]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
f2fs: disallow switch extent_cache option dynamically
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44         .scan_objects = f2fs_shrink_scan,
45         .count_objects = f2fs_shrink_count,
46         .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50         Opt_gc_background,
51         Opt_disable_roll_forward,
52         Opt_norecovery,
53         Opt_discard,
54         Opt_noheap,
55         Opt_user_xattr,
56         Opt_nouser_xattr,
57         Opt_acl,
58         Opt_noacl,
59         Opt_active_logs,
60         Opt_disable_ext_identify,
61         Opt_inline_xattr,
62         Opt_inline_data,
63         Opt_inline_dentry,
64         Opt_flush_merge,
65         Opt_nobarrier,
66         Opt_fastboot,
67         Opt_extent_cache,
68         Opt_noextent_cache,
69         Opt_noinline_data,
70         Opt_err,
71 };
72
73 static match_table_t f2fs_tokens = {
74         {Opt_gc_background, "background_gc=%s"},
75         {Opt_disable_roll_forward, "disable_roll_forward"},
76         {Opt_norecovery, "norecovery"},
77         {Opt_discard, "discard"},
78         {Opt_noheap, "no_heap"},
79         {Opt_user_xattr, "user_xattr"},
80         {Opt_nouser_xattr, "nouser_xattr"},
81         {Opt_acl, "acl"},
82         {Opt_noacl, "noacl"},
83         {Opt_active_logs, "active_logs=%u"},
84         {Opt_disable_ext_identify, "disable_ext_identify"},
85         {Opt_inline_xattr, "inline_xattr"},
86         {Opt_inline_data, "inline_data"},
87         {Opt_inline_dentry, "inline_dentry"},
88         {Opt_flush_merge, "flush_merge"},
89         {Opt_nobarrier, "nobarrier"},
90         {Opt_fastboot, "fastboot"},
91         {Opt_extent_cache, "extent_cache"},
92         {Opt_noextent_cache, "noextent_cache"},
93         {Opt_noinline_data, "noinline_data"},
94         {Opt_err, NULL},
95 };
96
97 /* Sysfs support for f2fs */
98 enum {
99         GC_THREAD,      /* struct f2fs_gc_thread */
100         SM_INFO,        /* struct f2fs_sm_info */
101         NM_INFO,        /* struct f2fs_nm_info */
102         F2FS_SBI,       /* struct f2fs_sb_info */
103 };
104
105 struct f2fs_attr {
106         struct attribute attr;
107         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
108         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
109                          const char *, size_t);
110         int struct_type;
111         int offset;
112 };
113
114 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
115 {
116         if (struct_type == GC_THREAD)
117                 return (unsigned char *)sbi->gc_thread;
118         else if (struct_type == SM_INFO)
119                 return (unsigned char *)SM_I(sbi);
120         else if (struct_type == NM_INFO)
121                 return (unsigned char *)NM_I(sbi);
122         else if (struct_type == F2FS_SBI)
123                 return (unsigned char *)sbi;
124         return NULL;
125 }
126
127 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
128                         struct f2fs_sb_info *sbi, char *buf)
129 {
130         unsigned char *ptr = NULL;
131         unsigned int *ui;
132
133         ptr = __struct_ptr(sbi, a->struct_type);
134         if (!ptr)
135                 return -EINVAL;
136
137         ui = (unsigned int *)(ptr + a->offset);
138
139         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
140 }
141
142 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
143                         struct f2fs_sb_info *sbi,
144                         const char *buf, size_t count)
145 {
146         unsigned char *ptr;
147         unsigned long t;
148         unsigned int *ui;
149         ssize_t ret;
150
151         ptr = __struct_ptr(sbi, a->struct_type);
152         if (!ptr)
153                 return -EINVAL;
154
155         ui = (unsigned int *)(ptr + a->offset);
156
157         ret = kstrtoul(skip_spaces(buf), 0, &t);
158         if (ret < 0)
159                 return ret;
160         *ui = t;
161         return count;
162 }
163
164 static ssize_t f2fs_attr_show(struct kobject *kobj,
165                                 struct attribute *attr, char *buf)
166 {
167         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
168                                                                 s_kobj);
169         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
170
171         return a->show ? a->show(a, sbi, buf) : 0;
172 }
173
174 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
175                                                 const char *buf, size_t len)
176 {
177         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
178                                                                         s_kobj);
179         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
180
181         return a->store ? a->store(a, sbi, buf, len) : 0;
182 }
183
184 static void f2fs_sb_release(struct kobject *kobj)
185 {
186         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
187                                                                 s_kobj);
188         complete(&sbi->s_kobj_unregister);
189 }
190
191 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
192 static struct f2fs_attr f2fs_attr_##_name = {                   \
193         .attr = {.name = __stringify(_name), .mode = _mode },   \
194         .show   = _show,                                        \
195         .store  = _store,                                       \
196         .struct_type = _struct_type,                            \
197         .offset = _offset                                       \
198 }
199
200 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
201         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
202                 f2fs_sbi_show, f2fs_sbi_store,                  \
203                 offsetof(struct struct_name, elname))
204
205 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
206 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
207 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
208 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
209 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
210 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
213 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
214 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
215 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
216 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
217 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
218
219 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
220 static struct attribute *f2fs_attrs[] = {
221         ATTR_LIST(gc_min_sleep_time),
222         ATTR_LIST(gc_max_sleep_time),
223         ATTR_LIST(gc_no_gc_sleep_time),
224         ATTR_LIST(gc_idle),
225         ATTR_LIST(reclaim_segments),
226         ATTR_LIST(max_small_discards),
227         ATTR_LIST(batched_trim_sections),
228         ATTR_LIST(ipu_policy),
229         ATTR_LIST(min_ipu_util),
230         ATTR_LIST(min_fsync_blocks),
231         ATTR_LIST(max_victim_search),
232         ATTR_LIST(dir_level),
233         ATTR_LIST(ram_thresh),
234         NULL,
235 };
236
237 static const struct sysfs_ops f2fs_attr_ops = {
238         .show   = f2fs_attr_show,
239         .store  = f2fs_attr_store,
240 };
241
242 static struct kobj_type f2fs_ktype = {
243         .default_attrs  = f2fs_attrs,
244         .sysfs_ops      = &f2fs_attr_ops,
245         .release        = f2fs_sb_release,
246 };
247
248 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
249 {
250         struct va_format vaf;
251         va_list args;
252
253         va_start(args, fmt);
254         vaf.fmt = fmt;
255         vaf.va = &args;
256         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
257         va_end(args);
258 }
259
260 static void init_once(void *foo)
261 {
262         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
263
264         inode_init_once(&fi->vfs_inode);
265 }
266
267 static int parse_options(struct super_block *sb, char *options)
268 {
269         struct f2fs_sb_info *sbi = F2FS_SB(sb);
270         struct request_queue *q;
271         substring_t args[MAX_OPT_ARGS];
272         char *p, *name;
273         int arg = 0;
274
275         if (!options)
276                 return 0;
277
278         while ((p = strsep(&options, ",")) != NULL) {
279                 int token;
280                 if (!*p)
281                         continue;
282                 /*
283                  * Initialize args struct so we know whether arg was
284                  * found; some options take optional arguments.
285                  */
286                 args[0].to = args[0].from = NULL;
287                 token = match_token(p, f2fs_tokens, args);
288
289                 switch (token) {
290                 case Opt_gc_background:
291                         name = match_strdup(&args[0]);
292
293                         if (!name)
294                                 return -ENOMEM;
295                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
296                                 set_opt(sbi, BG_GC);
297                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
298                                 clear_opt(sbi, BG_GC);
299                         else {
300                                 kfree(name);
301                                 return -EINVAL;
302                         }
303                         kfree(name);
304                         break;
305                 case Opt_disable_roll_forward:
306                         set_opt(sbi, DISABLE_ROLL_FORWARD);
307                         break;
308                 case Opt_norecovery:
309                         /* this option mounts f2fs with ro */
310                         set_opt(sbi, DISABLE_ROLL_FORWARD);
311                         if (!f2fs_readonly(sb))
312                                 return -EINVAL;
313                         break;
314                 case Opt_discard:
315                         q = bdev_get_queue(sb->s_bdev);
316                         if (blk_queue_discard(q)) {
317                                 set_opt(sbi, DISCARD);
318                         } else {
319                                 f2fs_msg(sb, KERN_WARNING,
320                                         "mounting with \"discard\" option, but "
321                                         "the device does not support discard");
322                         }
323                         break;
324                 case Opt_noheap:
325                         set_opt(sbi, NOHEAP);
326                         break;
327 #ifdef CONFIG_F2FS_FS_XATTR
328                 case Opt_user_xattr:
329                         set_opt(sbi, XATTR_USER);
330                         break;
331                 case Opt_nouser_xattr:
332                         clear_opt(sbi, XATTR_USER);
333                         break;
334                 case Opt_inline_xattr:
335                         set_opt(sbi, INLINE_XATTR);
336                         break;
337 #else
338                 case Opt_user_xattr:
339                         f2fs_msg(sb, KERN_INFO,
340                                 "user_xattr options not supported");
341                         break;
342                 case Opt_nouser_xattr:
343                         f2fs_msg(sb, KERN_INFO,
344                                 "nouser_xattr options not supported");
345                         break;
346                 case Opt_inline_xattr:
347                         f2fs_msg(sb, KERN_INFO,
348                                 "inline_xattr options not supported");
349                         break;
350 #endif
351 #ifdef CONFIG_F2FS_FS_POSIX_ACL
352                 case Opt_acl:
353                         set_opt(sbi, POSIX_ACL);
354                         break;
355                 case Opt_noacl:
356                         clear_opt(sbi, POSIX_ACL);
357                         break;
358 #else
359                 case Opt_acl:
360                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
361                         break;
362                 case Opt_noacl:
363                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
364                         break;
365 #endif
366                 case Opt_active_logs:
367                         if (args->from && match_int(args, &arg))
368                                 return -EINVAL;
369                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
370                                 return -EINVAL;
371                         sbi->active_logs = arg;
372                         break;
373                 case Opt_disable_ext_identify:
374                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
375                         break;
376                 case Opt_inline_data:
377                         set_opt(sbi, INLINE_DATA);
378                         break;
379                 case Opt_inline_dentry:
380                         set_opt(sbi, INLINE_DENTRY);
381                         break;
382                 case Opt_flush_merge:
383                         set_opt(sbi, FLUSH_MERGE);
384                         break;
385                 case Opt_nobarrier:
386                         set_opt(sbi, NOBARRIER);
387                         break;
388                 case Opt_fastboot:
389                         set_opt(sbi, FASTBOOT);
390                         break;
391                 case Opt_extent_cache:
392                         set_opt(sbi, EXTENT_CACHE);
393                         break;
394                 case Opt_noextent_cache:
395                         clear_opt(sbi, EXTENT_CACHE);
396                         break;
397                 case Opt_noinline_data:
398                         clear_opt(sbi, INLINE_DATA);
399                         break;
400                 default:
401                         f2fs_msg(sb, KERN_ERR,
402                                 "Unrecognized mount option \"%s\" or missing value",
403                                 p);
404                         return -EINVAL;
405                 }
406         }
407         return 0;
408 }
409
410 static struct inode *f2fs_alloc_inode(struct super_block *sb)
411 {
412         struct f2fs_inode_info *fi;
413
414         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
415         if (!fi)
416                 return NULL;
417
418         init_once((void *) fi);
419
420         /* Initialize f2fs-specific inode info */
421         fi->vfs_inode.i_version = 1;
422         atomic_set(&fi->dirty_pages, 0);
423         fi->i_current_depth = 1;
424         fi->i_advise = 0;
425         init_rwsem(&fi->i_sem);
426         INIT_LIST_HEAD(&fi->inmem_pages);
427         mutex_init(&fi->inmem_lock);
428
429         set_inode_flag(fi, FI_NEW_INODE);
430
431         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
432                 set_inode_flag(fi, FI_INLINE_XATTR);
433
434         /* Will be used by directory only */
435         fi->i_dir_level = F2FS_SB(sb)->dir_level;
436
437 #ifdef CONFIG_F2FS_FS_ENCRYPTION
438         fi->i_crypt_info = NULL;
439 #endif
440         return &fi->vfs_inode;
441 }
442
443 static int f2fs_drop_inode(struct inode *inode)
444 {
445         /*
446          * This is to avoid a deadlock condition like below.
447          * writeback_single_inode(inode)
448          *  - f2fs_write_data_page
449          *    - f2fs_gc -> iput -> evict
450          *       - inode_wait_for_writeback(inode)
451          */
452         if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
453                 if (!inode->i_nlink && !is_bad_inode(inode)) {
454                         /* to avoid evict_inode call simultaneously */
455                         atomic_inc(&inode->i_count);
456                         spin_unlock(&inode->i_lock);
457
458                         /* some remained atomic pages should discarded */
459                         if (f2fs_is_atomic_file(inode))
460                                 commit_inmem_pages(inode, true);
461
462                         /* should remain fi->extent_tree for writepage */
463                         f2fs_destroy_extent_node(inode);
464
465                         sb_start_intwrite(inode->i_sb);
466                         i_size_write(inode, 0);
467
468                         if (F2FS_HAS_BLOCKS(inode))
469                                 f2fs_truncate(inode, true);
470
471                         sb_end_intwrite(inode->i_sb);
472
473 #ifdef CONFIG_F2FS_FS_ENCRYPTION
474                         if (F2FS_I(inode)->i_crypt_info)
475                                 f2fs_free_encryption_info(inode,
476                                         F2FS_I(inode)->i_crypt_info);
477 #endif
478                         spin_lock(&inode->i_lock);
479                         atomic_dec(&inode->i_count);
480                 }
481                 return 0;
482         }
483         return generic_drop_inode(inode);
484 }
485
486 /*
487  * f2fs_dirty_inode() is called from __mark_inode_dirty()
488  *
489  * We should call set_dirty_inode to write the dirty inode through write_inode.
490  */
491 static void f2fs_dirty_inode(struct inode *inode, int flags)
492 {
493         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
494 }
495
496 static void f2fs_i_callback(struct rcu_head *head)
497 {
498         struct inode *inode = container_of(head, struct inode, i_rcu);
499         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
500 }
501
502 static void f2fs_destroy_inode(struct inode *inode)
503 {
504         call_rcu(&inode->i_rcu, f2fs_i_callback);
505 }
506
507 static void f2fs_put_super(struct super_block *sb)
508 {
509         struct f2fs_sb_info *sbi = F2FS_SB(sb);
510
511         if (sbi->s_proc) {
512                 remove_proc_entry("segment_info", sbi->s_proc);
513                 remove_proc_entry(sb->s_id, f2fs_proc_root);
514         }
515         kobject_del(&sbi->s_kobj);
516
517         stop_gc_thread(sbi);
518
519         /* prevent remaining shrinker jobs */
520         mutex_lock(&sbi->umount_mutex);
521
522         /*
523          * We don't need to do checkpoint when superblock is clean.
524          * But, the previous checkpoint was not done by umount, it needs to do
525          * clean checkpoint again.
526          */
527         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
528                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
529                 struct cp_control cpc = {
530                         .reason = CP_UMOUNT,
531                 };
532                 write_checkpoint(sbi, &cpc);
533         }
534
535         /* write_checkpoint can update stat informaion */
536         f2fs_destroy_stats(sbi);
537
538         /*
539          * normally superblock is clean, so we need to release this.
540          * In addition, EIO will skip do checkpoint, we need this as well.
541          */
542         release_dirty_inode(sbi);
543         release_discard_addrs(sbi);
544
545         f2fs_leave_shrinker(sbi);
546         mutex_unlock(&sbi->umount_mutex);
547
548         iput(sbi->node_inode);
549         iput(sbi->meta_inode);
550
551         /* destroy f2fs internal modules */
552         destroy_node_manager(sbi);
553         destroy_segment_manager(sbi);
554
555         kfree(sbi->ckpt);
556         kobject_put(&sbi->s_kobj);
557         wait_for_completion(&sbi->s_kobj_unregister);
558
559         sb->s_fs_info = NULL;
560         brelse(sbi->raw_super_buf);
561         kfree(sbi);
562 }
563
564 int f2fs_sync_fs(struct super_block *sb, int sync)
565 {
566         struct f2fs_sb_info *sbi = F2FS_SB(sb);
567
568         trace_f2fs_sync_fs(sb, sync);
569
570         if (sync) {
571                 struct cp_control cpc;
572
573                 cpc.reason = __get_cp_reason(sbi);
574
575                 mutex_lock(&sbi->gc_mutex);
576                 write_checkpoint(sbi, &cpc);
577                 mutex_unlock(&sbi->gc_mutex);
578         } else {
579                 f2fs_balance_fs(sbi);
580         }
581         f2fs_trace_ios(NULL, 1);
582
583         return 0;
584 }
585
586 static int f2fs_freeze(struct super_block *sb)
587 {
588         int err;
589
590         if (f2fs_readonly(sb))
591                 return 0;
592
593         err = f2fs_sync_fs(sb, 1);
594         return err;
595 }
596
597 static int f2fs_unfreeze(struct super_block *sb)
598 {
599         return 0;
600 }
601
602 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
603 {
604         struct super_block *sb = dentry->d_sb;
605         struct f2fs_sb_info *sbi = F2FS_SB(sb);
606         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
607         block_t total_count, user_block_count, start_count, ovp_count;
608
609         total_count = le64_to_cpu(sbi->raw_super->block_count);
610         user_block_count = sbi->user_block_count;
611         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
612         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
613         buf->f_type = F2FS_SUPER_MAGIC;
614         buf->f_bsize = sbi->blocksize;
615
616         buf->f_blocks = total_count - start_count;
617         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
618         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
619
620         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
621         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
622
623         buf->f_namelen = F2FS_NAME_LEN;
624         buf->f_fsid.val[0] = (u32)id;
625         buf->f_fsid.val[1] = (u32)(id >> 32);
626
627         return 0;
628 }
629
630 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
631 {
632         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
633
634         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
635                 seq_printf(seq, ",background_gc=%s", "on");
636         else
637                 seq_printf(seq, ",background_gc=%s", "off");
638         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
639                 seq_puts(seq, ",disable_roll_forward");
640         if (test_opt(sbi, DISCARD))
641                 seq_puts(seq, ",discard");
642         if (test_opt(sbi, NOHEAP))
643                 seq_puts(seq, ",no_heap_alloc");
644 #ifdef CONFIG_F2FS_FS_XATTR
645         if (test_opt(sbi, XATTR_USER))
646                 seq_puts(seq, ",user_xattr");
647         else
648                 seq_puts(seq, ",nouser_xattr");
649         if (test_opt(sbi, INLINE_XATTR))
650                 seq_puts(seq, ",inline_xattr");
651 #endif
652 #ifdef CONFIG_F2FS_FS_POSIX_ACL
653         if (test_opt(sbi, POSIX_ACL))
654                 seq_puts(seq, ",acl");
655         else
656                 seq_puts(seq, ",noacl");
657 #endif
658         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
659                 seq_puts(seq, ",disable_ext_identify");
660         if (test_opt(sbi, INLINE_DATA))
661                 seq_puts(seq, ",inline_data");
662         else
663                 seq_puts(seq, ",noinline_data");
664         if (test_opt(sbi, INLINE_DENTRY))
665                 seq_puts(seq, ",inline_dentry");
666         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
667                 seq_puts(seq, ",flush_merge");
668         if (test_opt(sbi, NOBARRIER))
669                 seq_puts(seq, ",nobarrier");
670         if (test_opt(sbi, FASTBOOT))
671                 seq_puts(seq, ",fastboot");
672         if (test_opt(sbi, EXTENT_CACHE))
673                 seq_puts(seq, ",extent_cache");
674         else
675                 seq_puts(seq, ",noextent_cache");
676         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
677
678         return 0;
679 }
680
681 static int segment_info_seq_show(struct seq_file *seq, void *offset)
682 {
683         struct super_block *sb = seq->private;
684         struct f2fs_sb_info *sbi = F2FS_SB(sb);
685         unsigned int total_segs =
686                         le32_to_cpu(sbi->raw_super->segment_count_main);
687         int i;
688
689         seq_puts(seq, "format: segment_type|valid_blocks\n"
690                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
691
692         for (i = 0; i < total_segs; i++) {
693                 struct seg_entry *se = get_seg_entry(sbi, i);
694
695                 if ((i % 10) == 0)
696                         seq_printf(seq, "%-10d", i);
697                 seq_printf(seq, "%d|%-3u", se->type,
698                                         get_valid_blocks(sbi, i, 1));
699                 if ((i % 10) == 9 || i == (total_segs - 1))
700                         seq_putc(seq, '\n');
701                 else
702                         seq_putc(seq, ' ');
703         }
704
705         return 0;
706 }
707
708 static int segment_info_open_fs(struct inode *inode, struct file *file)
709 {
710         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
711 }
712
713 static const struct file_operations f2fs_seq_segment_info_fops = {
714         .owner = THIS_MODULE,
715         .open = segment_info_open_fs,
716         .read = seq_read,
717         .llseek = seq_lseek,
718         .release = single_release,
719 };
720
721 static void default_options(struct f2fs_sb_info *sbi)
722 {
723         /* init some FS parameters */
724         sbi->active_logs = NR_CURSEG_TYPE;
725
726         set_opt(sbi, BG_GC);
727         set_opt(sbi, INLINE_DATA);
728         set_opt(sbi, EXTENT_CACHE);
729
730 #ifdef CONFIG_F2FS_FS_XATTR
731         set_opt(sbi, XATTR_USER);
732 #endif
733 #ifdef CONFIG_F2FS_FS_POSIX_ACL
734         set_opt(sbi, POSIX_ACL);
735 #endif
736 }
737
738 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
739 {
740         struct f2fs_sb_info *sbi = F2FS_SB(sb);
741         struct f2fs_mount_info org_mount_opt;
742         int err, active_logs;
743         bool need_restart_gc = false;
744         bool need_stop_gc = false;
745         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
746
747         sync_filesystem(sb);
748
749         /*
750          * Save the old mount options in case we
751          * need to restore them.
752          */
753         org_mount_opt = sbi->mount_opt;
754         active_logs = sbi->active_logs;
755
756         sbi->mount_opt.opt = 0;
757         default_options(sbi);
758
759         /* parse mount options */
760         err = parse_options(sb, data);
761         if (err)
762                 goto restore_opts;
763
764         /*
765          * Previous and new state of filesystem is RO,
766          * so skip checking GC and FLUSH_MERGE conditions.
767          */
768         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
769                 goto skip;
770
771         /* disallow enable/disable extent_cache dynamically */
772         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
773                 err = -EINVAL;
774                 f2fs_msg(sbi->sb, KERN_WARNING,
775                                 "switch extent_cache option is not allowed");
776                 goto restore_opts;
777         }
778
779         /*
780          * We stop the GC thread if FS is mounted as RO
781          * or if background_gc = off is passed in mount
782          * option. Also sync the filesystem.
783          */
784         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
785                 if (sbi->gc_thread) {
786                         stop_gc_thread(sbi);
787                         f2fs_sync_fs(sb, 1);
788                         need_restart_gc = true;
789                 }
790         } else if (!sbi->gc_thread) {
791                 err = start_gc_thread(sbi);
792                 if (err)
793                         goto restore_opts;
794                 need_stop_gc = true;
795         }
796
797         /*
798          * We stop issue flush thread if FS is mounted as RO
799          * or if flush_merge is not passed in mount option.
800          */
801         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
802                 destroy_flush_cmd_control(sbi);
803         } else if (!SM_I(sbi)->cmd_control_info) {
804                 err = create_flush_cmd_control(sbi);
805                 if (err)
806                         goto restore_gc;
807         }
808 skip:
809         /* Update the POSIXACL Flag */
810          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
811                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
812         return 0;
813 restore_gc:
814         if (need_restart_gc) {
815                 if (start_gc_thread(sbi))
816                         f2fs_msg(sbi->sb, KERN_WARNING,
817                                 "background gc thread has stopped");
818         } else if (need_stop_gc) {
819                 stop_gc_thread(sbi);
820         }
821 restore_opts:
822         sbi->mount_opt = org_mount_opt;
823         sbi->active_logs = active_logs;
824         return err;
825 }
826
827 static struct super_operations f2fs_sops = {
828         .alloc_inode    = f2fs_alloc_inode,
829         .drop_inode     = f2fs_drop_inode,
830         .destroy_inode  = f2fs_destroy_inode,
831         .write_inode    = f2fs_write_inode,
832         .dirty_inode    = f2fs_dirty_inode,
833         .show_options   = f2fs_show_options,
834         .evict_inode    = f2fs_evict_inode,
835         .put_super      = f2fs_put_super,
836         .sync_fs        = f2fs_sync_fs,
837         .freeze_fs      = f2fs_freeze,
838         .unfreeze_fs    = f2fs_unfreeze,
839         .statfs         = f2fs_statfs,
840         .remount_fs     = f2fs_remount,
841 };
842
843 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
844                 u64 ino, u32 generation)
845 {
846         struct f2fs_sb_info *sbi = F2FS_SB(sb);
847         struct inode *inode;
848
849         if (check_nid_range(sbi, ino))
850                 return ERR_PTR(-ESTALE);
851
852         /*
853          * f2fs_iget isn't quite right if the inode is currently unallocated!
854          * However f2fs_iget currently does appropriate checks to handle stale
855          * inodes so everything is OK.
856          */
857         inode = f2fs_iget(sb, ino);
858         if (IS_ERR(inode))
859                 return ERR_CAST(inode);
860         if (unlikely(generation && inode->i_generation != generation)) {
861                 /* we didn't find the right inode.. */
862                 iput(inode);
863                 return ERR_PTR(-ESTALE);
864         }
865         return inode;
866 }
867
868 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
869                 int fh_len, int fh_type)
870 {
871         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
872                                     f2fs_nfs_get_inode);
873 }
874
875 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
876                 int fh_len, int fh_type)
877 {
878         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
879                                     f2fs_nfs_get_inode);
880 }
881
882 static const struct export_operations f2fs_export_ops = {
883         .fh_to_dentry = f2fs_fh_to_dentry,
884         .fh_to_parent = f2fs_fh_to_parent,
885         .get_parent = f2fs_get_parent,
886 };
887
888 static loff_t max_file_size(unsigned bits)
889 {
890         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
891         loff_t leaf_count = ADDRS_PER_BLOCK;
892
893         /* two direct node blocks */
894         result += (leaf_count * 2);
895
896         /* two indirect node blocks */
897         leaf_count *= NIDS_PER_BLOCK;
898         result += (leaf_count * 2);
899
900         /* one double indirect node block */
901         leaf_count *= NIDS_PER_BLOCK;
902         result += leaf_count;
903
904         result <<= bits;
905         return result;
906 }
907
908 static int sanity_check_raw_super(struct super_block *sb,
909                         struct f2fs_super_block *raw_super)
910 {
911         unsigned int blocksize;
912
913         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
914                 f2fs_msg(sb, KERN_INFO,
915                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
916                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
917                 return 1;
918         }
919
920         /* Currently, support only 4KB page cache size */
921         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
922                 f2fs_msg(sb, KERN_INFO,
923                         "Invalid page_cache_size (%lu), supports only 4KB\n",
924                         PAGE_CACHE_SIZE);
925                 return 1;
926         }
927
928         /* Currently, support only 4KB block size */
929         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
930         if (blocksize != F2FS_BLKSIZE) {
931                 f2fs_msg(sb, KERN_INFO,
932                         "Invalid blocksize (%u), supports only 4KB\n",
933                         blocksize);
934                 return 1;
935         }
936
937         /* Currently, support 512/1024/2048/4096 bytes sector size */
938         if (le32_to_cpu(raw_super->log_sectorsize) >
939                                 F2FS_MAX_LOG_SECTOR_SIZE ||
940                 le32_to_cpu(raw_super->log_sectorsize) <
941                                 F2FS_MIN_LOG_SECTOR_SIZE) {
942                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
943                         le32_to_cpu(raw_super->log_sectorsize));
944                 return 1;
945         }
946         if (le32_to_cpu(raw_super->log_sectors_per_block) +
947                 le32_to_cpu(raw_super->log_sectorsize) !=
948                         F2FS_MAX_LOG_SECTOR_SIZE) {
949                 f2fs_msg(sb, KERN_INFO,
950                         "Invalid log sectors per block(%u) log sectorsize(%u)",
951                         le32_to_cpu(raw_super->log_sectors_per_block),
952                         le32_to_cpu(raw_super->log_sectorsize));
953                 return 1;
954         }
955         return 0;
956 }
957
958 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
959 {
960         unsigned int total, fsmeta;
961         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
962         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
963
964         total = le32_to_cpu(raw_super->segment_count);
965         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
966         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
967         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
968         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
969         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
970
971         if (unlikely(fsmeta >= total))
972                 return 1;
973
974         if (unlikely(f2fs_cp_error(sbi))) {
975                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
976                 return 1;
977         }
978         return 0;
979 }
980
981 static void init_sb_info(struct f2fs_sb_info *sbi)
982 {
983         struct f2fs_super_block *raw_super = sbi->raw_super;
984         int i;
985
986         sbi->log_sectors_per_block =
987                 le32_to_cpu(raw_super->log_sectors_per_block);
988         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
989         sbi->blocksize = 1 << sbi->log_blocksize;
990         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
991         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
992         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
993         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
994         sbi->total_sections = le32_to_cpu(raw_super->section_count);
995         sbi->total_node_count =
996                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
997                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
998         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
999         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1000         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1001         sbi->cur_victim_sec = NULL_SECNO;
1002         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1003
1004         for (i = 0; i < NR_COUNT_TYPE; i++)
1005                 atomic_set(&sbi->nr_pages[i], 0);
1006
1007         sbi->dir_level = DEF_DIR_LEVEL;
1008         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1009
1010         INIT_LIST_HEAD(&sbi->s_list);
1011         mutex_init(&sbi->umount_mutex);
1012 }
1013
1014 /*
1015  * Read f2fs raw super block.
1016  * Because we have two copies of super block, so read the first one at first,
1017  * if the first one is invalid, move to read the second one.
1018  */
1019 static int read_raw_super_block(struct super_block *sb,
1020                         struct f2fs_super_block **raw_super,
1021                         struct buffer_head **raw_super_buf,
1022                         int *recovery)
1023 {
1024         int block = 0;
1025         struct buffer_head *buffer;
1026         struct f2fs_super_block *super;
1027         int err = 0;
1028
1029 retry:
1030         buffer = sb_bread(sb, block);
1031         if (!buffer) {
1032                 *recovery = 1;
1033                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1034                                 block + 1);
1035                 if (block == 0) {
1036                         block++;
1037                         goto retry;
1038                 } else {
1039                         err = -EIO;
1040                         goto out;
1041                 }
1042         }
1043
1044         super = (struct f2fs_super_block *)
1045                 ((char *)(buffer)->b_data + F2FS_SUPER_OFFSET);
1046
1047         /* sanity checking of raw super */
1048         if (sanity_check_raw_super(sb, super)) {
1049                 brelse(buffer);
1050                 *recovery = 1;
1051                 f2fs_msg(sb, KERN_ERR,
1052                         "Can't find valid F2FS filesystem in %dth superblock",
1053                                                                 block + 1);
1054                 if (block == 0) {
1055                         block++;
1056                         goto retry;
1057                 } else {
1058                         err = -EINVAL;
1059                         goto out;
1060                 }
1061         }
1062
1063         if (!*raw_super) {
1064                 *raw_super_buf = buffer;
1065                 *raw_super = super;
1066         } else {
1067                 /* already have a valid superblock */
1068                 brelse(buffer);
1069         }
1070
1071         /* check the validity of the second superblock */
1072         if (block == 0) {
1073                 block++;
1074                 goto retry;
1075         }
1076
1077 out:
1078         /* No valid superblock */
1079         if (!*raw_super)
1080                 return err;
1081
1082         return 0;
1083 }
1084
1085 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1086 {
1087         struct buffer_head *sbh = sbi->raw_super_buf;
1088         sector_t block = sbh->b_blocknr;
1089         int err;
1090
1091         /* write back-up superblock first */
1092         sbh->b_blocknr = block ? 0 : 1;
1093         mark_buffer_dirty(sbh);
1094         err = sync_dirty_buffer(sbh);
1095
1096         sbh->b_blocknr = block;
1097
1098         /* if we are in recovery path, skip writing valid superblock */
1099         if (recover || err)
1100                 goto out;
1101
1102         /* write current valid superblock */
1103         mark_buffer_dirty(sbh);
1104         err = sync_dirty_buffer(sbh);
1105 out:
1106         clear_buffer_write_io_error(sbh);
1107         set_buffer_uptodate(sbh);
1108         return err;
1109 }
1110
1111 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1112 {
1113         struct f2fs_sb_info *sbi;
1114         struct f2fs_super_block *raw_super;
1115         struct buffer_head *raw_super_buf;
1116         struct inode *root;
1117         long err;
1118         bool retry = true, need_fsck = false;
1119         char *options = NULL;
1120         int recovery, i;
1121
1122 try_onemore:
1123         err = -EINVAL;
1124         raw_super = NULL;
1125         raw_super_buf = NULL;
1126         recovery = 0;
1127
1128         /* allocate memory for f2fs-specific super block info */
1129         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1130         if (!sbi)
1131                 return -ENOMEM;
1132
1133         /* set a block size */
1134         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1135                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1136                 goto free_sbi;
1137         }
1138
1139         err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery);
1140         if (err)
1141                 goto free_sbi;
1142
1143         sb->s_fs_info = sbi;
1144         default_options(sbi);
1145         /* parse mount options */
1146         options = kstrdup((const char *)data, GFP_KERNEL);
1147         if (data && !options) {
1148                 err = -ENOMEM;
1149                 goto free_sb_buf;
1150         }
1151
1152         err = parse_options(sb, options);
1153         if (err)
1154                 goto free_options;
1155
1156         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1157         sb->s_max_links = F2FS_LINK_MAX;
1158         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1159
1160         sb->s_op = &f2fs_sops;
1161         sb->s_xattr = f2fs_xattr_handlers;
1162         sb->s_export_op = &f2fs_export_ops;
1163         sb->s_magic = F2FS_SUPER_MAGIC;
1164         sb->s_time_gran = 1;
1165         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1166                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1167         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1168
1169         /* init f2fs-specific super block info */
1170         sbi->sb = sb;
1171         sbi->raw_super = raw_super;
1172         sbi->raw_super_buf = raw_super_buf;
1173         mutex_init(&sbi->gc_mutex);
1174         mutex_init(&sbi->writepages);
1175         mutex_init(&sbi->cp_mutex);
1176         init_rwsem(&sbi->node_write);
1177
1178         /* disallow all the data/node/meta page writes */
1179         set_sbi_flag(sbi, SBI_POR_DOING);
1180         spin_lock_init(&sbi->stat_lock);
1181
1182         init_rwsem(&sbi->read_io.io_rwsem);
1183         sbi->read_io.sbi = sbi;
1184         sbi->read_io.bio = NULL;
1185         for (i = 0; i < NR_PAGE_TYPE; i++) {
1186                 init_rwsem(&sbi->write_io[i].io_rwsem);
1187                 sbi->write_io[i].sbi = sbi;
1188                 sbi->write_io[i].bio = NULL;
1189         }
1190
1191         init_rwsem(&sbi->cp_rwsem);
1192         init_waitqueue_head(&sbi->cp_wait);
1193         init_sb_info(sbi);
1194
1195         /* get an inode for meta space */
1196         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1197         if (IS_ERR(sbi->meta_inode)) {
1198                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1199                 err = PTR_ERR(sbi->meta_inode);
1200                 goto free_options;
1201         }
1202
1203         err = get_valid_checkpoint(sbi);
1204         if (err) {
1205                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1206                 goto free_meta_inode;
1207         }
1208
1209         /* sanity checking of checkpoint */
1210         err = -EINVAL;
1211         if (sanity_check_ckpt(sbi)) {
1212                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1213                 goto free_cp;
1214         }
1215
1216         sbi->total_valid_node_count =
1217                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1218         sbi->total_valid_inode_count =
1219                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1220         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1221         sbi->total_valid_block_count =
1222                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1223         sbi->last_valid_block_count = sbi->total_valid_block_count;
1224         sbi->alloc_valid_block_count = 0;
1225         INIT_LIST_HEAD(&sbi->dir_inode_list);
1226         spin_lock_init(&sbi->dir_inode_lock);
1227
1228         init_extent_cache_info(sbi);
1229
1230         init_ino_entry_info(sbi);
1231
1232         /* setup f2fs internal modules */
1233         err = build_segment_manager(sbi);
1234         if (err) {
1235                 f2fs_msg(sb, KERN_ERR,
1236                         "Failed to initialize F2FS segment manager");
1237                 goto free_sm;
1238         }
1239         err = build_node_manager(sbi);
1240         if (err) {
1241                 f2fs_msg(sb, KERN_ERR,
1242                         "Failed to initialize F2FS node manager");
1243                 goto free_nm;
1244         }
1245
1246         build_gc_manager(sbi);
1247
1248         /* get an inode for node space */
1249         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1250         if (IS_ERR(sbi->node_inode)) {
1251                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1252                 err = PTR_ERR(sbi->node_inode);
1253                 goto free_nm;
1254         }
1255
1256         f2fs_join_shrinker(sbi);
1257
1258         /* if there are nt orphan nodes free them */
1259         err = recover_orphan_inodes(sbi);
1260         if (err)
1261                 goto free_node_inode;
1262
1263         /* read root inode and dentry */
1264         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1265         if (IS_ERR(root)) {
1266                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1267                 err = PTR_ERR(root);
1268                 goto free_node_inode;
1269         }
1270         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1271                 iput(root);
1272                 err = -EINVAL;
1273                 goto free_node_inode;
1274         }
1275
1276         sb->s_root = d_make_root(root); /* allocate root dentry */
1277         if (!sb->s_root) {
1278                 err = -ENOMEM;
1279                 goto free_root_inode;
1280         }
1281
1282         err = f2fs_build_stats(sbi);
1283         if (err)
1284                 goto free_root_inode;
1285
1286         if (f2fs_proc_root)
1287                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1288
1289         if (sbi->s_proc)
1290                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1291                                  &f2fs_seq_segment_info_fops, sb);
1292
1293         sbi->s_kobj.kset = f2fs_kset;
1294         init_completion(&sbi->s_kobj_unregister);
1295         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1296                                                         "%s", sb->s_id);
1297         if (err)
1298                 goto free_proc;
1299
1300         /* recover fsynced data */
1301         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1302                 /*
1303                  * mount should be failed, when device has readonly mode, and
1304                  * previous checkpoint was not done by clean system shutdown.
1305                  */
1306                 if (bdev_read_only(sb->s_bdev) &&
1307                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1308                         err = -EROFS;
1309                         goto free_kobj;
1310                 }
1311
1312                 if (need_fsck)
1313                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1314
1315                 err = recover_fsync_data(sbi);
1316                 if (err) {
1317                         need_fsck = true;
1318                         f2fs_msg(sb, KERN_ERR,
1319                                 "Cannot recover all fsync data errno=%ld", err);
1320                         goto free_kobj;
1321                 }
1322         }
1323         /* recover_fsync_data() cleared this already */
1324         clear_sbi_flag(sbi, SBI_POR_DOING);
1325
1326         /*
1327          * If filesystem is not mounted as read-only then
1328          * do start the gc_thread.
1329          */
1330         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1331                 /* After POR, we can run background GC thread.*/
1332                 err = start_gc_thread(sbi);
1333                 if (err)
1334                         goto free_kobj;
1335         }
1336         kfree(options);
1337
1338         /* recover broken superblock */
1339         if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1340                 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1341                 f2fs_commit_super(sbi, true);
1342         }
1343
1344         return 0;
1345
1346 free_kobj:
1347         kobject_del(&sbi->s_kobj);
1348 free_proc:
1349         if (sbi->s_proc) {
1350                 remove_proc_entry("segment_info", sbi->s_proc);
1351                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1352         }
1353         f2fs_destroy_stats(sbi);
1354 free_root_inode:
1355         dput(sb->s_root);
1356         sb->s_root = NULL;
1357 free_node_inode:
1358         mutex_lock(&sbi->umount_mutex);
1359         f2fs_leave_shrinker(sbi);
1360         iput(sbi->node_inode);
1361         mutex_unlock(&sbi->umount_mutex);
1362 free_nm:
1363         destroy_node_manager(sbi);
1364 free_sm:
1365         destroy_segment_manager(sbi);
1366 free_cp:
1367         kfree(sbi->ckpt);
1368 free_meta_inode:
1369         make_bad_inode(sbi->meta_inode);
1370         iput(sbi->meta_inode);
1371 free_options:
1372         kfree(options);
1373 free_sb_buf:
1374         brelse(raw_super_buf);
1375 free_sbi:
1376         kfree(sbi);
1377
1378         /* give only one another chance */
1379         if (retry) {
1380                 retry = false;
1381                 shrink_dcache_sb(sb);
1382                 goto try_onemore;
1383         }
1384         return err;
1385 }
1386
1387 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1388                         const char *dev_name, void *data)
1389 {
1390         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1391 }
1392
1393 static void kill_f2fs_super(struct super_block *sb)
1394 {
1395         if (sb->s_root)
1396                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1397         kill_block_super(sb);
1398 }
1399
1400 static struct file_system_type f2fs_fs_type = {
1401         .owner          = THIS_MODULE,
1402         .name           = "f2fs",
1403         .mount          = f2fs_mount,
1404         .kill_sb        = kill_f2fs_super,
1405         .fs_flags       = FS_REQUIRES_DEV,
1406 };
1407 MODULE_ALIAS_FS("f2fs");
1408
1409 static int __init init_inodecache(void)
1410 {
1411         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1412                         sizeof(struct f2fs_inode_info));
1413         if (!f2fs_inode_cachep)
1414                 return -ENOMEM;
1415         return 0;
1416 }
1417
1418 static void destroy_inodecache(void)
1419 {
1420         /*
1421          * Make sure all delayed rcu free inodes are flushed before we
1422          * destroy cache.
1423          */
1424         rcu_barrier();
1425         kmem_cache_destroy(f2fs_inode_cachep);
1426 }
1427
1428 static int __init init_f2fs_fs(void)
1429 {
1430         int err;
1431
1432         f2fs_build_trace_ios();
1433
1434         err = init_inodecache();
1435         if (err)
1436                 goto fail;
1437         err = create_node_manager_caches();
1438         if (err)
1439                 goto free_inodecache;
1440         err = create_segment_manager_caches();
1441         if (err)
1442                 goto free_node_manager_caches;
1443         err = create_checkpoint_caches();
1444         if (err)
1445                 goto free_segment_manager_caches;
1446         err = create_extent_cache();
1447         if (err)
1448                 goto free_checkpoint_caches;
1449         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1450         if (!f2fs_kset) {
1451                 err = -ENOMEM;
1452                 goto free_extent_cache;
1453         }
1454         err = f2fs_init_crypto();
1455         if (err)
1456                 goto free_kset;
1457
1458         err = register_shrinker(&f2fs_shrinker_info);
1459         if (err)
1460                 goto free_crypto;
1461
1462         err = register_filesystem(&f2fs_fs_type);
1463         if (err)
1464                 goto free_shrinker;
1465         f2fs_create_root_stats();
1466         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1467         return 0;
1468
1469 free_shrinker:
1470         unregister_shrinker(&f2fs_shrinker_info);
1471 free_crypto:
1472         f2fs_exit_crypto();
1473 free_kset:
1474         kset_unregister(f2fs_kset);
1475 free_extent_cache:
1476         destroy_extent_cache();
1477 free_checkpoint_caches:
1478         destroy_checkpoint_caches();
1479 free_segment_manager_caches:
1480         destroy_segment_manager_caches();
1481 free_node_manager_caches:
1482         destroy_node_manager_caches();
1483 free_inodecache:
1484         destroy_inodecache();
1485 fail:
1486         return err;
1487 }
1488
1489 static void __exit exit_f2fs_fs(void)
1490 {
1491         remove_proc_entry("fs/f2fs", NULL);
1492         f2fs_destroy_root_stats();
1493         unregister_shrinker(&f2fs_shrinker_info);
1494         unregister_filesystem(&f2fs_fs_type);
1495         f2fs_exit_crypto();
1496         destroy_extent_cache();
1497         destroy_checkpoint_caches();
1498         destroy_segment_manager_caches();
1499         destroy_node_manager_caches();
1500         destroy_inodecache();
1501         kset_unregister(f2fs_kset);
1502         f2fs_destroy_trace_ios();
1503 }
1504
1505 module_init(init_f2fs_fs)
1506 module_exit(exit_f2fs_fs)
1507
1508 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1509 MODULE_DESCRIPTION("Flash Friendly File System");
1510 MODULE_LICENSE("GPL");