32)id;
556         buf->f_fsid.val[1] = (u32)(id >> 32);
557
558         return 0;
559 }
560
561 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
562 {
563         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
564
565         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
566                 seq_printf(seq, ",background_gc=%s", "on");
567         else
568                 seq_printf(seq, ",background_gc=%s", "off");
569         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
570                 seq_puts(seq, ",disable_roll_forward");
571         if (test_opt(sbi, DISCARD))
572                 seq_puts(seq, ",discard");
573         if (test_opt(sbi, NOHEAP))
574                 seq_puts(seq, ",no_heap_alloc");
575 #ifdef CONFIG_F2FS_FS_XATTR
576         if (test_opt(sbi, XATTR_USER))
577                 seq_puts(seq, ",user_xattr");
578         else
579                 seq_puts(seq, ",nouser_xattr");
580         if (test_opt(sbi, INLINE_XATTR))
581                 seq_puts(seq, ",inline_xattr");
582 #endif
583 #ifdef CONFIG_F2FS_FS_POSIX_ACL
584         if (test_opt(sbi, POSIX_ACL))
585                 seq_puts(seq, ",acl");
586         else
587                 seq_puts(seq, ",noacl");
588 #endif
589         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
590                 seq_puts(seq, ",disable_ext_identify");
591         if (test_opt(sbi, INLINE_DATA))
592                 seq_puts(seq, ",inline_data");
593         if (test_opt(sbi, INLINE_DENTRY))
594                 seq_puts(seq, ",inline_dentry");
595         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
596                 seq_puts(seq, ",flush_merge");
597         if (test_opt(sbi, NOBARRIER))
598                 seq_puts(seq, ",nobarrier");
599         if (test_opt(sbi, FASTBOOT))
600                 seq_puts(seq, ",fastboot");
601         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
602
603         return 0;
604 }
605
606 static int segment_info_seq_show(struct seq_file *seq, void *offset)
607 {
608         struct super_block *sb = seq->private;
609         struct f2fs_sb_info *sbi = F2FS_SB(sb);
610         unsigned int total_segs =
611                         le32_to_cpu(sbi->raw_super->segment_count_main);
612         int i;
613
614         seq_puts(seq, "format: segment_type|valid_blocks\n"
615                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
616
617         for (i = 0; i < total_segs; i++) {
618                 struct seg_entry *se = get_seg_entry(sbi, i);
619
620                 if ((i % 10) == 0)
621                         seq_printf(seq, "%-5d", i);
622                 seq_printf(seq, "%d|%-3u", se->type,
623                                         get_valid_blocks(sbi, i, 1));
624                 if ((i % 10) == 9 || i == (total_segs - 1))
625                         seq_putc(seq, '\n');
626                 else
627                         seq_putc(seq, ' ');
628         }
629
630         return 0;
631 }
632
633 static int segment_info_open_fs(struct inode *inode, struct file *file)
634 {
635         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
636 }
637
638 static const struct file_operations f2fs_seq_segment_info_fops = {
639         .owner = THIS_MODULE,
640         .open = segment_info_open_fs,
641         .read = seq_read,
642         .llseek = seq_lseek,
643         .release = single_release,
644 };
645
646 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
647 {
648         struct f2fs_sb_info *sbi = F2FS_SB(sb);
649         struct f2fs_mount_info org_mount_opt;
650         int err, active_logs;
651         bool need_restart_gc = false;
652         bool need_stop_gc = false;
653
654         sync_filesystem(sb);
655
656         /*
657          * Save the old mount options in case we
658          * need to restore them.
659          */
660         org_mount_opt = sbi->mount_opt;
661         active_logs = sbi->active_logs;
662
663         sbi->mount_opt.opt = 0;
664         sbi->active_logs = NR_CURSEG_TYPE;
665
666         /* parse mount options */
667         err = parse_options(sb, data);
668         if (err)
669                 goto restore_opts;
670
671         /*
672          * Previous and new state of filesystem is RO,
673          * so skip checking GC and FLUSH_MERGE conditions.
674          */
675         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
676                 goto skip;
677
678         /*
679          * We stop the GC thread if FS is mounted as RO
680          * or if background_gc = off is passed in mount
681          * option. Also sync the filesystem.
682          */
683         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
684                 if (sbi->gc_thread) {
685                         stop_gc_thread(sbi);
686                         f2fs_sync_fs(sb, 1);
687                         need_restart_gc = true;
688                 }
689         } else if (!sbi->gc_thread) {
690                 err = start_gc_thread(sbi);
691                 if (err)
692                         goto restore_opts;
693                 need_stop_gc = true;
694         }
695
696         /*
697          * We stop issue flush thread if FS is mounted as RO
698          * or if flush_merge is not passed in mount option.
699          */
700         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
701                 destroy_flush_cmd_control(sbi);
702         } else if (!SM_I(sbi)->cmd_control_info) {
703                 err = create_flush_cmd_control(sbi);
704                 if (err)
705                         goto restore_gc;
706         }
707 skip:
708         /* Update the POSIXACL Flag */
709          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
710                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
711         return 0;
712 restore_gc:
713         if (need_restart_gc) {
714                 if (start_gc_thread(sbi))
715                         f2fs_msg(sbi->sb, KERN_WARNING,
716                                 "background gc thread has stopped");
717         } else if (need_stop_gc) {
718                 stop_gc_thread(sbi);
719         }
720 restore_opts:
721         sbi->mount_opt = org_mount_opt;
722         sbi->active_logs = active_logs;
723         return err;
724 }
725
726 static struct super_operations f2fs_sops = {
727         .alloc_inode    = f2fs_alloc_inode,
728         .drop_inode     = f2fs_drop_inode,
729         .destroy_inode  = f2fs_destroy_inode,
730         .write_inode    = f2fs_write_inode,
731         .dirty_inode    = f2fs_dirty_inode,
732         .show_options   = f2fs_show_options,
733         .evict_inode    = f2fs_evict_inode,
734         .put_super      = f2fs_put_super,
735         .sync_fs        = f2fs_sync_fs,
736         .freeze_fs      = f2fs_freeze,
737         .unfreeze_fs    = f2fs_unfreeze,
738         .statfs         = f2fs_statfs,
739         .remount_fs     = f2fs_remount,
740 };
741
742 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
743                 u64 ino, u32 generation)
744 {
745         struct f2fs_sb_info *sbi = F2FS_SB(sb);
746         struct inode *inode;
747
748         if (check_nid_range(sbi, ino))
749                 return ERR_PTR(-ESTALE);
750
751         /*
752          * f2fs_iget isn't quite right if the inode is currently unallocated!
753          * However f2fs_iget currently does appropriate checks to handle stale
754          * inodes so everything is OK.
755          */
756         inode = f2fs_iget(sb, ino);
757         if (IS_ERR(inode))
758                 return ERR_CAST(inode);
759         if (unlikely(generation && inode->i_generation != generation)) {
760                 /* we didn't find the right inode.. */
761                 iput(inode);
762                 return ERR_PTR(-ESTALE);
763         }
764         return inode;
765 }
766
767 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
768                 int fh_len, int fh_type)
769 {
770         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
771                                     f2fs_nfs_get_inode);
772 }
773
774 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
775                 int fh_len, int fh_type)
776 {
777         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
778                                     f2fs_nfs_get_inode);
779 }
780
781 static const struct export_operations f2fs_export_ops = {
782         .fh_to_dentry = f2fs_fh_to_dentry,
783         .fh_to_parent = f2fs_fh_to_parent,
784         .get_parent = f2fs_get_parent,
785 };
786
787 static loff_t max_file_size(unsigned bits)
788 {
789         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
790         loff_t leaf_count = ADDRS_PER_BLOCK;
791
792         /* two direct node blocks */
793         result += (leaf_count * 2);
794
795         /* two indirect node blocks */
796         leaf_count *= NIDS_PER_BLOCK;
797         result += (leaf_count * 2);
798
799         /* one double indirect node block */
800         leaf_count *= NIDS_PER_BLOCK;
801         result += leaf_count;
802
803         result <<= bits;
804         return result;
805 }
806
807 static int sanity_check_raw_super(struct super_block *sb,
808                         struct f2fs_super_block *raw_super)
809 {
810         unsigned int blocksize;
811
812         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
813                 f2fs_msg(sb, KERN_INFO,
814                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
815                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
816                 return 1;
817         }
818
819         /* Currently, support only 4KB page cache size */
820         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
821                 f2fs_msg(sb, KERN_INFO,
822                         "Invalid page_cache_size (%lu), supports only 4KB\n",
823                         PAGE_CACHE_SIZE);
824                 return 1;
825         }
826
827         /* Currently, support only 4KB block size */
828         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
829         if (blocksize != F2FS_BLKSIZE) {
830                 f2fs_msg(sb, KERN_INFO,
831                         "Invalid blocksize (%u), supports only 4KB\n",
832                         blocksize);
833                 return 1;
834         }
835
836         /* Currently, support 512/1024/2048/4096 bytes sector size */
837         if (le32_to_cpu(raw_super->log_sectorsize) >
838                                 F2FS_MAX_LOG_SECTOR_SIZE ||
839                 le32_to_cpu(raw_super->log_sectorsize) <
840                                 F2FS_MIN_LOG_SECTOR_SIZE) {
841                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
842                         le32_to_cpu(raw_super->log_sectorsize));
843                 return 1;
844         }
845         if (le32_to_cpu(raw_super->log_sectors_per_block) +
846                 le32_to_cpu(raw_super->log_sectorsize) !=
847                         F2FS_MAX_LOG_SECTOR_SIZE) {
848                 f2fs_msg(sb, KERN_INFO,
849                         "Invalid log sectors per block(%u) log sectorsize(%u)",
850                         le32_to_cpu(raw_super->log_sectors_per_block),
851                         le32_to_cpu(raw_super->log_sectorsize));
852                 return 1;
853         }
854         return 0;
855 }
856
857 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
858 {
859         unsigned int total, fsmeta;
860         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
861         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
862
863         total = le32_to_cpu(raw_super->segment_count);
864         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
865         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
866         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
867         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
868         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
869
870         if (unlikely(fsmeta >= total))
871                 return 1;
872
873         if (unlikely(f2fs_cp_error(sbi))) {
874                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
875                 return 1;
876         }
877         return 0;
878 }
879
880 static void init_sb_info(struct f2fs_sb_info *sbi)
881 {
882         struct f2fs_super_block *raw_super = sbi->raw_super;
883         int i;
884
885         sbi->log_sectors_per_block =
886                 le32_to_cpu(raw_super->log_sectors_per_block);
887         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
888         sbi->blocksize = 1 << sbi->log_blocksize;
889         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
890         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
891         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
892         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
893         sbi->total_sections = le32_to_cpu(raw_super->section_count);
894         sbi->total_node_count =
895                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
896                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
897         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
898         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
899         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
900         sbi->cur_victim_sec = NULL_SECNO;
901         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
902
903         for (i = 0; i < NR_COUNT_TYPE; i++)
904                 atomic_set(&sbi->nr_pages[i], 0);
905
906         sbi->dir_level = DEF_DIR_LEVEL;
907         clear_sbi_flag(sbi, SBI_NEED_FSCK);
908 }
909
910 /*
911  * Read f2fs raw super block.
912  * Because we have two copies of super block, so read the first one at first,
913  * if the first one is invalid, move to read the second one.
914  */
915 static int read_raw_super_block(struct super_block *sb,
916                         struct f2fs_super_block **raw_super,
917                         struct buffer_head **raw_super_buf)
918 {
919         int block = 0;
920
921 retry:
922         *raw_super_buf = sb_bread(sb, block);
923         if (!*raw_super_buf) {
924                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
925                                 block + 1);
926                 if (block == 0) {
927                         block++;
928                         goto retry;
929                 } else {
930                         return -EIO;
931                 }
932         }
933
934         *raw_super = (struct f2fs_super_block *)
935                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
936
937         /* sanity checking of raw super */
938         if (sanity_check_raw_super(sb, *raw_super)) {
939                 brelse(*raw_super_buf);
940                 f2fs_msg(sb, KERN_ERR,
941                         "Can't find valid F2FS filesystem in %dth superblock",
942                                                                 block + 1);
943                 if (block == 0) {
944                         block++;
945                         goto retry;
946                 } else {
947                         return -EINVAL;
948                 }
949         }
950
951         return 0;
952 }
953
954 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
955 {
956         struct f2fs_sb_info *sbi;
957         struct f2fs_super_block *raw_super = NULL;
958         struct buffer_head *raw_super_buf;
959         struct inode *root;
960         long err = -EINVAL;
961         bool retry = true;
962         char *options = NULL;
963         int i;
964
965 try_onemore:
966         /* allocate memory for f2fs-specific super block info */
967         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
968         if (!sbi)
969                 return -ENOMEM;
970
971         /* set a block size */
972         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
973                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
974                 goto free_sbi;
975         }
976
977         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
978         if (err)
979                 goto free_sbi;
980
981         sb->s_fs_info = sbi;
982         /* init some FS parameters */
983         sbi->active_logs = NR_CURSEG_TYPE;
984
985         set_opt(sbi, BG_GC);
986
987 #ifdef CONFIG_F2FS_FS_XATTR
988         set_opt(sbi, XATTR_USER);
989 #endif
990 #ifdef CONFIG_F2FS_FS_POSIX_ACL
991         set_opt(sbi, POSIX_ACL);
992 #endif
993         /* parse mount options */
994         options = kstrdup((const char *)data, GFP_KERNEL);
995         if (data && !options) {
996                 err = -ENOMEM;
997                 goto free_sb_buf;
998         }
999
1000         err = parse_options(sb, options);
1001         if (err)
1002                 goto free_options;
1003
1004         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1005         sb->s_max_links = F2FS_LINK_MAX;
1006         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1007
1008         sb->s_op = &f2fs_sops;
1009         sb->s_xattr = f2fs_xattr_handlers;
1010         sb->s_export_op = &f2fs_export_ops;
1011         sb->s_magic = F2FS_SUPER_MAGIC;
1012         sb->s_time_gran = 1;
1013         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1014                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1015         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1016
1017         /* init f2fs-specific super block info */
1018         sbi->sb = sb;
1019         sbi->raw_super = raw_super;
1020         sbi->raw_super_buf = raw_super_buf;
1021         mutex_init(&sbi->gc_mutex);
1022         mutex_init(&sbi->writepages);
1023         mutex_init(&sbi->cp_mutex);
1024         init_rwsem(&sbi->node_write);
1025         clear_sbi_flag(sbi, SBI_POR_DOING);
1026         spin_lock_init(&sbi->stat_lock);
1027
1028         init_rwsem(&sbi->read_io.io_rwsem);
1029         sbi->read_io.sbi = sbi;
1030         sbi->read_io.bio = NULL;
1031         for (i = 0; i < NR_PAGE_TYPE; i++) {
1032                 init_rwsem(&sbi->write_io[i].io_rwsem);
1033                 sbi->write_io[i].sbi = sbi;
1034                 sbi->write_io[i].bio = NULL;
1035         }
1036
1037         init_rwsem(&sbi->cp_rwsem);
1038         init_waitqueue_head(&sbi->cp_wait);
1039         init_sb_info(sbi);
1040
1041         /* get an inode for meta space */
1042         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1043         if (IS_ERR(sbi->meta_inode)) {
1044                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1045                 err = PTR_ERR(sbi->meta_inode);
1046                 goto free_options;
1047         }
1048
1049         err = get_valid_checkpoint(sbi);
1050         if (err) {
1051                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1052                 goto free_meta_inode;
1053         }
1054
1055         /* sanity checking of checkpoint */
1056         err = -EINVAL;
1057         if (sanity_check_ckpt(sbi)) {
1058                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1059                 goto free_cp;
1060         }
1061
1062         sbi->total_valid_node_count =
1063                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1064         sbi->total_valid_inode_count =
1065                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1066         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1067         sbi->total_valid_block_count =
1068                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1069         sbi->last_valid_block_count = sbi->total_valid_block_count;
1070         sbi->alloc_valid_block_count = 0;
1071         INIT_LIST_HEAD(&sbi->dir_inode_list);
1072         spin_lock_init(&sbi->dir_inode_lock);
1073
1074         init_ino_entry_info(sbi);
1075
1076         /* setup f2fs internal modules */
1077         err = build_segment_manager(sbi);
1078         if (err) {
1079                 f2fs_msg(sb, KERN_ERR,
1080                         "Failed to initialize F2FS segment manager");
1081                 goto free_sm;
1082         }
1083         err = build_node_manager(sbi);
1084         if (err) {
1085                 f2fs_msg(sb, KERN_ERR,
1086                         "Failed to initialize F2FS node manager");
1087                 goto free_nm;
1088         }
1089
1090         build_gc_manager(sbi);
1091
1092         /* get an inode for node space */
1093         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1094         if (IS_ERR(sbi->node_inode)) {
1095                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1096                 err = PTR_ERR(sbi->node_inode);
1097                 goto free_nm;
1098         }
1099
1100         /* if there are nt orphan nodes free them */
1101         recover_orphan_inodes(sbi);
1102
1103         /* read root inode and dentry */
1104         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1105         if (IS_ERR(root)) {
1106                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1107                 err = PTR_ERR(root);
1108                 goto free_node_inode;
1109         }
1110         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1111                 iput(root);
1112                 err = -EINVAL;
1113                 goto free_node_inode;
1114         }
1115
1116         sb->s_root = d_make_root(root); /* allocate root dentry */
1117         if (!sb->s_root) {
1118                 err = -ENOMEM;
1119                 goto free_root_inode;
1120         }
1121
1122         err = f2fs_build_stats(sbi);
1123         if (err)
1124                 goto free_root_inode;
1125
1126         if (f2fs_proc_root)
1127                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1128
1129         if (sbi->s_proc)
1130                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1131                                  &f2fs_seq_segment_info_fops, sb);
1132
1133         if (test_opt(sbi, DISCARD)) {
1134                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1135                 if (!blk_queue_discard(q))
1136                         f2fs_msg(sb, KERN_WARNING,
1137                                         "mounting with \"discard\" option, but "
1138                                         "the device does not support discard");
1139         }
1140
1141         sbi->s_kobj.kset = f2fs_kset;
1142         init_completion(&sbi->s_kobj_unregister);
1143         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1144                                                         "%s", sb->s_id);
1145         if (err)
1146                 goto free_proc;
1147
1148         if (!retry)
1149                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1150
1151         /* recover fsynced data */
1152         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1153                 err = recover_fsync_data(sbi);
1154                 if (err) {
1155                         f2fs_msg(sb, KERN_ERR,
1156                                 "Cannot recover all fsync data errno=%ld", err);
1157                         goto free_kobj;
1158                 }
1159         }
1160
1161         /*
1162          * If filesystem is not mounted as read-only then
1163          * do start the gc_thread.
1164          */
1165         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1166                 /* After POR, we can run background GC thread.*/
1167                 err = start_gc_thread(sbi);
1168                 if (err)
1169                         goto free_kobj;
1170         }
1171         kfree(options);
1172         return 0;
1173
1174 free_kobj:
1175         kobject_del(&sbi->s_kobj);
1176 free_proc:
1177         if (sbi->s_proc) {
1178                 remove_proc_entry("segment_info", sbi->s_proc);
1179                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1180         }
1181         f2fs_destroy_stats(sbi);
1182 free_root_inode:
1183         dput(sb->s_root);
1184         sb->s_root = NULL;
1185 free_node_inode:
1186         iput(sbi->node_inode);
1187 free_nm:
1188         destroy_node_manager(sbi);
1189 free_sm:
1190         destroy_segment_manager(sbi);
1191 free_cp:
1192         kfree(sbi->ckpt);
1193 free_meta_inode:
1194         make_bad_inode(sbi->meta_inode);
1195         iput(sbi->meta_inode);
1196 free_options:
1197         kfree(options);
1198 free_sb_buf:
1199         brelse(raw_super_buf);
1200 free_sbi:
1201         kfree(sbi);
1202
1203         /* give only one another chance */
1204         if (retry) {
1205                 retry = 0;
1206                 shrink_dcache_sb(sb);
1207                 goto try_onemore;
1208         }
1209         return err;
1210 }
1211
1212 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1213                         const char *dev_name, void *data)
1214 {
1215         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1216 }
1217
1218 static void kill_f2fs_super(struct super_block *sb)
1219 {
1220         if (sb->s_root)
1221                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1222         kill_block_super(sb);
1223 }
1224
1225 static struct file_system_type f2fs_fs_type = {
1226         .owner          = THIS_MODULE,
1227         .name           = "f2fs",
1228         .mount          = f2fs_mount,
1229         .kill_sb        = kill_f2fs_super,
1230         .fs_flags       = FS_REQUIRES_DEV,
1231 };
1232 MODULE_ALIAS_FS("f2fs");
1233
1234 static int __init init_inodecache(void)
1235 {
1236         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1237                         sizeof(struct f2fs_inode_info));
1238         if (!f2fs_inode_cachep)
1239                 return -ENOMEM;
1240         return 0;
1241 }
1242
1243 static void destroy_inodecache(void)
1244 {
1245         /*
1246          * Make sure all delayed rcu free inodes are flushed before we
1247          * destroy cache.
1248          */
1249         rcu_barrier();
1250         kmem_cache_destroy(f2fs_inode_cachep);
1251 }
1252
1253 static int __init init_f2fs_fs(void)
1254 {
1255         int err;
1256
1257         f2fs_build_trace_ios();
1258
1259         err = init_inodecache();
1260         if (err)
1261                 goto fail;
1262         err = create_node_manager_caches();
1263         if (err)
1264                 goto free_inodecache;
1265         err = create_segment_manager_caches();
1266         if (err)
1267                 goto free_node_manager_caches;
1268         err = create_checkpoint_caches();
1269         if (err)
1270                 goto free_segment_manager_caches;
1271         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1272         if (!f2fs_kset) {
1273                 err = -ENOMEM;
1274                 goto free_checkpoint_caches;
1275         }
1276         err = register_filesystem(&f2fs_fs_type);
1277         if (err)
1278                 goto free_kset;
1279         f2fs_create_root_stats();
1280         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1281         return 0;
1282
1283 free_kset:
1284         kset_unregister(f2fs_kset);
1285 free_checkpoint_caches:
1286         destroy_checkpoint_caches();
1287 free_segment_manager_caches:
1288         destroy_segment_manager_caches();
1289 free_node_manager_caches:
1290         destroy_node_manager_caches();
1291 free_inodecache:
1292         destroy_inodecache();
1293 fail:
1294         return err;
1295 }
1296
1297 static void __exit exit_f2fs_fs(void)
1298 {
1299         remove_proc_entry("fs/f2fs", NULL);
1300         f2fs_destroy_root_stats();
1301         unregister_filesystem(&f2fs_fs_type);
1302         destroy_checkpoint_caches();
1303         destroy_segment_manager_caches();
1304         destroy_node_manager_caches();
1305         destroy_inodecache();
1306         kset_unregister(f2fs_kset);
1307         f2fs_destroy_trace_ios();
1308 }
1309
1310 module_init(init_f2fs_fs)
1311 module_exit(exit_f2fs_fs)
1312
1313 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1314 MODULE_DESCRIPTION("Flash Friendly File System");
1315 MODULE_LICENSE("GPL");