]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
84f95cd4076a8742a47f53644263f93df7833ccd
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 enum {
43         Opt_gc_background,
44         Opt_disable_roll_forward,
45         Opt_discard,
46         Opt_noheap,
47         Opt_user_xattr,
48         Opt_nouser_xattr,
49         Opt_acl,
50         Opt_noacl,
51         Opt_active_logs,
52         Opt_disable_ext_identify,
53         Opt_inline_xattr,
54         Opt_inline_data,
55         Opt_inline_dentry,
56         Opt_flush_merge,
57         Opt_nobarrier,
58         Opt_fastboot,
59         Opt_err,
60 };
61
62 static match_table_t f2fs_tokens = {
63         {Opt_gc_background, "background_gc=%s"},
64         {Opt_disable_roll_forward, "disable_roll_forward"},
65         {Opt_discard, "discard"},
66         {Opt_noheap, "no_heap"},
67         {Opt_user_xattr, "user_xattr"},
68         {Opt_nouser_xattr, "nouser_xattr"},
69         {Opt_acl, "acl"},
70         {Opt_noacl, "noacl"},
71         {Opt_active_logs, "active_logs=%u"},
72         {Opt_disable_ext_identify, "disable_ext_identify"},
73         {Opt_inline_xattr, "inline_xattr"},
74         {Opt_inline_data, "inline_data"},
75         {Opt_inline_dentry, "inline_dentry"},
76         {Opt_flush_merge, "flush_merge"},
77         {Opt_nobarrier, "nobarrier"},
78         {Opt_fastboot, "fastboot"},
79         {Opt_err, NULL},
80 };
81
82 /* Sysfs support for f2fs */
83 enum {
84         GC_THREAD,      /* struct f2fs_gc_thread */
85         SM_INFO,        /* struct f2fs_sm_info */
86         NM_INFO,        /* struct f2fs_nm_info */
87         F2FS_SBI,       /* struct f2fs_sb_info */
88 };
89
90 struct f2fs_attr {
91         struct attribute attr;
92         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
93         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
94                          const char *, size_t);
95         int struct_type;
96         int offset;
97 };
98
99 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
100 {
101         if (struct_type == GC_THREAD)
102                 return (unsigned char *)sbi->gc_thread;
103         else if (struct_type == SM_INFO)
104                 return (unsigned char *)SM_I(sbi);
105         else if (struct_type == NM_INFO)
106                 return (unsigned char *)NM_I(sbi);
107         else if (struct_type == F2FS_SBI)
108                 return (unsigned char *)sbi;
109         return NULL;
110 }
111
112 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
113                         struct f2fs_sb_info *sbi, char *buf)
114 {
115         unsigned char *ptr = NULL;
116         unsigned int *ui;
117
118         ptr = __struct_ptr(sbi, a->struct_type);
119         if (!ptr)
120                 return -EINVAL;
121
122         ui = (unsigned int *)(ptr + a->offset);
123
124         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
125 }
126
127 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
128                         struct f2fs_sb_info *sbi,
129                         const char *buf, size_t count)
130 {
131         unsigned char *ptr;
132         unsigned long t;
133         unsigned int *ui;
134         ssize_t ret;
135
136         ptr = __struct_ptr(sbi, a->struct_type);
137         if (!ptr)
138                 return -EINVAL;
139
140         ui = (unsigned int *)(ptr + a->offset);
141
142         ret = kstrtoul(skip_spaces(buf), 0, &t);
143         if (ret < 0)
144                 return ret;
145         *ui = t;
146         return count;
147 }
148
149 static ssize_t f2fs_attr_show(struct kobject *kobj,
150                                 struct attribute *attr, char *buf)
151 {
152         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
153                                                                 s_kobj);
154         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
155
156         return a->show ? a->show(a, sbi, buf) : 0;
157 }
158
159 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
160                                                 const char *buf, size_t len)
161 {
162         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
163                                                                         s_kobj);
164         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
165
166         return a->store ? a->store(a, sbi, buf, len) : 0;
167 }
168
169 static void f2fs_sb_release(struct kobject *kobj)
170 {
171         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
172                                                                 s_kobj);
173         complete(&sbi->s_kobj_unregister);
174 }
175
176 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
177 static struct f2fs_attr f2fs_attr_##_name = {                   \
178         .attr = {.name = __stringify(_name), .mode = _mode },   \
179         .show   = _show,                                        \
180         .store  = _store,                                       \
181         .struct_type = _struct_type,                            \
182         .offset = _offset                                       \
183 }
184
185 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
186         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
187                 f2fs_sbi_show, f2fs_sbi_store,                  \
188                 offsetof(struct struct_name, elname))
189
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
193 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
199 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
201 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
202
203 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
204 static struct attribute *f2fs_attrs[] = {
205         ATTR_LIST(gc_min_sleep_time),
206         ATTR_LIST(gc_max_sleep_time),
207         ATTR_LIST(gc_no_gc_sleep_time),
208         ATTR_LIST(gc_idle),
209         ATTR_LIST(reclaim_segments),
210         ATTR_LIST(max_small_discards),
211         ATTR_LIST(ipu_policy),
212         ATTR_LIST(min_ipu_util),
213         ATTR_LIST(min_fsync_blocks),
214         ATTR_LIST(max_victim_search),
215         ATTR_LIST(dir_level),
216         ATTR_LIST(ram_thresh),
217         NULL,
218 };
219
220 static const struct sysfs_ops f2fs_attr_ops = {
221         .show   = f2fs_attr_show,
222         .store  = f2fs_attr_store,
223 };
224
225 static struct kobj_type f2fs_ktype = {
226         .default_attrs  = f2fs_attrs,
227         .sysfs_ops      = &f2fs_attr_ops,
228         .release        = f2fs_sb_release,
229 };
230
231 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
232 {
233         struct va_format vaf;
234         va_list args;
235
236         va_start(args, fmt);
237         vaf.fmt = fmt;
238         vaf.va = &args;
239         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
240         va_end(args);
241 }
242
243 static void init_once(void *foo)
244 {
245         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
246
247         inode_init_once(&fi->vfs_inode);
248 }
249
250 static int parse_options(struct super_block *sb, char *options)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         substring_t args[MAX_OPT_ARGS];
254         char *p, *name;
255         int arg = 0;
256
257         if (!options)
258                 return 0;
259
260         while ((p = strsep(&options, ",")) != NULL) {
261                 int token;
262                 if (!*p)
263                         continue;
264                 /*
265                  * Initialize args struct so we know whether arg was
266                  * found; some options take optional arguments.
267                  */
268                 args[0].to = args[0].from = NULL;
269                 token = match_token(p, f2fs_tokens, args);
270
271                 switch (token) {
272                 case Opt_gc_background:
273                         name = match_strdup(&args[0]);
274
275                         if (!name)
276                                 return -ENOMEM;
277                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
278                                 set_opt(sbi, BG_GC);
279                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
280                                 clear_opt(sbi, BG_GC);
281                         else {
282                                 kfree(name);
283                                 return -EINVAL;
284                         }
285                         kfree(name);
286                         break;
287                 case Opt_disable_roll_forward:
288                         set_opt(sbi, DISABLE_ROLL_FORWARD);
289                         break;
290                 case Opt_discard:
291                         set_opt(sbi, DISCARD);
292                         break;
293                 case Opt_noheap:
294                         set_opt(sbi, NOHEAP);
295                         break;
296 #ifdef CONFIG_F2FS_FS_XATTR
297                 case Opt_user_xattr:
298                         set_opt(sbi, XATTR_USER);
299                         break;
300                 case Opt_nouser_xattr:
301                         clear_opt(sbi, XATTR_USER);
302                         break;
303                 case Opt_inline_xattr:
304                         set_opt(sbi, INLINE_XATTR);
305                         break;
306 #else
307                 case Opt_user_xattr:
308                         f2fs_msg(sb, KERN_INFO,
309                                 "user_xattr options not supported");
310                         break;
311                 case Opt_nouser_xattr:
312                         f2fs_msg(sb, KERN_INFO,
313                                 "nouser_xattr options not supported");
314                         break;
315                 case Opt_inline_xattr:
316                         f2fs_msg(sb, KERN_INFO,
317                                 "inline_xattr options not supported");
318                         break;
319 #endif
320 #ifdef CONFIG_F2FS_FS_POSIX_ACL
321                 case Opt_acl:
322                         set_opt(sbi, POSIX_ACL);
323                         break;
324                 case Opt_noacl:
325                         clear_opt(sbi, POSIX_ACL);
326                         break;
327 #else
328                 case Opt_acl:
329                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
330                         break;
331                 case Opt_noacl:
332                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
333                         break;
334 #endif
335                 case Opt_active_logs:
336                         if (args->from && match_int(args, &arg))
337                                 return -EINVAL;
338                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
339                                 return -EINVAL;
340                         sbi->active_logs = arg;
341                         break;
342                 case Opt_disable_ext_identify:
343                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
344                         break;
345                 case Opt_inline_data:
346                         set_opt(sbi, INLINE_DATA);
347                         break;
348                 case Opt_inline_dentry:
349                         set_opt(sbi, INLINE_DENTRY);
350                         break;
351                 case Opt_flush_merge:
352                         set_opt(sbi, FLUSH_MERGE);
353                         break;
354                 case Opt_nobarrier:
355                         set_opt(sbi, NOBARRIER);
356                         break;
357                 case Opt_fastboot:
358                         set_opt(sbi, FASTBOOT);
359                         break;
360                 default:
361                         f2fs_msg(sb, KERN_ERR,
362                                 "Unrecognized mount option \"%s\" or missing value",
363                                 p);
364                         return -EINVAL;
365                 }
366         }
367         return 0;
368 }
369
370 static struct inode *f2fs_alloc_inode(struct super_block *sb)
371 {
372         struct f2fs_inode_info *fi;
373
374         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
375         if (!fi)
376                 return NULL;
377
378         init_once((void *) fi);
379
380         /* Initialize f2fs-specific inode info */
381         fi->vfs_inode.i_version = 1;
382         atomic_set(&fi->dirty_pages, 0);
383         fi->i_current_depth = 1;
384         fi->i_advise = 0;
385         rwlock_init(&fi->ext.ext_lock);
386         init_rwsem(&fi->i_sem);
387         INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
388         INIT_LIST_HEAD(&fi->inmem_pages);
389         mutex_init(&fi->inmem_lock);
390
391         set_inode_flag(fi, FI_NEW_INODE);
392
393         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
394                 set_inode_flag(fi, FI_INLINE_XATTR);
395
396         /* Will be used by directory only */
397         fi->i_dir_level = F2FS_SB(sb)->dir_level;
398
399         return &fi->vfs_inode;
400 }
401
402 static int f2fs_drop_inode(struct inode *inode)
403 {
404         /*
405          * This is to avoid a deadlock condition like below.
406          * writeback_single_inode(inode)
407          *  - f2fs_write_data_page
408          *    - f2fs_gc -> iput -> evict
409          *       - inode_wait_for_writeback(inode)
410          */
411         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
412                 return 0;
413         return generic_drop_inode(inode);
414 }
415
416 /*
417  * f2fs_dirty_inode() is called from __mark_inode_dirty()
418  *
419  * We should call set_dirty_inode to write the dirty inode through write_inode.
420  */
421 static void f2fs_dirty_inode(struct inode *inode, int flags)
422 {
423         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
424 }
425
426 static void f2fs_i_callback(struct rcu_head *head)
427 {
428         struct inode *inode = container_of(head, struct inode, i_rcu);
429         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
430 }
431
432 static void f2fs_destroy_inode(struct inode *inode)
433 {
434         call_rcu(&inode->i_rcu, f2fs_i_callback);
435 }
436
437 static void f2fs_put_super(struct super_block *sb)
438 {
439         struct f2fs_sb_info *sbi = F2FS_SB(sb);
440
441         if (sbi->s_proc) {
442                 remove_proc_entry("segment_info", sbi->s_proc);
443                 remove_proc_entry(sb->s_id, f2fs_proc_root);
444         }
445         kobject_del(&sbi->s_kobj);
446
447         f2fs_destroy_stats(sbi);
448         stop_gc_thread(sbi);
449
450         /* We don't need to do checkpoint when it's clean */
451         if (sbi->s_dirty) {
452                 struct cp_control cpc = {
453                         .reason = CP_UMOUNT,
454                 };
455                 write_checkpoint(sbi, &cpc);
456         }
457
458         /*
459          * normally superblock is clean, so we need to release this.
460          * In addition, EIO will skip do checkpoint, we need this as well.
461          */
462         release_dirty_inode(sbi);
463         release_discard_addrs(sbi);
464
465         iput(sbi->node_inode);
466         iput(sbi->meta_inode);
467
468         /* destroy f2fs internal modules */
469         destroy_node_manager(sbi);
470         destroy_segment_manager(sbi);
471
472         kfree(sbi->ckpt);
473         kobject_put(&sbi->s_kobj);
474         wait_for_completion(&sbi->s_kobj_unregister);
475
476         sb->s_fs_info = NULL;
477         brelse(sbi->raw_super_buf);
478         kfree(sbi);
479 }
480
481 int f2fs_sync_fs(struct super_block *sb, int sync)
482 {
483         struct f2fs_sb_info *sbi = F2FS_SB(sb);
484
485         trace_f2fs_sync_fs(sb, sync);
486
487         if (sync) {
488                 struct cp_control cpc;
489
490                 cpc.reason = (test_opt(sbi, FASTBOOT) || sbi->s_closing) ?
491                                                         CP_UMOUNT : CP_SYNC;
492                 mutex_lock(&sbi->gc_mutex);
493                 write_checkpoint(sbi, &cpc);
494                 mutex_unlock(&sbi->gc_mutex);
495         } else {
496                 f2fs_balance_fs(sbi);
497         }
498         f2fs_trace_ios(NULL, NULL, 1);
499
500         return 0;
501 }
502
503 static int f2fs_freeze(struct super_block *sb)
504 {
505         int err;
506
507         if (f2fs_readonly(sb))
508                 return 0;
509
510         err = f2fs_sync_fs(sb, 1);
511         return err;
512 }
513
514 static int f2fs_unfreeze(struct super_block *sb)
515 {
516         return 0;
517 }
518
519 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
520 {
521         struct super_block *sb = dentry->d_sb;
522         struct f2fs_sb_info *sbi = F2FS_SB(sb);
523         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
524         block_t total_count, user_block_count, start_count, ovp_count;
525
526         total_count = le64_to_cpu(sbi->raw_super->block_count);
527         user_block_count = sbi->user_block_count;
528         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
529         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
530         buf->f_type = F2FS_SUPER_MAGIC;
531         buf->f_bsize = sbi->blocksize;
532
533         buf->f_blocks = total_count - start_count;
534         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
535         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
536
537         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
538         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
539
540         buf->f_namelen = F2FS_NAME_LEN;
541         buf->f_fsid.val[0] = (u32)id;
542         buf->f_fsid.val[1] = (u32)(id >> 32);
543
544         return 0;
545 }
546
547 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
548 {
549         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
550
551         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
552                 seq_printf(seq, ",background_gc=%s", "on");
553         else
554                 seq_printf(seq, ",background_gc=%s", "off");
555         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
556                 seq_puts(seq, ",disable_roll_forward");
557         if (test_opt(sbi, DISCARD))
558                 seq_puts(seq, ",discard");
559         if (test_opt(sbi, NOHEAP))
560                 seq_puts(seq, ",no_heap_alloc");
561 #ifdef CONFIG_F2FS_FS_XATTR
562         if (test_opt(sbi, XATTR_USER))
563                 seq_puts(seq, ",user_xattr");
564         else
565                 seq_puts(seq, ",nouser_xattr");
566         if (test_opt(sbi, INLINE_XATTR))
567                 seq_puts(seq, ",inline_xattr");
568 #endif
569 #ifdef CONFIG_F2FS_FS_POSIX_ACL
570         if (test_opt(sbi, POSIX_ACL))
571                 seq_puts(seq, ",acl");
572         else
573                 seq_puts(seq, ",noacl");
574 #endif
575         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
576                 seq_puts(seq, ",disable_ext_identify");
577         if (test_opt(sbi, INLINE_DATA))
578                 seq_puts(seq, ",inline_data");
579         if (test_opt(sbi, INLINE_DENTRY))
580                 seq_puts(seq, ",inline_dentry");
581         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
582                 seq_puts(seq, ",flush_merge");
583         if (test_opt(sbi, NOBARRIER))
584                 seq_puts(seq, ",nobarrier");
585         if (test_opt(sbi, FASTBOOT))
586                 seq_puts(seq, ",fastboot");
587         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
588
589         return 0;
590 }
591
592 static int segment_info_seq_show(struct seq_file *seq, void *offset)
593 {
594         struct super_block *sb = seq->private;
595         struct f2fs_sb_info *sbi = F2FS_SB(sb);
596         unsigned int total_segs =
597                         le32_to_cpu(sbi->raw_super->segment_count_main);
598         int i;
599
600         seq_puts(seq, "format: segment_type|valid_blocks\n"
601                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
602
603         for (i = 0; i < total_segs; i++) {
604                 struct seg_entry *se = get_seg_entry(sbi, i);
605
606                 if ((i % 10) == 0)
607                         seq_printf(seq, "%-5d", i);
608                 seq_printf(seq, "%d|%-3u", se->type,
609                                         get_valid_blocks(sbi, i, 1));
610                 if ((i % 10) == 9 || i == (total_segs - 1))
611                         seq_putc(seq, '\n');
612                 else
613                         seq_putc(seq, ' ');
614         }
615
616         return 0;
617 }
618
619 static int segment_info_open_fs(struct inode *inode, struct file *file)
620 {
621         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
622 }
623
624 static const struct file_operations f2fs_seq_segment_info_fops = {
625         .owner = THIS_MODULE,
626         .open = segment_info_open_fs,
627         .read = seq_read,
628         .llseek = seq_lseek,
629         .release = single_release,
630 };
631
632 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
633 {
634         struct f2fs_sb_info *sbi = F2FS_SB(sb);
635         struct f2fs_mount_info org_mount_opt;
636         int err, active_logs;
637         bool need_restart_gc = false;
638         bool need_stop_gc = false;
639
640         sync_filesystem(sb);
641
642         /*
643          * Save the old mount options in case we
644          * need to restore them.
645          */
646         org_mount_opt = sbi->mount_opt;
647         active_logs = sbi->active_logs;
648
649         sbi->mount_opt.opt = 0;
650         sbi->active_logs = NR_CURSEG_TYPE;
651
652         /* parse mount options */
653         err = parse_options(sb, data);
654         if (err)
655                 goto restore_opts;
656
657         /*
658          * Previous and new state of filesystem is RO,
659          * so skip checking GC and FLUSH_MERGE conditions.
660          */
661         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
662                 goto skip;
663
664         /*
665          * We stop the GC thread if FS is mounted as RO
666          * or if background_gc = off is passed in mount
667          * option. Also sync the filesystem.
668          */
669         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
670                 if (sbi->gc_thread) {
671                         stop_gc_thread(sbi);
672                         f2fs_sync_fs(sb, 1);
673                         need_restart_gc = true;
674                 }
675         } else if (!sbi->gc_thread) {
676                 err = start_gc_thread(sbi);
677                 if (err)
678                         goto restore_opts;
679                 need_stop_gc = true;
680         }
681
682         /*
683          * We stop issue flush thread if FS is mounted as RO
684          * or if flush_merge is not passed in mount option.
685          */
686         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
687                 destroy_flush_cmd_control(sbi);
688         } else if (!SM_I(sbi)->cmd_control_info) {
689                 err = create_flush_cmd_control(sbi);
690                 if (err)
691                         goto restore_gc;
692         }
693 skip:
694         /* Update the POSIXACL Flag */
695          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
696                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
697         return 0;
698 restore_gc:
699         if (need_restart_gc) {
700                 if (start_gc_thread(sbi))
701                         f2fs_msg(sbi->sb, KERN_WARNING,
702                                 "background gc thread has stopped");
703         } else if (need_stop_gc) {
704                 stop_gc_thread(sbi);
705         }
706 restore_opts:
707         sbi->mount_opt = org_mount_opt;
708         sbi->active_logs = active_logs;
709         return err;
710 }
711
712 static struct super_operations f2fs_sops = {
713         .alloc_inode    = f2fs_alloc_inode,
714         .drop_inode     = f2fs_drop_inode,
715         .destroy_inode  = f2fs_destroy_inode,
716         .write_inode    = f2fs_write_inode,
717         .dirty_inode    = f2fs_dirty_inode,
718         .show_options   = f2fs_show_options,
719         .evict_inode    = f2fs_evict_inode,
720         .put_super      = f2fs_put_super,
721         .sync_fs        = f2fs_sync_fs,
722         .freeze_fs      = f2fs_freeze,
723         .unfreeze_fs    = f2fs_unfreeze,
724         .statfs         = f2fs_statfs,
725         .remount_fs     = f2fs_remount,
726 };
727
728 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
729                 u64 ino, u32 generation)
730 {
731         struct f2fs_sb_info *sbi = F2FS_SB(sb);
732         struct inode *inode;
733
734         if (check_nid_range(sbi, ino))
735                 return ERR_PTR(-ESTALE);
736
737         /*
738          * f2fs_iget isn't quite right if the inode is currently unallocated!
739          * However f2fs_iget currently does appropriate checks to handle stale
740          * inodes so everything is OK.
741          */
742         inode = f2fs_iget(sb, ino);
743         if (IS_ERR(inode))
744                 return ERR_CAST(inode);
745         if (unlikely(generation && inode->i_generation != generation)) {
746                 /* we didn't find the right inode.. */
747                 iput(inode);
748                 return ERR_PTR(-ESTALE);
749         }
750         return inode;
751 }
752
753 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
754                 int fh_len, int fh_type)
755 {
756         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
757                                     f2fs_nfs_get_inode);
758 }
759
760 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
761                 int fh_len, int fh_type)
762 {
763         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
764                                     f2fs_nfs_get_inode);
765 }
766
767 static const struct export_operations f2fs_export_ops = {
768         .fh_to_dentry = f2fs_fh_to_dentry,
769         .fh_to_parent = f2fs_fh_to_parent,
770         .get_parent = f2fs_get_parent,
771 };
772
773 static loff_t max_file_size(unsigned bits)
774 {
775         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
776         loff_t leaf_count = ADDRS_PER_BLOCK;
777
778         /* two direct node blocks */
779         result += (leaf_count * 2);
780
781         /* two indirect node blocks */
782         leaf_count *= NIDS_PER_BLOCK;
783         result += (leaf_count * 2);
784
785         /* one double indirect node block */
786         leaf_count *= NIDS_PER_BLOCK;
787         result += leaf_count;
788
789         result <<= bits;
790         return result;
791 }
792
793 static int sanity_check_raw_super(struct super_block *sb,
794                         struct f2fs_super_block *raw_super)
795 {
796         unsigned int blocksize;
797
798         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
799                 f2fs_msg(sb, KERN_INFO,
800                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
801                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
802                 return 1;
803         }
804
805         /* Currently, support only 4KB page cache size */
806         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
807                 f2fs_msg(sb, KERN_INFO,
808                         "Invalid page_cache_size (%lu), supports only 4KB\n",
809                         PAGE_CACHE_SIZE);
810                 return 1;
811         }
812
813         /* Currently, support only 4KB block size */
814         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
815         if (blocksize != F2FS_BLKSIZE) {
816                 f2fs_msg(sb, KERN_INFO,
817                         "Invalid blocksize (%u), supports only 4KB\n",
818                         blocksize);
819                 return 1;
820         }
821
822         /* Currently, support 512/1024/2048/4096 bytes sector size */
823         if (le32_to_cpu(raw_super->log_sectorsize) >
824                                 F2FS_MAX_LOG_SECTOR_SIZE ||
825                 le32_to_cpu(raw_super->log_sectorsize) <
826                                 F2FS_MIN_LOG_SECTOR_SIZE) {
827                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
828                         le32_to_cpu(raw_super->log_sectorsize));
829                 return 1;
830         }
831         if (le32_to_cpu(raw_super->log_sectors_per_block) +
832                 le32_to_cpu(raw_super->log_sectorsize) !=
833                         F2FS_MAX_LOG_SECTOR_SIZE) {
834                 f2fs_msg(sb, KERN_INFO,
835                         "Invalid log sectors per block(%u) log sectorsize(%u)",
836                         le32_to_cpu(raw_super->log_sectors_per_block),
837                         le32_to_cpu(raw_super->log_sectorsize));
838                 return 1;
839         }
840         return 0;
841 }
842
843 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
844 {
845         unsigned int total, fsmeta;
846         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
847         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
848
849         total = le32_to_cpu(raw_super->segment_count);
850         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
851         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
852         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
853         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
854         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
855
856         if (unlikely(fsmeta >= total))
857                 return 1;
858
859         if (unlikely(f2fs_cp_error(sbi))) {
860                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
861                 return 1;
862         }
863         return 0;
864 }
865
866 static void init_sb_info(struct f2fs_sb_info *sbi)
867 {
868         struct f2fs_super_block *raw_super = sbi->raw_super;
869         int i;
870
871         sbi->log_sectors_per_block =
872                 le32_to_cpu(raw_super->log_sectors_per_block);
873         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
874         sbi->blocksize = 1 << sbi->log_blocksize;
875         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
876         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
877         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
878         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
879         sbi->total_sections = le32_to_cpu(raw_super->section_count);
880         sbi->total_node_count =
881                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
882                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
883         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
884         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
885         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
886         sbi->cur_victim_sec = NULL_SECNO;
887         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
888
889         for (i = 0; i < NR_COUNT_TYPE; i++)
890                 atomic_set(&sbi->nr_pages[i], 0);
891
892         sbi->dir_level = DEF_DIR_LEVEL;
893         sbi->need_fsck = false;
894 }
895
896 /*
897  * Read f2fs raw super block.
898  * Because we have two copies of super block, so read the first one at first,
899  * if the first one is invalid, move to read the second one.
900  */
901 static int read_raw_super_block(struct super_block *sb,
902                         struct f2fs_super_block **raw_super,
903                         struct buffer_head **raw_super_buf)
904 {
905         int block = 0;
906
907 retry:
908         *raw_super_buf = sb_bread(sb, block);
909         if (!*raw_super_buf) {
910                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
911                                 block + 1);
912                 if (block == 0) {
913                         block++;
914                         goto retry;
915                 } else {
916                         return -EIO;
917                 }
918         }
919
920         *raw_super = (struct f2fs_super_block *)
921                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
922
923         /* sanity checking of raw super */
924         if (sanity_check_raw_super(sb, *raw_super)) {
925                 brelse(*raw_super_buf);
926                 f2fs_msg(sb, KERN_ERR,
927                         "Can't find valid F2FS filesystem in %dth superblock",
928                                                                 block + 1);
929                 if (block == 0) {
930                         block++;
931                         goto retry;
932                 } else {
933                         return -EINVAL;
934                 }
935         }
936
937         return 0;
938 }
939
940 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
941 {
942         struct f2fs_sb_info *sbi;
943         struct f2fs_super_block *raw_super = NULL;
944         struct buffer_head *raw_super_buf;
945         struct inode *root;
946         long err = -EINVAL;
947         bool retry = true;
948         int i;
949
950 try_onemore:
951         /* allocate memory for f2fs-specific super block info */
952         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
953         if (!sbi)
954                 return -ENOMEM;
955
956         /* set a block size */
957         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
958                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
959                 goto free_sbi;
960         }
961
962         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
963         if (err)
964                 goto free_sbi;
965
966         sb->s_fs_info = sbi;
967         /* init some FS parameters */
968         sbi->active_logs = NR_CURSEG_TYPE;
969
970         set_opt(sbi, BG_GC);
971
972 #ifdef CONFIG_F2FS_FS_XATTR
973         set_opt(sbi, XATTR_USER);
974 #endif
975 #ifdef CONFIG_F2FS_FS_POSIX_ACL
976         set_opt(sbi, POSIX_ACL);
977 #endif
978         /* parse mount options */
979         err = parse_options(sb, (char *)data);
980         if (err)
981                 goto free_sb_buf;
982
983         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
984         sb->s_max_links = F2FS_LINK_MAX;
985         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
986
987         sb->s_op = &f2fs_sops;
988         sb->s_xattr = f2fs_xattr_handlers;
989         sb->s_export_op = &f2fs_export_ops;
990         sb->s_magic = F2FS_SUPER_MAGIC;
991         sb->s_time_gran = 1;
992         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
993                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
994         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
995
996         /* init f2fs-specific super block info */
997         sbi->sb = sb;
998         sbi->raw_super = raw_super;
999         sbi->raw_super_buf = raw_super_buf;
1000         mutex_init(&sbi->gc_mutex);
1001         mutex_init(&sbi->writepages);
1002         mutex_init(&sbi->cp_mutex);
1003         init_rwsem(&sbi->node_write);
1004         sbi->por_doing = false;
1005         spin_lock_init(&sbi->stat_lock);
1006
1007         init_rwsem(&sbi->read_io.io_rwsem);
1008         sbi->read_io.sbi = sbi;
1009         sbi->read_io.bio = NULL;
1010         for (i = 0; i < NR_PAGE_TYPE; i++) {
1011                 init_rwsem(&sbi->write_io[i].io_rwsem);
1012                 sbi->write_io[i].sbi = sbi;
1013                 sbi->write_io[i].bio = NULL;
1014         }
1015
1016         init_rwsem(&sbi->cp_rwsem);
1017         init_waitqueue_head(&sbi->cp_wait);
1018         init_sb_info(sbi);
1019
1020         /* get an inode for meta space */
1021         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1022         if (IS_ERR(sbi->meta_inode)) {
1023                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1024                 err = PTR_ERR(sbi->meta_inode);
1025                 goto free_sb_buf;
1026         }
1027
1028         err = get_valid_checkpoint(sbi);
1029         if (err) {
1030                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1031                 goto free_meta_inode;
1032         }
1033
1034         /* sanity checking of checkpoint */
1035         err = -EINVAL;
1036         if (sanity_check_ckpt(sbi)) {
1037                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1038                 goto free_cp;
1039         }
1040
1041         sbi->total_valid_node_count =
1042                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1043         sbi->total_valid_inode_count =
1044                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1045         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1046         sbi->total_valid_block_count =
1047                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1048         sbi->last_valid_block_count = sbi->total_valid_block_count;
1049         sbi->alloc_valid_block_count = 0;
1050         INIT_LIST_HEAD(&sbi->dir_inode_list);
1051         spin_lock_init(&sbi->dir_inode_lock);
1052
1053         init_ino_entry_info(sbi);
1054
1055         /* setup f2fs internal modules */
1056         err = build_segment_manager(sbi);
1057         if (err) {
1058                 f2fs_msg(sb, KERN_ERR,
1059                         "Failed to initialize F2FS segment manager");
1060                 goto free_sm;
1061         }
1062         err = build_node_manager(sbi);
1063         if (err) {
1064                 f2fs_msg(sb, KERN_ERR,
1065                         "Failed to initialize F2FS node manager");
1066                 goto free_nm;
1067         }
1068
1069         build_gc_manager(sbi);
1070
1071         /* get an inode for node space */
1072         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1073         if (IS_ERR(sbi->node_inode)) {
1074                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1075                 err = PTR_ERR(sbi->node_inode);
1076                 goto free_nm;
1077         }
1078
1079         /* if there are nt orphan nodes free them */
1080         recover_orphan_inodes(sbi);
1081
1082         /* read root inode and dentry */
1083         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1084         if (IS_ERR(root)) {
1085                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1086                 err = PTR_ERR(root);
1087                 goto free_node_inode;
1088         }
1089         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1090                 iput(root);
1091                 err = -EINVAL;
1092                 goto free_node_inode;
1093         }
1094
1095         sb->s_root = d_make_root(root); /* allocate root dentry */
1096         if (!sb->s_root) {
1097                 err = -ENOMEM;
1098                 goto free_root_inode;
1099         }
1100
1101         err = f2fs_build_stats(sbi);
1102         if (err)
1103                 goto free_root_inode;
1104
1105         if (f2fs_proc_root)
1106                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1107
1108         if (sbi->s_proc)
1109                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1110                                  &f2fs_seq_segment_info_fops, sb);
1111
1112         if (test_opt(sbi, DISCARD)) {
1113                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1114                 if (!blk_queue_discard(q))
1115                         f2fs_msg(sb, KERN_WARNING,
1116                                         "mounting with \"discard\" option, but "
1117                                         "the device does not support discard");
1118         }
1119
1120         sbi->s_kobj.kset = f2fs_kset;
1121         init_completion(&sbi->s_kobj_unregister);
1122         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1123                                                         "%s", sb->s_id);
1124         if (err)
1125                 goto free_proc;
1126
1127         if (!retry)
1128                 sbi->need_fsck = true;
1129
1130         /* recover fsynced data */
1131         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1132                 err = recover_fsync_data(sbi);
1133                 if (err) {
1134                         f2fs_msg(sb, KERN_ERR,
1135                                 "Cannot recover all fsync data errno=%ld", err);
1136                         goto free_kobj;
1137                 }
1138         }
1139
1140         /*
1141          * If filesystem is not mounted as read-only then
1142          * do start the gc_thread.
1143          */
1144         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1145                 /* After POR, we can run background GC thread.*/
1146                 err = start_gc_thread(sbi);
1147                 if (err)
1148                         goto free_kobj;
1149         }
1150         return 0;
1151
1152 free_kobj:
1153         kobject_del(&sbi->s_kobj);
1154 free_proc:
1155         if (sbi->s_proc) {
1156                 remove_proc_entry("segment_info", sbi->s_proc);
1157                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1158         }
1159         f2fs_destroy_stats(sbi);
1160 free_root_inode:
1161         dput(sb->s_root);
1162         sb->s_root = NULL;
1163 free_node_inode:
1164         iput(sbi->node_inode);
1165 free_nm:
1166         destroy_node_manager(sbi);
1167 free_sm:
1168         destroy_segment_manager(sbi);
1169 free_cp:
1170         kfree(sbi->ckpt);
1171 free_meta_inode:
1172         make_bad_inode(sbi->meta_inode);
1173         iput(sbi->meta_inode);
1174 free_sb_buf:
1175         brelse(raw_super_buf);
1176 free_sbi:
1177         kfree(sbi);
1178
1179         /* give only one another chance */
1180         if (retry) {
1181                 retry = 0;
1182                 shrink_dcache_sb(sb);
1183                 goto try_onemore;
1184         }
1185         return err;
1186 }
1187
1188 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1189                         const char *dev_name, void *data)
1190 {
1191         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1192 }
1193
1194 static void kill_f2fs_super(struct super_block *sb)
1195 {
1196         if (sb->s_root)
1197                 F2FS_SB(sb)->s_closing = true;
1198         kill_block_super(sb);
1199 }
1200
1201 static struct file_system_type f2fs_fs_type = {
1202         .owner          = THIS_MODULE,
1203         .name           = "f2fs",
1204         .mount          = f2fs_mount,
1205         .kill_sb        = kill_f2fs_super,
1206         .fs_flags       = FS_REQUIRES_DEV,
1207 };
1208 MODULE_ALIAS_FS("f2fs");
1209
1210 static int __init init_inodecache(void)
1211 {
1212         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1213                         sizeof(struct f2fs_inode_info));
1214         if (!f2fs_inode_cachep)
1215                 return -ENOMEM;
1216         return 0;
1217 }
1218
1219 static void destroy_inodecache(void)
1220 {
1221         /*
1222          * Make sure all delayed rcu free inodes are flushed before we
1223          * destroy cache.
1224          */
1225         rcu_barrier();
1226         kmem_cache_destroy(f2fs_inode_cachep);
1227 }
1228
1229 static int __init init_f2fs_fs(void)
1230 {
1231         int err;
1232
1233         f2fs_build_trace_ios();
1234
1235         err = init_inodecache();
1236         if (err)
1237                 goto fail;
1238         err = create_node_manager_caches();
1239         if (err)
1240                 goto free_inodecache;
1241         err = create_segment_manager_caches();
1242         if (err)
1243                 goto free_node_manager_caches;
1244         err = create_checkpoint_caches();
1245         if (err)
1246                 goto free_segment_manager_caches;
1247         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1248         if (!f2fs_kset) {
1249                 err = -ENOMEM;
1250                 goto free_checkpoint_caches;
1251         }
1252         err = register_filesystem(&f2fs_fs_type);
1253         if (err)
1254                 goto free_kset;
1255         f2fs_create_root_stats();
1256         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1257         return 0;
1258
1259 free_kset:
1260         kset_unregister(f2fs_kset);
1261 free_checkpoint_caches:
1262         destroy_checkpoint_caches();
1263 free_segment_manager_caches:
1264         destroy_segment_manager_caches();
1265 free_node_manager_caches:
1266         destroy_node_manager_caches();
1267 free_inodecache:
1268         destroy_inodecache();
1269 fail:
1270         return err;
1271 }
1272
1273 static void __exit exit_f2fs_fs(void)
1274 {
1275         remove_proc_entry("fs/f2fs", NULL);
1276         f2fs_destroy_root_stats();
1277         unregister_filesystem(&f2fs_fs_type);
1278         destroy_checkpoint_caches();
1279         destroy_segment_manager_caches();
1280         destroy_node_manager_caches();
1281         destroy_inodecache();
1282         kset_unregister(f2fs_kset);
1283         f2fs_destroy_trace_ios();
1284 }
1285
1286 module_init(init_f2fs_fs)
1287 module_exit(exit_f2fs_fs)
1288
1289 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1290 MODULE_DESCRIPTION("Flash Friendly File System");
1291 MODULE_LICENSE("GPL");