]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
block: Rename blk_queue_zone_size and bdev_zone_size
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_IO]              = "IO error",
53         [FAULT_CHECKPOINT]      = "checkpoint error",
54 };
55
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57                                                 unsigned int rate)
58 {
59         struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61         if (rate) {
62                 atomic_set(&ffi->inject_ops, 0);
63                 ffi->inject_rate = rate;
64                 ffi->inject_type = (1 << FAULT_MAX) - 1;
65         } else {
66                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67         }
68 }
69 #endif
70
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73         .scan_objects = f2fs_shrink_scan,
74         .count_objects = f2fs_shrink_count,
75         .seeks = DEFAULT_SEEKS,
76 };
77
78 enum {
79         Opt_gc_background,
80         Opt_disable_roll_forward,
81         Opt_norecovery,
82         Opt_discard,
83         Opt_nodiscard,
84         Opt_noheap,
85         Opt_user_xattr,
86         Opt_nouser_xattr,
87         Opt_acl,
88         Opt_noacl,
89         Opt_active_logs,
90         Opt_disable_ext_identify,
91         Opt_inline_xattr,
92         Opt_inline_data,
93         Opt_inline_dentry,
94         Opt_noinline_dentry,
95         Opt_flush_merge,
96         Opt_noflush_merge,
97         Opt_nobarrier,
98         Opt_fastboot,
99         Opt_extent_cache,
100         Opt_noextent_cache,
101         Opt_noinline_data,
102         Opt_data_flush,
103         Opt_mode,
104         Opt_fault_injection,
105         Opt_lazytime,
106         Opt_nolazytime,
107         Opt_err,
108 };
109
110 static match_table_t f2fs_tokens = {
111         {Opt_gc_background, "background_gc=%s"},
112         {Opt_disable_roll_forward, "disable_roll_forward"},
113         {Opt_norecovery, "norecovery"},
114         {Opt_discard, "discard"},
115         {Opt_nodiscard, "nodiscard"},
116         {Opt_noheap, "no_heap"},
117         {Opt_user_xattr, "user_xattr"},
118         {Opt_nouser_xattr, "nouser_xattr"},
119         {Opt_acl, "acl"},
120         {Opt_noacl, "noacl"},
121         {Opt_active_logs, "active_logs=%u"},
122         {Opt_disable_ext_identify, "disable_ext_identify"},
123         {Opt_inline_xattr, "inline_xattr"},
124         {Opt_inline_data, "inline_data"},
125         {Opt_inline_dentry, "inline_dentry"},
126         {Opt_noinline_dentry, "noinline_dentry"},
127         {Opt_flush_merge, "flush_merge"},
128         {Opt_noflush_merge, "noflush_merge"},
129         {Opt_nobarrier, "nobarrier"},
130         {Opt_fastboot, "fastboot"},
131         {Opt_extent_cache, "extent_cache"},
132         {Opt_noextent_cache, "noextent_cache"},
133         {Opt_noinline_data, "noinline_data"},
134         {Opt_data_flush, "data_flush"},
135         {Opt_mode, "mode=%s"},
136         {Opt_fault_injection, "fault_injection=%u"},
137         {Opt_lazytime, "lazytime"},
138         {Opt_nolazytime, "nolazytime"},
139         {Opt_err, NULL},
140 };
141
142 /* Sysfs support for f2fs */
143 enum {
144         GC_THREAD,      /* struct f2fs_gc_thread */
145         SM_INFO,        /* struct f2fs_sm_info */
146         NM_INFO,        /* struct f2fs_nm_info */
147         F2FS_SBI,       /* struct f2fs_sb_info */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
150         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
151 #endif
152 };
153
154 struct f2fs_attr {
155         struct attribute attr;
156         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158                          const char *, size_t);
159         int struct_type;
160         int offset;
161 };
162
163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
164 {
165         if (struct_type == GC_THREAD)
166                 return (unsigned char *)sbi->gc_thread;
167         else if (struct_type == SM_INFO)
168                 return (unsigned char *)SM_I(sbi);
169         else if (struct_type == NM_INFO)
170                 return (unsigned char *)NM_I(sbi);
171         else if (struct_type == F2FS_SBI)
172                 return (unsigned char *)sbi;
173 #ifdef CONFIG_F2FS_FAULT_INJECTION
174         else if (struct_type == FAULT_INFO_RATE ||
175                                         struct_type == FAULT_INFO_TYPE)
176                 return (unsigned char *)&sbi->fault_info;
177 #endif
178         return NULL;
179 }
180
181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182                 struct f2fs_sb_info *sbi, char *buf)
183 {
184         struct super_block *sb = sbi->sb;
185
186         if (!sb->s_bdev->bd_part)
187                 return snprintf(buf, PAGE_SIZE, "0\n");
188
189         return snprintf(buf, PAGE_SIZE, "%llu\n",
190                 (unsigned long long)(sbi->kbytes_written +
191                         BD_PART_WRITTEN(sbi)));
192 }
193
194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195                         struct f2fs_sb_info *sbi, char *buf)
196 {
197         unsigned char *ptr = NULL;
198         unsigned int *ui;
199
200         ptr = __struct_ptr(sbi, a->struct_type);
201         if (!ptr)
202                 return -EINVAL;
203
204         ui = (unsigned int *)(ptr + a->offset);
205
206         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
207 }
208
209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210                         struct f2fs_sb_info *sbi,
211                         const char *buf, size_t count)
212 {
213         unsigned char *ptr;
214         unsigned long t;
215         unsigned int *ui;
216         ssize_t ret;
217
218         ptr = __struct_ptr(sbi, a->struct_type);
219         if (!ptr)
220                 return -EINVAL;
221
222         ui = (unsigned int *)(ptr + a->offset);
223
224         ret = kstrtoul(skip_spaces(buf), 0, &t);
225         if (ret < 0)
226                 return ret;
227 #ifdef CONFIG_F2FS_FAULT_INJECTION
228         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229                 return -EINVAL;
230 #endif
231         *ui = t;
232         return count;
233 }
234
235 static ssize_t f2fs_attr_show(struct kobject *kobj,
236                                 struct attribute *attr, char *buf)
237 {
238         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239                                                                 s_kobj);
240         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
241
242         return a->show ? a->show(a, sbi, buf) : 0;
243 }
244
245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246                                                 const char *buf, size_t len)
247 {
248         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249                                                                         s_kobj);
250         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251
252         return a->store ? a->store(a, sbi, buf, len) : 0;
253 }
254
255 static void f2fs_sb_release(struct kobject *kobj)
256 {
257         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258                                                                 s_kobj);
259         complete(&sbi->s_kobj_unregister);
260 }
261
262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263 static struct f2fs_attr f2fs_attr_##_name = {                   \
264         .attr = {.name = __stringify(_name), .mode = _mode },   \
265         .show   = _show,                                        \
266         .store  = _store,                                       \
267         .struct_type = _struct_type,                            \
268         .offset = _offset                                       \
269 }
270
271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
272         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
273                 f2fs_sbi_show, f2fs_sbi_store,                  \
274                 offsetof(struct struct_name, elname))
275
276 #define F2FS_GENERAL_RO_ATTR(name) \
277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
278
279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296 #ifdef CONFIG_F2FS_FAULT_INJECTION
297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299 #endif
300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
301
302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303 static struct attribute *f2fs_attrs[] = {
304         ATTR_LIST(gc_min_sleep_time),
305         ATTR_LIST(gc_max_sleep_time),
306         ATTR_LIST(gc_no_gc_sleep_time),
307         ATTR_LIST(gc_idle),
308         ATTR_LIST(reclaim_segments),
309         ATTR_LIST(max_small_discards),
310         ATTR_LIST(batched_trim_sections),
311         ATTR_LIST(ipu_policy),
312         ATTR_LIST(min_ipu_util),
313         ATTR_LIST(min_fsync_blocks),
314         ATTR_LIST(max_victim_search),
315         ATTR_LIST(dir_level),
316         ATTR_LIST(ram_thresh),
317         ATTR_LIST(ra_nid_pages),
318         ATTR_LIST(dirty_nats_ratio),
319         ATTR_LIST(cp_interval),
320         ATTR_LIST(idle_interval),
321 #ifdef CONFIG_F2FS_FAULT_INJECTION
322         ATTR_LIST(inject_rate),
323         ATTR_LIST(inject_type),
324 #endif
325         ATTR_LIST(lifetime_write_kbytes),
326         NULL,
327 };
328
329 static const struct sysfs_ops f2fs_attr_ops = {
330         .show   = f2fs_attr_show,
331         .store  = f2fs_attr_store,
332 };
333
334 static struct kobj_type f2fs_ktype = {
335         .default_attrs  = f2fs_attrs,
336         .sysfs_ops      = &f2fs_attr_ops,
337         .release        = f2fs_sb_release,
338 };
339
340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
341 {
342         struct va_format vaf;
343         va_list args;
344
345         va_start(args, fmt);
346         vaf.fmt = fmt;
347         vaf.va = &args;
348         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349         va_end(args);
350 }
351
352 static void init_once(void *foo)
353 {
354         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
355
356         inode_init_once(&fi->vfs_inode);
357 }
358
359 static int parse_options(struct super_block *sb, char *options)
360 {
361         struct f2fs_sb_info *sbi = F2FS_SB(sb);
362         struct request_queue *q;
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366
367         if (!options)
368                 return 0;
369
370         while ((p = strsep(&options, ",")) != NULL) {
371                 int token;
372                 if (!*p)
373                         continue;
374                 /*
375                  * Initialize args struct so we know whether arg was
376                  * found; some options take optional arguments.
377                  */
378                 args[0].to = args[0].from = NULL;
379                 token = match_token(p, f2fs_tokens, args);
380
381                 switch (token) {
382                 case Opt_gc_background:
383                         name = match_strdup(&args[0]);
384
385                         if (!name)
386                                 return -ENOMEM;
387                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388                                 set_opt(sbi, BG_GC);
389                                 clear_opt(sbi, FORCE_FG_GC);
390                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391                                 clear_opt(sbi, BG_GC);
392                                 clear_opt(sbi, FORCE_FG_GC);
393                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394                                 set_opt(sbi, BG_GC);
395                                 set_opt(sbi, FORCE_FG_GC);
396                         } else {
397                                 kfree(name);
398                                 return -EINVAL;
399                         }
400                         kfree(name);
401                         break;
402                 case Opt_disable_roll_forward:
403                         set_opt(sbi, DISABLE_ROLL_FORWARD);
404                         break;
405                 case Opt_norecovery:
406                         /* this option mounts f2fs with ro */
407                         set_opt(sbi, DISABLE_ROLL_FORWARD);
408                         if (!f2fs_readonly(sb))
409                                 return -EINVAL;
410                         break;
411                 case Opt_discard:
412                         q = bdev_get_queue(sb->s_bdev);
413                         if (blk_queue_discard(q)) {
414                                 set_opt(sbi, DISCARD);
415                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
416                                 f2fs_msg(sb, KERN_WARNING,
417                                         "mounting with \"discard\" option, but "
418                                         "the device does not support discard");
419                         }
420                         break;
421                 case Opt_nodiscard:
422                         if (f2fs_sb_mounted_blkzoned(sb)) {
423                                 f2fs_msg(sb, KERN_WARNING,
424                                         "discard is required for zoned block devices");
425                                 return -EINVAL;
426                         }
427                         clear_opt(sbi, DISCARD);
428                         break;
429                 case Opt_noheap:
430                         set_opt(sbi, NOHEAP);
431                         break;
432 #ifdef CONFIG_F2FS_FS_XATTR
433                 case Opt_user_xattr:
434                         set_opt(sbi, XATTR_USER);
435                         break;
436                 case Opt_nouser_xattr:
437                         clear_opt(sbi, XATTR_USER);
438                         break;
439                 case Opt_inline_xattr:
440                         set_opt(sbi, INLINE_XATTR);
441                         break;
442 #else
443                 case Opt_user_xattr:
444                         f2fs_msg(sb, KERN_INFO,
445                                 "user_xattr options not supported");
446                         break;
447                 case Opt_nouser_xattr:
448                         f2fs_msg(sb, KERN_INFO,
449                                 "nouser_xattr options not supported");
450                         break;
451                 case Opt_inline_xattr:
452                         f2fs_msg(sb, KERN_INFO,
453                                 "inline_xattr options not supported");
454                         break;
455 #endif
456 #ifdef CONFIG_F2FS_FS_POSIX_ACL
457                 case Opt_acl:
458                         set_opt(sbi, POSIX_ACL);
459                         break;
460                 case Opt_noacl:
461                         clear_opt(sbi, POSIX_ACL);
462                         break;
463 #else
464                 case Opt_acl:
465                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
466                         break;
467                 case Opt_noacl:
468                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
469                         break;
470 #endif
471                 case Opt_active_logs:
472                         if (args->from && match_int(args, &arg))
473                                 return -EINVAL;
474                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
475                                 return -EINVAL;
476                         sbi->active_logs = arg;
477                         break;
478                 case Opt_disable_ext_identify:
479                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
480                         break;
481                 case Opt_inline_data:
482                         set_opt(sbi, INLINE_DATA);
483                         break;
484                 case Opt_inline_dentry:
485                         set_opt(sbi, INLINE_DENTRY);
486                         break;
487                 case Opt_noinline_dentry:
488                         clear_opt(sbi, INLINE_DENTRY);
489                         break;
490                 case Opt_flush_merge:
491                         set_opt(sbi, FLUSH_MERGE);
492                         break;
493                 case Opt_noflush_merge:
494                         clear_opt(sbi, FLUSH_MERGE);
495                         break;
496                 case Opt_nobarrier:
497                         set_opt(sbi, NOBARRIER);
498                         break;
499                 case Opt_fastboot:
500                         set_opt(sbi, FASTBOOT);
501                         break;
502                 case Opt_extent_cache:
503                         set_opt(sbi, EXTENT_CACHE);
504                         break;
505                 case Opt_noextent_cache:
506                         clear_opt(sbi, EXTENT_CACHE);
507                         break;
508                 case Opt_noinline_data:
509                         clear_opt(sbi, INLINE_DATA);
510                         break;
511                 case Opt_data_flush:
512                         set_opt(sbi, DATA_FLUSH);
513                         break;
514                 case Opt_mode:
515                         name = match_strdup(&args[0]);
516
517                         if (!name)
518                                 return -ENOMEM;
519                         if (strlen(name) == 8 &&
520                                         !strncmp(name, "adaptive", 8)) {
521                                 if (f2fs_sb_mounted_blkzoned(sb)) {
522                                         f2fs_msg(sb, KERN_WARNING,
523                                                  "adaptive mode is not allowed with "
524                                                  "zoned block device feature");
525                                         kfree(name);
526                                         return -EINVAL;
527                                 }
528                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
529                         } else if (strlen(name) == 3 &&
530                                         !strncmp(name, "lfs", 3)) {
531                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
532                         } else {
533                                 kfree(name);
534                                 return -EINVAL;
535                         }
536                         kfree(name);
537                         break;
538                 case Opt_fault_injection:
539                         if (args->from && match_int(args, &arg))
540                                 return -EINVAL;
541 #ifdef CONFIG_F2FS_FAULT_INJECTION
542                         f2fs_build_fault_attr(sbi, arg);
543 #else
544                         f2fs_msg(sb, KERN_INFO,
545                                 "FAULT_INJECTION was not selected");
546 #endif
547                         break;
548                 case Opt_lazytime:
549                         sb->s_flags |= MS_LAZYTIME;
550                         break;
551                 case Opt_nolazytime:
552                         sb->s_flags &= ~MS_LAZYTIME;
553                         break;
554                 default:
555                         f2fs_msg(sb, KERN_ERR,
556                                 "Unrecognized mount option \"%s\" or missing value",
557                                 p);
558                         return -EINVAL;
559                 }
560         }
561         return 0;
562 }
563
564 static struct inode *f2fs_alloc_inode(struct super_block *sb)
565 {
566         struct f2fs_inode_info *fi;
567
568         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
569         if (!fi)
570                 return NULL;
571
572         init_once((void *) fi);
573
574         /* Initialize f2fs-specific inode info */
575         fi->vfs_inode.i_version = 1;
576         atomic_set(&fi->dirty_pages, 0);
577         fi->i_current_depth = 1;
578         fi->i_advise = 0;
579         init_rwsem(&fi->i_sem);
580         INIT_LIST_HEAD(&fi->dirty_list);
581         INIT_LIST_HEAD(&fi->gdirty_list);
582         INIT_LIST_HEAD(&fi->inmem_pages);
583         mutex_init(&fi->inmem_lock);
584         init_rwsem(&fi->dio_rwsem[READ]);
585         init_rwsem(&fi->dio_rwsem[WRITE]);
586
587         /* Will be used by directory only */
588         fi->i_dir_level = F2FS_SB(sb)->dir_level;
589         return &fi->vfs_inode;
590 }
591
592 static int f2fs_drop_inode(struct inode *inode)
593 {
594         /*
595          * This is to avoid a deadlock condition like below.
596          * writeback_single_inode(inode)
597          *  - f2fs_write_data_page
598          *    - f2fs_gc -> iput -> evict
599          *       - inode_wait_for_writeback(inode)
600          */
601         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
602                 if (!inode->i_nlink && !is_bad_inode(inode)) {
603                         /* to avoid evict_inode call simultaneously */
604                         atomic_inc(&inode->i_count);
605                         spin_unlock(&inode->i_lock);
606
607                         /* some remained atomic pages should discarded */
608                         if (f2fs_is_atomic_file(inode))
609                                 drop_inmem_pages(inode);
610
611                         /* should remain fi->extent_tree for writepage */
612                         f2fs_destroy_extent_node(inode);
613
614                         sb_start_intwrite(inode->i_sb);
615                         f2fs_i_size_write(inode, 0);
616
617                         if (F2FS_HAS_BLOCKS(inode))
618                                 f2fs_truncate(inode);
619
620                         sb_end_intwrite(inode->i_sb);
621
622                         fscrypt_put_encryption_info(inode, NULL);
623                         spin_lock(&inode->i_lock);
624                         atomic_dec(&inode->i_count);
625                 }
626                 return 0;
627         }
628
629         return generic_drop_inode(inode);
630 }
631
632 int f2fs_inode_dirtied(struct inode *inode, bool sync)
633 {
634         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
635         int ret = 0;
636
637         spin_lock(&sbi->inode_lock[DIRTY_META]);
638         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
639                 ret = 1;
640         } else {
641                 set_inode_flag(inode, FI_DIRTY_INODE);
642                 stat_inc_dirty_inode(sbi, DIRTY_META);
643         }
644         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
645                 list_add_tail(&F2FS_I(inode)->gdirty_list,
646                                 &sbi->inode_list[DIRTY_META]);
647                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
648         }
649         spin_unlock(&sbi->inode_lock[DIRTY_META]);
650         return ret;
651 }
652
653 void f2fs_inode_synced(struct inode *inode)
654 {
655         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656
657         spin_lock(&sbi->inode_lock[DIRTY_META]);
658         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
659                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
660                 return;
661         }
662         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
663                 list_del_init(&F2FS_I(inode)->gdirty_list);
664                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
665         }
666         clear_inode_flag(inode, FI_DIRTY_INODE);
667         clear_inode_flag(inode, FI_AUTO_RECOVER);
668         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
669         spin_unlock(&sbi->inode_lock[DIRTY_META]);
670 }
671
672 /*
673  * f2fs_dirty_inode() is called from __mark_inode_dirty()
674  *
675  * We should call set_dirty_inode to write the dirty inode through write_inode.
676  */
677 static void f2fs_dirty_inode(struct inode *inode, int flags)
678 {
679         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
680
681         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
682                         inode->i_ino == F2FS_META_INO(sbi))
683                 return;
684
685         if (flags == I_DIRTY_TIME)
686                 return;
687
688         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
689                 clear_inode_flag(inode, FI_AUTO_RECOVER);
690
691         f2fs_inode_dirtied(inode, false);
692 }
693
694 static void f2fs_i_callback(struct rcu_head *head)
695 {
696         struct inode *inode = container_of(head, struct inode, i_rcu);
697         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
698 }
699
700 static void f2fs_destroy_inode(struct inode *inode)
701 {
702         call_rcu(&inode->i_rcu, f2fs_i_callback);
703 }
704
705 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
706 {
707         percpu_counter_destroy(&sbi->alloc_valid_block_count);
708         percpu_counter_destroy(&sbi->total_valid_inode_count);
709 }
710
711 static void destroy_device_list(struct f2fs_sb_info *sbi)
712 {
713         int i;
714
715         for (i = 0; i < sbi->s_ndevs; i++) {
716                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
717 #ifdef CONFIG_BLK_DEV_ZONED
718                 kfree(FDEV(i).blkz_type);
719 #endif
720         }
721         kfree(sbi->devs);
722 }
723
724 static void f2fs_put_super(struct super_block *sb)
725 {
726         struct f2fs_sb_info *sbi = F2FS_SB(sb);
727
728         if (sbi->s_proc) {
729                 remove_proc_entry("segment_info", sbi->s_proc);
730                 remove_proc_entry("segment_bits", sbi->s_proc);
731                 remove_proc_entry(sb->s_id, f2fs_proc_root);
732         }
733         kobject_del(&sbi->s_kobj);
734
735         stop_gc_thread(sbi);
736
737         /* prevent remaining shrinker jobs */
738         mutex_lock(&sbi->umount_mutex);
739
740         /*
741          * We don't need to do checkpoint when superblock is clean.
742          * But, the previous checkpoint was not done by umount, it needs to do
743          * clean checkpoint again.
744          */
745         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
746                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
747                 struct cp_control cpc = {
748                         .reason = CP_UMOUNT,
749                 };
750                 write_checkpoint(sbi, &cpc);
751         }
752
753         /* write_checkpoint can update stat informaion */
754         f2fs_destroy_stats(sbi);
755
756         /*
757          * normally superblock is clean, so we need to release this.
758          * In addition, EIO will skip do checkpoint, we need this as well.
759          */
760         release_ino_entry(sbi, true);
761
762         f2fs_leave_shrinker(sbi);
763         mutex_unlock(&sbi->umount_mutex);
764
765         /* our cp_error case, we can wait for any writeback page */
766         f2fs_flush_merged_bios(sbi);
767
768         iput(sbi->node_inode);
769         iput(sbi->meta_inode);
770
771         /* destroy f2fs internal modules */
772         destroy_node_manager(sbi);
773         destroy_segment_manager(sbi);
774
775         kfree(sbi->ckpt);
776         kobject_put(&sbi->s_kobj);
777         wait_for_completion(&sbi->s_kobj_unregister);
778
779         sb->s_fs_info = NULL;
780         if (sbi->s_chksum_driver)
781                 crypto_free_shash(sbi->s_chksum_driver);
782         kfree(sbi->raw_super);
783
784         destroy_device_list(sbi);
785
786         destroy_percpu_info(sbi);
787         kfree(sbi);
788 }
789
790 int f2fs_sync_fs(struct super_block *sb, int sync)
791 {
792         struct f2fs_sb_info *sbi = F2FS_SB(sb);
793         int err = 0;
794
795         trace_f2fs_sync_fs(sb, sync);
796
797         if (sync) {
798                 struct cp_control cpc;
799
800                 cpc.reason = __get_cp_reason(sbi);
801
802                 mutex_lock(&sbi->gc_mutex);
803                 err = write_checkpoint(sbi, &cpc);
804                 mutex_unlock(&sbi->gc_mutex);
805         }
806         f2fs_trace_ios(NULL, 1);
807
808         return err;
809 }
810
811 static int f2fs_freeze(struct super_block *sb)
812 {
813         if (f2fs_readonly(sb))
814                 return 0;
815
816         /* IO error happened before */
817         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
818                 return -EIO;
819
820         /* must be clean, since sync_filesystem() was already called */
821         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
822                 return -EINVAL;
823         return 0;
824 }
825
826 static int f2fs_unfreeze(struct super_block *sb)
827 {
828         return 0;
829 }
830
831 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
832 {
833         struct super_block *sb = dentry->d_sb;
834         struct f2fs_sb_info *sbi = F2FS_SB(sb);
835         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
836         block_t total_count, user_block_count, start_count, ovp_count;
837
838         total_count = le64_to_cpu(sbi->raw_super->block_count);
839         user_block_count = sbi->user_block_count;
840         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
841         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
842         buf->f_type = F2FS_SUPER_MAGIC;
843         buf->f_bsize = sbi->blocksize;
844
845         buf->f_blocks = total_count - start_count;
846         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
847         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
848
849         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
850         buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
851                                                         buf->f_bavail);
852
853         buf->f_namelen = F2FS_NAME_LEN;
854         buf->f_fsid.val[0] = (u32)id;
855         buf->f_fsid.val[1] = (u32)(id >> 32);
856
857         return 0;
858 }
859
860 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
861 {
862         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
863
864         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
865                 if (test_opt(sbi, FORCE_FG_GC))
866                         seq_printf(seq, ",background_gc=%s", "sync");
867                 else
868                         seq_printf(seq, ",background_gc=%s", "on");
869         } else {
870                 seq_printf(seq, ",background_gc=%s", "off");
871         }
872         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
873                 seq_puts(seq, ",disable_roll_forward");
874         if (test_opt(sbi, DISCARD))
875                 seq_puts(seq, ",discard");
876         if (test_opt(sbi, NOHEAP))
877                 seq_puts(seq, ",no_heap_alloc");
878 #ifdef CONFIG_F2FS_FS_XATTR
879         if (test_opt(sbi, XATTR_USER))
880                 seq_puts(seq, ",user_xattr");
881         else
882                 seq_puts(seq, ",nouser_xattr");
883         if (test_opt(sbi, INLINE_XATTR))
884                 seq_puts(seq, ",inline_xattr");
885 #endif
886 #ifdef CONFIG_F2FS_FS_POSIX_ACL
887         if (test_opt(sbi, POSIX_ACL))
888                 seq_puts(seq, ",acl");
889         else
890                 seq_puts(seq, ",noacl");
891 #endif
892         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
893                 seq_puts(seq, ",disable_ext_identify");
894         if (test_opt(sbi, INLINE_DATA))
895                 seq_puts(seq, ",inline_data");
896         else
897                 seq_puts(seq, ",noinline_data");
898         if (test_opt(sbi, INLINE_DENTRY))
899                 seq_puts(seq, ",inline_dentry");
900         else
901                 seq_puts(seq, ",noinline_dentry");
902         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
903                 seq_puts(seq, ",flush_merge");
904         if (test_opt(sbi, NOBARRIER))
905                 seq_puts(seq, ",nobarrier");
906         if (test_opt(sbi, FASTBOOT))
907                 seq_puts(seq, ",fastboot");
908         if (test_opt(sbi, EXTENT_CACHE))
909                 seq_puts(seq, ",extent_cache");
910         else
911                 seq_puts(seq, ",noextent_cache");
912         if (test_opt(sbi, DATA_FLUSH))
913                 seq_puts(seq, ",data_flush");
914
915         seq_puts(seq, ",mode=");
916         if (test_opt(sbi, ADAPTIVE))
917                 seq_puts(seq, "adaptive");
918         else if (test_opt(sbi, LFS))
919                 seq_puts(seq, "lfs");
920         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
921
922         return 0;
923 }
924
925 static int segment_info_seq_show(struct seq_file *seq, void *offset)
926 {
927         struct super_block *sb = seq->private;
928         struct f2fs_sb_info *sbi = F2FS_SB(sb);
929         unsigned int total_segs =
930                         le32_to_cpu(sbi->raw_super->segment_count_main);
931         int i;
932
933         seq_puts(seq, "format: segment_type|valid_blocks\n"
934                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
935
936         for (i = 0; i < total_segs; i++) {
937                 struct seg_entry *se = get_seg_entry(sbi, i);
938
939                 if ((i % 10) == 0)
940                         seq_printf(seq, "%-10d", i);
941                 seq_printf(seq, "%d|%-3u", se->type,
942                                         get_valid_blocks(sbi, i, 1));
943                 if ((i % 10) == 9 || i == (total_segs - 1))
944                         seq_putc(seq, '\n');
945                 else
946                         seq_putc(seq, ' ');
947         }
948
949         return 0;
950 }
951
952 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
953 {
954         struct super_block *sb = seq->private;
955         struct f2fs_sb_info *sbi = F2FS_SB(sb);
956         unsigned int total_segs =
957                         le32_to_cpu(sbi->raw_super->segment_count_main);
958         int i, j;
959
960         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
961                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
962
963         for (i = 0; i < total_segs; i++) {
964                 struct seg_entry *se = get_seg_entry(sbi, i);
965
966                 seq_printf(seq, "%-10d", i);
967                 seq_printf(seq, "%d|%-3u|", se->type,
968                                         get_valid_blocks(sbi, i, 1));
969                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
970                         seq_printf(seq, " %.2x", se->cur_valid_map[j]);
971                 seq_putc(seq, '\n');
972         }
973         return 0;
974 }
975
976 #define F2FS_PROC_FILE_DEF(_name)                                       \
977 static int _name##_open_fs(struct inode *inode, struct file *file)      \
978 {                                                                       \
979         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
980 }                                                                       \
981                                                                         \
982 static const struct file_operations f2fs_seq_##_name##_fops = {         \
983         .open = _name##_open_fs,                                        \
984         .read = seq_read,                                               \
985         .llseek = seq_lseek,                                            \
986         .release = single_release,                                      \
987 };
988
989 F2FS_PROC_FILE_DEF(segment_info);
990 F2FS_PROC_FILE_DEF(segment_bits);
991
992 static void default_options(struct f2fs_sb_info *sbi)
993 {
994         /* init some FS parameters */
995         sbi->active_logs = NR_CURSEG_TYPE;
996
997         set_opt(sbi, BG_GC);
998         set_opt(sbi, INLINE_DATA);
999         set_opt(sbi, INLINE_DENTRY);
1000         set_opt(sbi, EXTENT_CACHE);
1001         sbi->sb->s_flags |= MS_LAZYTIME;
1002         set_opt(sbi, FLUSH_MERGE);
1003         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1004                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1005                 set_opt(sbi, DISCARD);
1006         } else {
1007                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1008         }
1009
1010 #ifdef CONFIG_F2FS_FS_XATTR
1011         set_opt(sbi, XATTR_USER);
1012 #endif
1013 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1014         set_opt(sbi, POSIX_ACL);
1015 #endif
1016
1017 #ifdef CONFIG_F2FS_FAULT_INJECTION
1018         f2fs_build_fault_attr(sbi, 0);
1019 #endif
1020 }
1021
1022 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1023 {
1024         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1025         struct f2fs_mount_info org_mount_opt;
1026         int err, active_logs;
1027         bool need_restart_gc = false;
1028         bool need_stop_gc = false;
1029         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1030 #ifdef CONFIG_F2FS_FAULT_INJECTION
1031         struct f2fs_fault_info ffi = sbi->fault_info;
1032 #endif
1033
1034         /*
1035          * Save the old mount options in case we
1036          * need to restore them.
1037          */
1038         org_mount_opt = sbi->mount_opt;
1039         active_logs = sbi->active_logs;
1040
1041         /* recover superblocks we couldn't write due to previous RO mount */
1042         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1043                 err = f2fs_commit_super(sbi, false);
1044                 f2fs_msg(sb, KERN_INFO,
1045                         "Try to recover all the superblocks, ret: %d", err);
1046                 if (!err)
1047                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1048         }
1049
1050         sbi->mount_opt.opt = 0;
1051         default_options(sbi);
1052
1053         /* parse mount options */
1054         err = parse_options(sb, data);
1055         if (err)
1056                 goto restore_opts;
1057
1058         /*
1059          * Previous and new state of filesystem is RO,
1060          * so skip checking GC and FLUSH_MERGE conditions.
1061          */
1062         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1063                 goto skip;
1064
1065         /* disallow enable/disable extent_cache dynamically */
1066         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1067                 err = -EINVAL;
1068                 f2fs_msg(sbi->sb, KERN_WARNING,
1069                                 "switch extent_cache option is not allowed");
1070                 goto restore_opts;
1071         }
1072
1073         /*
1074          * We stop the GC thread if FS is mounted as RO
1075          * or if background_gc = off is passed in mount
1076          * option. Also sync the filesystem.
1077          */
1078         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1079                 if (sbi->gc_thread) {
1080                         stop_gc_thread(sbi);
1081                         need_restart_gc = true;
1082                 }
1083         } else if (!sbi->gc_thread) {
1084                 err = start_gc_thread(sbi);
1085                 if (err)
1086                         goto restore_opts;
1087                 need_stop_gc = true;
1088         }
1089
1090         if (*flags & MS_RDONLY) {
1091                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1092                 sync_inodes_sb(sb);
1093
1094                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1095                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1096                 f2fs_sync_fs(sb, 1);
1097                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1098         }
1099
1100         /*
1101          * We stop issue flush thread if FS is mounted as RO
1102          * or if flush_merge is not passed in mount option.
1103          */
1104         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1105                 clear_opt(sbi, FLUSH_MERGE);
1106                 destroy_flush_cmd_control(sbi, false);
1107         } else {
1108                 err = create_flush_cmd_control(sbi);
1109                 if (err)
1110                         goto restore_gc;
1111         }
1112 skip:
1113         /* Update the POSIXACL Flag */
1114         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1115                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1116
1117         return 0;
1118 restore_gc:
1119         if (need_restart_gc) {
1120                 if (start_gc_thread(sbi))
1121                         f2fs_msg(sbi->sb, KERN_WARNING,
1122                                 "background gc thread has stopped");
1123         } else if (need_stop_gc) {
1124                 stop_gc_thread(sbi);
1125         }
1126 restore_opts:
1127         sbi->mount_opt = org_mount_opt;
1128         sbi->active_logs = active_logs;
1129 #ifdef CONFIG_F2FS_FAULT_INJECTION
1130         sbi->fault_info = ffi;
1131 #endif
1132         return err;
1133 }
1134
1135 static struct super_operations f2fs_sops = {
1136         .alloc_inode    = f2fs_alloc_inode,
1137         .drop_inode     = f2fs_drop_inode,
1138         .destroy_inode  = f2fs_destroy_inode,
1139         .write_inode    = f2fs_write_inode,
1140         .dirty_inode    = f2fs_dirty_inode,
1141         .show_options   = f2fs_show_options,
1142         .evict_inode    = f2fs_evict_inode,
1143         .put_super      = f2fs_put_super,
1144         .sync_fs        = f2fs_sync_fs,
1145         .freeze_fs      = f2fs_freeze,
1146         .unfreeze_fs    = f2fs_unfreeze,
1147         .statfs         = f2fs_statfs,
1148         .remount_fs     = f2fs_remount,
1149 };
1150
1151 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1152 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1153 {
1154         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1155                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1156                                 ctx, len, NULL);
1157 }
1158
1159 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1160 {
1161         *key = F2FS_I_SB(inode)->key_prefix;
1162         return F2FS_I_SB(inode)->key_prefix_size;
1163 }
1164
1165 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1166                                                         void *fs_data)
1167 {
1168         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1169                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1170                                 ctx, len, fs_data, XATTR_CREATE);
1171 }
1172
1173 static unsigned f2fs_max_namelen(struct inode *inode)
1174 {
1175         return S_ISLNK(inode->i_mode) ?
1176                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1177 }
1178
1179 static struct fscrypt_operations f2fs_cryptops = {
1180         .get_context    = f2fs_get_context,
1181         .key_prefix     = f2fs_key_prefix,
1182         .set_context    = f2fs_set_context,
1183         .is_encrypted   = f2fs_encrypted_inode,
1184         .empty_dir      = f2fs_empty_dir,
1185         .max_namelen    = f2fs_max_namelen,
1186 };
1187 #else
1188 static struct fscrypt_operations f2fs_cryptops = {
1189         .is_encrypted   = f2fs_encrypted_inode,
1190 };
1191 #endif
1192
1193 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1194                 u64 ino, u32 generation)
1195 {
1196         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1197         struct inode *inode;
1198
1199         if (check_nid_range(sbi, ino))
1200                 return ERR_PTR(-ESTALE);
1201
1202         /*
1203          * f2fs_iget isn't quite right if the inode is currently unallocated!
1204          * However f2fs_iget currently does appropriate checks to handle stale
1205          * inodes so everything is OK.
1206          */
1207         inode = f2fs_iget(sb, ino);
1208         if (IS_ERR(inode))
1209                 return ERR_CAST(inode);
1210         if (unlikely(generation && inode->i_generation != generation)) {
1211                 /* we didn't find the right inode.. */
1212                 iput(inode);
1213                 return ERR_PTR(-ESTALE);
1214         }
1215         return inode;
1216 }
1217
1218 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1219                 int fh_len, int fh_type)
1220 {
1221         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1222                                     f2fs_nfs_get_inode);
1223 }
1224
1225 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1226                 int fh_len, int fh_type)
1227 {
1228         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1229                                     f2fs_nfs_get_inode);
1230 }
1231
1232 static const struct export_operations f2fs_export_ops = {
1233         .fh_to_dentry = f2fs_fh_to_dentry,
1234         .fh_to_parent = f2fs_fh_to_parent,
1235         .get_parent = f2fs_get_parent,
1236 };
1237
1238 static loff_t max_file_blocks(void)
1239 {
1240         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1241         loff_t leaf_count = ADDRS_PER_BLOCK;
1242
1243         /* two direct node blocks */
1244         result += (leaf_count * 2);
1245
1246         /* two indirect node blocks */
1247         leaf_count *= NIDS_PER_BLOCK;
1248         result += (leaf_count * 2);
1249
1250         /* one double indirect node block */
1251         leaf_count *= NIDS_PER_BLOCK;
1252         result += leaf_count;
1253
1254         return result;
1255 }
1256
1257 static int __f2fs_commit_super(struct buffer_head *bh,
1258                         struct f2fs_super_block *super)
1259 {
1260         lock_buffer(bh);
1261         if (super)
1262                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1263         set_buffer_uptodate(bh);
1264         set_buffer_dirty(bh);
1265         unlock_buffer(bh);
1266
1267         /* it's rare case, we can do fua all the time */
1268         return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA);
1269 }
1270
1271 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1272                                         struct buffer_head *bh)
1273 {
1274         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1275                                         (bh->b_data + F2FS_SUPER_OFFSET);
1276         struct super_block *sb = sbi->sb;
1277         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1278         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1279         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1280         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1281         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1282         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1283         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1284         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1285         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1286         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1287         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1288         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1289         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1290         u64 main_end_blkaddr = main_blkaddr +
1291                                 (segment_count_main << log_blocks_per_seg);
1292         u64 seg_end_blkaddr = segment0_blkaddr +
1293                                 (segment_count << log_blocks_per_seg);
1294
1295         if (segment0_blkaddr != cp_blkaddr) {
1296                 f2fs_msg(sb, KERN_INFO,
1297                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1298                         segment0_blkaddr, cp_blkaddr);
1299                 return true;
1300         }
1301
1302         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1303                                                         sit_blkaddr) {
1304                 f2fs_msg(sb, KERN_INFO,
1305                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1306                         cp_blkaddr, sit_blkaddr,
1307                         segment_count_ckpt << log_blocks_per_seg);
1308                 return true;
1309         }
1310
1311         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1312                                                         nat_blkaddr) {
1313                 f2fs_msg(sb, KERN_INFO,
1314                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1315                         sit_blkaddr, nat_blkaddr,
1316                         segment_count_sit << log_blocks_per_seg);
1317                 return true;
1318         }
1319
1320         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1321                                                         ssa_blkaddr) {
1322                 f2fs_msg(sb, KERN_INFO,
1323                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1324                         nat_blkaddr, ssa_blkaddr,
1325                         segment_count_nat << log_blocks_per_seg);
1326                 return true;
1327         }
1328
1329         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1330                                                         main_blkaddr) {
1331                 f2fs_msg(sb, KERN_INFO,
1332                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1333                         ssa_blkaddr, main_blkaddr,
1334                         segment_count_ssa << log_blocks_per_seg);
1335                 return true;
1336         }
1337
1338         if (main_end_blkaddr > seg_end_blkaddr) {
1339                 f2fs_msg(sb, KERN_INFO,
1340                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1341                         main_blkaddr,
1342                         segment0_blkaddr +
1343                                 (segment_count << log_blocks_per_seg),
1344                         segment_count_main << log_blocks_per_seg);
1345                 return true;
1346         } else if (main_end_blkaddr < seg_end_blkaddr) {
1347                 int err = 0;
1348                 char *res;
1349
1350                 /* fix in-memory information all the time */
1351                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1352                                 segment0_blkaddr) >> log_blocks_per_seg);
1353
1354                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1355                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1356                         res = "internally";
1357                 } else {
1358                         err = __f2fs_commit_super(bh, NULL);
1359                         res = err ? "failed" : "done";
1360                 }
1361                 f2fs_msg(sb, KERN_INFO,
1362                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1363                         res, main_blkaddr,
1364                         segment0_blkaddr +
1365                                 (segment_count << log_blocks_per_seg),
1366                         segment_count_main << log_blocks_per_seg);
1367                 if (err)
1368                         return true;
1369         }
1370         return false;
1371 }
1372
1373 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1374                                 struct buffer_head *bh)
1375 {
1376         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1377                                         (bh->b_data + F2FS_SUPER_OFFSET);
1378         struct super_block *sb = sbi->sb;
1379         unsigned int blocksize;
1380
1381         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1382                 f2fs_msg(sb, KERN_INFO,
1383                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1384                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1385                 return 1;
1386         }
1387
1388         /* Currently, support only 4KB page cache size */
1389         if (F2FS_BLKSIZE != PAGE_SIZE) {
1390                 f2fs_msg(sb, KERN_INFO,
1391                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1392                         PAGE_SIZE);
1393                 return 1;
1394         }
1395
1396         /* Currently, support only 4KB block size */
1397         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1398         if (blocksize != F2FS_BLKSIZE) {
1399                 f2fs_msg(sb, KERN_INFO,
1400                         "Invalid blocksize (%u), supports only 4KB\n",
1401                         blocksize);
1402                 return 1;
1403         }
1404
1405         /* check log blocks per segment */
1406         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1407                 f2fs_msg(sb, KERN_INFO,
1408                         "Invalid log blocks per segment (%u)\n",
1409                         le32_to_cpu(raw_super->log_blocks_per_seg));
1410                 return 1;
1411         }
1412
1413         /* Currently, support 512/1024/2048/4096 bytes sector size */
1414         if (le32_to_cpu(raw_super->log_sectorsize) >
1415                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1416                 le32_to_cpu(raw_super->log_sectorsize) <
1417                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1418                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1419                         le32_to_cpu(raw_super->log_sectorsize));
1420                 return 1;
1421         }
1422         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1423                 le32_to_cpu(raw_super->log_sectorsize) !=
1424                         F2FS_MAX_LOG_SECTOR_SIZE) {
1425                 f2fs_msg(sb, KERN_INFO,
1426                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1427                         le32_to_cpu(raw_super->log_sectors_per_block),
1428                         le32_to_cpu(raw_super->log_sectorsize));
1429                 return 1;
1430         }
1431
1432         /* check reserved ino info */
1433         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1434                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1435                 le32_to_cpu(raw_super->root_ino) != 3) {
1436                 f2fs_msg(sb, KERN_INFO,
1437                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1438                         le32_to_cpu(raw_super->node_ino),
1439                         le32_to_cpu(raw_super->meta_ino),
1440                         le32_to_cpu(raw_super->root_ino));
1441                 return 1;
1442         }
1443
1444         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1445         if (sanity_check_area_boundary(sbi, bh))
1446                 return 1;
1447
1448         return 0;
1449 }
1450
1451 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1452 {
1453         unsigned int total, fsmeta;
1454         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1455         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456         unsigned int ovp_segments, reserved_segments;
1457
1458         total = le32_to_cpu(raw_super->segment_count);
1459         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1460         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1461         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1462         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1463         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1464
1465         if (unlikely(fsmeta >= total))
1466                 return 1;
1467
1468         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1469         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1470
1471         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1472                         ovp_segments == 0 || reserved_segments == 0)) {
1473                 f2fs_msg(sbi->sb, KERN_ERR,
1474                         "Wrong layout: check mkfs.f2fs version");
1475                 return 1;
1476         }
1477
1478         if (unlikely(f2fs_cp_error(sbi))) {
1479                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1480                 return 1;
1481         }
1482         return 0;
1483 }
1484
1485 static void init_sb_info(struct f2fs_sb_info *sbi)
1486 {
1487         struct f2fs_super_block *raw_super = sbi->raw_super;
1488         int i;
1489
1490         sbi->log_sectors_per_block =
1491                 le32_to_cpu(raw_super->log_sectors_per_block);
1492         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1493         sbi->blocksize = 1 << sbi->log_blocksize;
1494         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1495         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1496         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1497         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1498         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1499         sbi->total_node_count =
1500                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1501                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1502         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1503         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1504         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1505         sbi->cur_victim_sec = NULL_SECNO;
1506         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1507
1508         sbi->dir_level = DEF_DIR_LEVEL;
1509         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1510         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1511         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1512
1513         for (i = 0; i < NR_COUNT_TYPE; i++)
1514                 atomic_set(&sbi->nr_pages[i], 0);
1515
1516         INIT_LIST_HEAD(&sbi->s_list);
1517         mutex_init(&sbi->umount_mutex);
1518         mutex_init(&sbi->wio_mutex[NODE]);
1519         mutex_init(&sbi->wio_mutex[DATA]);
1520         spin_lock_init(&sbi->cp_lock);
1521
1522 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1523         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1524                                 F2FS_KEY_DESC_PREFIX_SIZE);
1525         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1526 #endif
1527 }
1528
1529 static int init_percpu_info(struct f2fs_sb_info *sbi)
1530 {
1531         int err;
1532
1533         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1534         if (err)
1535                 return err;
1536
1537         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1538                                                                 GFP_KERNEL);
1539 }
1540
1541 #ifdef CONFIG_BLK_DEV_ZONED
1542 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1543 {
1544         struct block_device *bdev = FDEV(devi).bdev;
1545         sector_t nr_sectors = bdev->bd_part->nr_sects;
1546         sector_t sector = 0;
1547         struct blk_zone *zones;
1548         unsigned int i, nr_zones;
1549         unsigned int n = 0;
1550         int err = -EIO;
1551
1552         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1553                 return 0;
1554
1555         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1556                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1557                 return -EINVAL;
1558         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1559         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1560                                 __ilog2_u32(sbi->blocks_per_blkz))
1561                 return -EINVAL;
1562         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1563         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1564                                         sbi->log_blocks_per_blkz;
1565         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1566                 FDEV(devi).nr_blkz++;
1567
1568         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1569         if (!FDEV(devi).blkz_type)
1570                 return -ENOMEM;
1571
1572 #define F2FS_REPORT_NR_ZONES   4096
1573
1574         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1575                         GFP_KERNEL);
1576         if (!zones)
1577                 return -ENOMEM;
1578
1579         /* Get block zones type */
1580         while (zones && sector < nr_sectors) {
1581
1582                 nr_zones = F2FS_REPORT_NR_ZONES;
1583                 err = blkdev_report_zones(bdev, sector,
1584                                           zones, &nr_zones,
1585                                           GFP_KERNEL);
1586                 if (err)
1587                         break;
1588                 if (!nr_zones) {
1589                         err = -EIO;
1590                         break;
1591                 }
1592
1593                 for (i = 0; i < nr_zones; i++) {
1594                         FDEV(devi).blkz_type[n] = zones[i].type;
1595                         sector += zones[i].len;
1596                         n++;
1597                 }
1598         }
1599
1600         kfree(zones);
1601
1602         return err;
1603 }
1604 #endif
1605
1606 /*
1607  * Read f2fs raw super block.
1608  * Because we have two copies of super block, so read both of them
1609  * to get the first valid one. If any one of them is broken, we pass
1610  * them recovery flag back to the caller.
1611  */
1612 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1613                         struct f2fs_super_block **raw_super,
1614                         int *valid_super_block, int *recovery)
1615 {
1616         struct super_block *sb = sbi->sb;
1617         int block;
1618         struct buffer_head *bh;
1619         struct f2fs_super_block *super;
1620         int err = 0;
1621
1622         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1623         if (!super)
1624                 return -ENOMEM;
1625
1626         for (block = 0; block < 2; block++) {
1627                 bh = sb_bread(sb, block);
1628                 if (!bh) {
1629                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1630                                 block + 1);
1631                         err = -EIO;
1632                         continue;
1633                 }
1634
1635                 /* sanity checking of raw super */
1636                 if (sanity_check_raw_super(sbi, bh)) {
1637                         f2fs_msg(sb, KERN_ERR,
1638                                 "Can't find valid F2FS filesystem in %dth superblock",
1639                                 block + 1);
1640                         err = -EINVAL;
1641                         brelse(bh);
1642                         continue;
1643                 }
1644
1645                 if (!*raw_super) {
1646                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1647                                                         sizeof(*super));
1648                         *valid_super_block = block;
1649                         *raw_super = super;
1650                 }
1651                 brelse(bh);
1652         }
1653
1654         /* Fail to read any one of the superblocks*/
1655         if (err < 0)
1656                 *recovery = 1;
1657
1658         /* No valid superblock */
1659         if (!*raw_super)
1660                 kfree(super);
1661         else
1662                 err = 0;
1663
1664         return err;
1665 }
1666
1667 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1668 {
1669         struct buffer_head *bh;
1670         int err;
1671
1672         if ((recover && f2fs_readonly(sbi->sb)) ||
1673                                 bdev_read_only(sbi->sb->s_bdev)) {
1674                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1675                 return -EROFS;
1676         }
1677
1678         /* write back-up superblock first */
1679         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1680         if (!bh)
1681                 return -EIO;
1682         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1683         brelse(bh);
1684
1685         /* if we are in recovery path, skip writing valid superblock */
1686         if (recover || err)
1687                 return err;
1688
1689         /* write current valid superblock */
1690         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1691         if (!bh)
1692                 return -EIO;
1693         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1694         brelse(bh);
1695         return err;
1696 }
1697
1698 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1699 {
1700         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1701         int i;
1702
1703         for (i = 0; i < MAX_DEVICES; i++) {
1704                 if (!RDEV(i).path[0])
1705                         return 0;
1706
1707                 if (i == 0) {
1708                         sbi->devs = kzalloc(sizeof(struct f2fs_dev_info) *
1709                                                 MAX_DEVICES, GFP_KERNEL);
1710                         if (!sbi->devs)
1711                                 return -ENOMEM;
1712                 }
1713
1714                 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1715                 FDEV(i).total_segments = le32_to_cpu(RDEV(i).total_segments);
1716                 if (i == 0) {
1717                         FDEV(i).start_blk = 0;
1718                         FDEV(i).end_blk = FDEV(i).start_blk +
1719                                 (FDEV(i).total_segments <<
1720                                 sbi->log_blocks_per_seg) - 1 +
1721                                 le32_to_cpu(raw_super->segment0_blkaddr);
1722                 } else {
1723                         FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1724                         FDEV(i).end_blk = FDEV(i).start_blk +
1725                                 (FDEV(i).total_segments <<
1726                                 sbi->log_blocks_per_seg) - 1;
1727                 }
1728
1729                 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1730                                         sbi->sb->s_mode, sbi->sb->s_type);
1731                 if (IS_ERR(FDEV(i).bdev))
1732                         return PTR_ERR(FDEV(i).bdev);
1733
1734                 /* to release errored devices */
1735                 sbi->s_ndevs = i + 1;
1736
1737 #ifdef CONFIG_BLK_DEV_ZONED
1738                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1739                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1740                         f2fs_msg(sbi->sb, KERN_ERR,
1741                                 "Zoned block device feature not enabled\n");
1742                         return -EINVAL;
1743                 }
1744                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1745                         if (init_blkz_info(sbi, i)) {
1746                                 f2fs_msg(sbi->sb, KERN_ERR,
1747                                         "Failed to initialize F2FS blkzone information");
1748                                 return -EINVAL;
1749                         }
1750                         f2fs_msg(sbi->sb, KERN_INFO,
1751                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1752                                 i, FDEV(i).path,
1753                                 FDEV(i).total_segments,
1754                                 FDEV(i).start_blk, FDEV(i).end_blk,
1755                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1756                                 "Host-aware" : "Host-managed");
1757                         continue;
1758                 }
1759 #endif
1760                 f2fs_msg(sbi->sb, KERN_INFO,
1761                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1762                                 i, FDEV(i).path,
1763                                 FDEV(i).total_segments,
1764                                 FDEV(i).start_blk, FDEV(i).end_blk);
1765         }
1766         return 0;
1767 }
1768
1769 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1770 {
1771         struct f2fs_sb_info *sbi;
1772         struct f2fs_super_block *raw_super;
1773         struct inode *root;
1774         int err;
1775         bool retry = true, need_fsck = false;
1776         char *options = NULL;
1777         int recovery, i, valid_super_block;
1778         struct curseg_info *seg_i;
1779
1780 try_onemore:
1781         err = -EINVAL;
1782         raw_super = NULL;
1783         valid_super_block = -1;
1784         recovery = 0;
1785
1786         /* allocate memory for f2fs-specific super block info */
1787         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1788         if (!sbi)
1789                 return -ENOMEM;
1790
1791         sbi->sb = sb;
1792
1793         /* Load the checksum driver */
1794         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1795         if (IS_ERR(sbi->s_chksum_driver)) {
1796                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1797                 err = PTR_ERR(sbi->s_chksum_driver);
1798                 sbi->s_chksum_driver = NULL;
1799                 goto free_sbi;
1800         }
1801
1802         /* set a block size */
1803         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1804                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1805                 goto free_sbi;
1806         }
1807
1808         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1809                                                                 &recovery);
1810         if (err)
1811                 goto free_sbi;
1812
1813         sb->s_fs_info = sbi;
1814         sbi->raw_super = raw_super;
1815
1816         /*
1817          * The BLKZONED feature indicates that the drive was formatted with
1818          * zone alignment optimization. This is optional for host-aware
1819          * devices, but mandatory for host-managed zoned block devices.
1820          */
1821 #ifndef CONFIG_BLK_DEV_ZONED
1822         if (f2fs_sb_mounted_blkzoned(sb)) {
1823                 f2fs_msg(sb, KERN_ERR,
1824                          "Zoned block device support is not enabled\n");
1825                 goto free_sb_buf;
1826         }
1827 #endif
1828         default_options(sbi);
1829         /* parse mount options */
1830         options = kstrdup((const char *)data, GFP_KERNEL);
1831         if (data && !options) {
1832                 err = -ENOMEM;
1833                 goto free_sb_buf;
1834         }
1835
1836         err = parse_options(sb, options);
1837         if (err)
1838                 goto free_options;
1839
1840         sbi->max_file_blocks = max_file_blocks();
1841         sb->s_maxbytes = sbi->max_file_blocks <<
1842                                 le32_to_cpu(raw_super->log_blocksize);
1843         sb->s_max_links = F2FS_LINK_MAX;
1844         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1845
1846         sb->s_op = &f2fs_sops;
1847         sb->s_cop = &f2fs_cryptops;
1848         sb->s_xattr = f2fs_xattr_handlers;
1849         sb->s_export_op = &f2fs_export_ops;
1850         sb->s_magic = F2FS_SUPER_MAGIC;
1851         sb->s_time_gran = 1;
1852         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1853                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1854         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1855
1856         /* init f2fs-specific super block info */
1857         sbi->valid_super_block = valid_super_block;
1858         mutex_init(&sbi->gc_mutex);
1859         mutex_init(&sbi->cp_mutex);
1860         init_rwsem(&sbi->node_write);
1861
1862         /* disallow all the data/node/meta page writes */
1863         set_sbi_flag(sbi, SBI_POR_DOING);
1864         spin_lock_init(&sbi->stat_lock);
1865
1866         init_rwsem(&sbi->read_io.io_rwsem);
1867         sbi->read_io.sbi = sbi;
1868         sbi->read_io.bio = NULL;
1869         for (i = 0; i < NR_PAGE_TYPE; i++) {
1870                 init_rwsem(&sbi->write_io[i].io_rwsem);
1871                 sbi->write_io[i].sbi = sbi;
1872                 sbi->write_io[i].bio = NULL;
1873         }
1874
1875         init_rwsem(&sbi->cp_rwsem);
1876         init_waitqueue_head(&sbi->cp_wait);
1877         init_sb_info(sbi);
1878
1879         err = init_percpu_info(sbi);
1880         if (err)
1881                 goto free_options;
1882
1883         /* get an inode for meta space */
1884         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1885         if (IS_ERR(sbi->meta_inode)) {
1886                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1887                 err = PTR_ERR(sbi->meta_inode);
1888                 goto free_options;
1889         }
1890
1891         err = get_valid_checkpoint(sbi);
1892         if (err) {
1893                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1894                 goto free_meta_inode;
1895         }
1896
1897         /* Initialize device list */
1898         err = f2fs_scan_devices(sbi);
1899         if (err) {
1900                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1901                 goto free_devices;
1902         }
1903
1904         sbi->total_valid_node_count =
1905                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1906         percpu_counter_set(&sbi->total_valid_inode_count,
1907                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1908         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1909         sbi->total_valid_block_count =
1910                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1911         sbi->last_valid_block_count = sbi->total_valid_block_count;
1912
1913         for (i = 0; i < NR_INODE_TYPE; i++) {
1914                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1915                 spin_lock_init(&sbi->inode_lock[i]);
1916         }
1917
1918         init_extent_cache_info(sbi);
1919
1920         init_ino_entry_info(sbi);
1921
1922         /* setup f2fs internal modules */
1923         err = build_segment_manager(sbi);
1924         if (err) {
1925                 f2fs_msg(sb, KERN_ERR,
1926                         "Failed to initialize F2FS segment manager");
1927                 goto free_sm;
1928         }
1929         err = build_node_manager(sbi);
1930         if (err) {
1931                 f2fs_msg(sb, KERN_ERR,
1932                         "Failed to initialize F2FS node manager");
1933                 goto free_nm;
1934         }
1935
1936         /* For write statistics */
1937         if (sb->s_bdev->bd_part)
1938                 sbi->sectors_written_start =
1939                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1940
1941         /* Read accumulated write IO statistics if exists */
1942         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1943         if (__exist_node_summaries(sbi))
1944                 sbi->kbytes_written =
1945                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1946
1947         build_gc_manager(sbi);
1948
1949         /* get an inode for node space */
1950         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1951         if (IS_ERR(sbi->node_inode)) {
1952                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1953                 err = PTR_ERR(sbi->node_inode);
1954                 goto free_nm;
1955         }
1956
1957         f2fs_join_shrinker(sbi);
1958
1959         /* if there are nt orphan nodes free them */
1960         err = recover_orphan_inodes(sbi);
1961         if (err)
1962                 goto free_node_inode;
1963
1964         /* read root inode and dentry */
1965         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1966         if (IS_ERR(root)) {
1967                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1968                 err = PTR_ERR(root);
1969                 goto free_node_inode;
1970         }
1971         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1972                 iput(root);
1973                 err = -EINVAL;
1974                 goto free_node_inode;
1975         }
1976
1977         sb->s_root = d_make_root(root); /* allocate root dentry */
1978         if (!sb->s_root) {
1979                 err = -ENOMEM;
1980                 goto free_root_inode;
1981         }
1982
1983         err = f2fs_build_stats(sbi);
1984         if (err)
1985                 goto free_root_inode;
1986
1987         if (f2fs_proc_root)
1988                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1989
1990         if (sbi->s_proc) {
1991                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1992                                  &f2fs_seq_segment_info_fops, sb);
1993                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1994                                  &f2fs_seq_segment_bits_fops, sb);
1995         }
1996
1997         sbi->s_kobj.kset = f2fs_kset;
1998         init_completion(&sbi->s_kobj_unregister);
1999         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2000                                                         "%s", sb->s_id);
2001         if (err)
2002                 goto free_proc;
2003
2004         /* recover fsynced data */
2005         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2006                 /*
2007                  * mount should be failed, when device has readonly mode, and
2008                  * previous checkpoint was not done by clean system shutdown.
2009                  */
2010                 if (bdev_read_only(sb->s_bdev) &&
2011                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2012                         err = -EROFS;
2013                         goto free_kobj;
2014                 }
2015
2016                 if (need_fsck)
2017                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2018
2019                 if (!retry)
2020                         goto skip_recovery;
2021
2022                 err = recover_fsync_data(sbi, false);
2023                 if (err < 0) {
2024                         need_fsck = true;
2025                         f2fs_msg(sb, KERN_ERR,
2026                                 "Cannot recover all fsync data errno=%d", err);
2027                         goto free_kobj;
2028                 }
2029         } else {
2030                 err = recover_fsync_data(sbi, true);
2031
2032                 if (!f2fs_readonly(sb) && err > 0) {
2033                         err = -EINVAL;
2034                         f2fs_msg(sb, KERN_ERR,
2035                                 "Need to recover fsync data");
2036                         goto free_kobj;
2037                 }
2038         }
2039 skip_recovery:
2040         /* recover_fsync_data() cleared this already */
2041         clear_sbi_flag(sbi, SBI_POR_DOING);
2042
2043         /*
2044          * If filesystem is not mounted as read-only then
2045          * do start the gc_thread.
2046          */
2047         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2048                 /* After POR, we can run background GC thread.*/
2049                 err = start_gc_thread(sbi);
2050                 if (err)
2051                         goto free_kobj;
2052         }
2053         kfree(options);
2054
2055         /* recover broken superblock */
2056         if (recovery) {
2057                 err = f2fs_commit_super(sbi, true);
2058                 f2fs_msg(sb, KERN_INFO,
2059                         "Try to recover %dth superblock, ret: %d",
2060                         sbi->valid_super_block ? 1 : 2, err);
2061         }
2062
2063         f2fs_update_time(sbi, CP_TIME);
2064         f2fs_update_time(sbi, REQ_TIME);
2065         return 0;
2066
2067 free_kobj:
2068         f2fs_sync_inode_meta(sbi);
2069         kobject_del(&sbi->s_kobj);
2070         kobject_put(&sbi->s_kobj);
2071         wait_for_completion(&sbi->s_kobj_unregister);
2072 free_proc:
2073         if (sbi->s_proc) {
2074                 remove_proc_entry("segment_info", sbi->s_proc);
2075                 remove_proc_entry("segment_bits", sbi->s_proc);
2076                 remove_proc_entry(sb->s_id, f2fs_proc_root);
2077         }
2078         f2fs_destroy_stats(sbi);
2079 free_root_inode:
2080         dput(sb->s_root);
2081         sb->s_root = NULL;
2082 free_node_inode:
2083         truncate_inode_pages_final(NODE_MAPPING(sbi));
2084         mutex_lock(&sbi->umount_mutex);
2085         release_ino_entry(sbi, true);
2086         f2fs_leave_shrinker(sbi);
2087         /*
2088          * Some dirty meta pages can be produced by recover_orphan_inodes()
2089          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2090          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2091          * falls into an infinite loop in sync_meta_pages().
2092          */
2093         truncate_inode_pages_final(META_MAPPING(sbi));
2094         iput(sbi->node_inode);
2095         mutex_unlock(&sbi->umount_mutex);
2096 free_nm:
2097         destroy_node_manager(sbi);
2098 free_sm:
2099         destroy_segment_manager(sbi);
2100 free_devices:
2101         destroy_device_list(sbi);
2102         kfree(sbi->ckpt);
2103 free_meta_inode:
2104         make_bad_inode(sbi->meta_inode);
2105         iput(sbi->meta_inode);
2106 free_options:
2107         destroy_percpu_info(sbi);
2108         kfree(options);
2109 free_sb_buf:
2110         kfree(raw_super);
2111 free_sbi:
2112         if (sbi->s_chksum_driver)
2113                 crypto_free_shash(sbi->s_chksum_driver);
2114         kfree(sbi);
2115
2116         /* give only one another chance */
2117         if (retry) {
2118                 retry = false;
2119                 shrink_dcache_sb(sb);
2120                 goto try_onemore;
2121         }
2122         return err;
2123 }
2124
2125 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2126                         const char *dev_name, void *data)
2127 {
2128         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2129 }
2130
2131 static void kill_f2fs_super(struct super_block *sb)
2132 {
2133         if (sb->s_root)
2134                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2135         kill_block_super(sb);
2136 }
2137
2138 static struct file_system_type f2fs_fs_type = {
2139         .owner          = THIS_MODULE,
2140         .name           = "f2fs",
2141         .mount          = f2fs_mount,
2142         .kill_sb        = kill_f2fs_super,
2143         .fs_flags       = FS_REQUIRES_DEV,
2144 };
2145 MODULE_ALIAS_FS("f2fs");
2146
2147 static int __init init_inodecache(void)
2148 {
2149         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2150                         sizeof(struct f2fs_inode_info), 0,
2151                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2152         if (!f2fs_inode_cachep)
2153                 return -ENOMEM;
2154         return 0;
2155 }
2156
2157 static void destroy_inodecache(void)
2158 {
2159         /*
2160          * Make sure all delayed rcu free inodes are flushed before we
2161          * destroy cache.
2162          */
2163         rcu_barrier();
2164         kmem_cache_destroy(f2fs_inode_cachep);
2165 }
2166
2167 static int __init init_f2fs_fs(void)
2168 {
2169         int err;
2170
2171         f2fs_build_trace_ios();
2172
2173         err = init_inodecache();
2174         if (err)
2175                 goto fail;
2176         err = create_node_manager_caches();
2177         if (err)
2178                 goto free_inodecache;
2179         err = create_segment_manager_caches();
2180         if (err)
2181                 goto free_node_manager_caches;
2182         err = create_checkpoint_caches();
2183         if (err)
2184                 goto free_segment_manager_caches;
2185         err = create_extent_cache();
2186         if (err)
2187                 goto free_checkpoint_caches;
2188         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2189         if (!f2fs_kset) {
2190                 err = -ENOMEM;
2191                 goto free_extent_cache;
2192         }
2193         err = register_shrinker(&f2fs_shrinker_info);
2194         if (err)
2195                 goto free_kset;
2196
2197         err = register_filesystem(&f2fs_fs_type);
2198         if (err)
2199                 goto free_shrinker;
2200         err = f2fs_create_root_stats();
2201         if (err)
2202                 goto free_filesystem;
2203         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2204         return 0;
2205
2206 free_filesystem:
2207         unregister_filesystem(&f2fs_fs_type);
2208 free_shrinker:
2209         unregister_shrinker(&f2fs_shrinker_info);
2210 free_kset:
2211         kset_unregister(f2fs_kset);
2212 free_extent_cache:
2213         destroy_extent_cache();
2214 free_checkpoint_caches:
2215         destroy_checkpoint_caches();
2216 free_segment_manager_caches:
2217         destroy_segment_manager_caches();
2218 free_node_manager_caches:
2219         destroy_node_manager_caches();
2220 free_inodecache:
2221         destroy_inodecache();
2222 fail:
2223         return err;
2224 }
2225
2226 static void __exit exit_f2fs_fs(void)
2227 {
2228         remove_proc_entry("fs/f2fs", NULL);
2229         f2fs_destroy_root_stats();
2230         unregister_filesystem(&f2fs_fs_type);
2231         unregister_shrinker(&f2fs_shrinker_info);
2232         kset_unregister(f2fs_kset);
2233         destroy_extent_cache();
2234         destroy_checkpoint_caches();
2235         destroy_segment_manager_caches();
2236         destroy_node_manager_caches();
2237         destroy_inodecache();
2238         f2fs_destroy_trace_ios();
2239 }
2240
2241 module_init(init_f2fs_fs)
2242 module_exit(exit_f2fs_fs)
2243
2244 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2245 MODULE_DESCRIPTION("Flash Friendly File System");
2246 MODULE_LICENSE("GPL");
2247