]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
f2fs: merge flags in struct f2fs_sb_info
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 enum {
43         Opt_gc_background,
44         Opt_disable_roll_forward,
45         Opt_discard,
46         Opt_noheap,
47         Opt_user_xattr,
48         Opt_nouser_xattr,
49         Opt_acl,
50         Opt_noacl,
51         Opt_active_logs,
52         Opt_disable_ext_identify,
53         Opt_inline_xattr,
54         Opt_inline_data,
55         Opt_inline_dentry,
56         Opt_flush_merge,
57         Opt_nobarrier,
58         Opt_fastboot,
59         Opt_err,
60 };
61
62 static match_table_t f2fs_tokens = {
63         {Opt_gc_background, "background_gc=%s"},
64         {Opt_disable_roll_forward, "disable_roll_forward"},
65         {Opt_discard, "discard"},
66         {Opt_noheap, "no_heap"},
67         {Opt_user_xattr, "user_xattr"},
68         {Opt_nouser_xattr, "nouser_xattr"},
69         {Opt_acl, "acl"},
70         {Opt_noacl, "noacl"},
71         {Opt_active_logs, "active_logs=%u"},
72         {Opt_disable_ext_identify, "disable_ext_identify"},
73         {Opt_inline_xattr, "inline_xattr"},
74         {Opt_inline_data, "inline_data"},
75         {Opt_inline_dentry, "inline_dentry"},
76         {Opt_flush_merge, "flush_merge"},
77         {Opt_nobarrier, "nobarrier"},
78         {Opt_fastboot, "fastboot"},
79         {Opt_err, NULL},
80 };
81
82 /* Sysfs support for f2fs */
83 enum {
84         GC_THREAD,      /* struct f2fs_gc_thread */
85         SM_INFO,        /* struct f2fs_sm_info */
86         NM_INFO,        /* struct f2fs_nm_info */
87         F2FS_SBI,       /* struct f2fs_sb_info */
88 };
89
90 struct f2fs_attr {
91         struct attribute attr;
92         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
93         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
94                          const char *, size_t);
95         int struct_type;
96         int offset;
97 };
98
99 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
100 {
101         if (struct_type == GC_THREAD)
102                 return (unsigned char *)sbi->gc_thread;
103         else if (struct_type == SM_INFO)
104                 return (unsigned char *)SM_I(sbi);
105         else if (struct_type == NM_INFO)
106                 return (unsigned char *)NM_I(sbi);
107         else if (struct_type == F2FS_SBI)
108                 return (unsigned char *)sbi;
109         return NULL;
110 }
111
112 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
113                         struct f2fs_sb_info *sbi, char *buf)
114 {
115         unsigned char *ptr = NULL;
116         unsigned int *ui;
117
118         ptr = __struct_ptr(sbi, a->struct_type);
119         if (!ptr)
120                 return -EINVAL;
121
122         ui = (unsigned int *)(ptr + a->offset);
123
124         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
125 }
126
127 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
128                         struct f2fs_sb_info *sbi,
129                         const char *buf, size_t count)
130 {
131         unsigned char *ptr;
132         unsigned long t;
133         unsigned int *ui;
134         ssize_t ret;
135
136         ptr = __struct_ptr(sbi, a->struct_type);
137         if (!ptr)
138                 return -EINVAL;
139
140         ui = (unsigned int *)(ptr + a->offset);
141
142         ret = kstrtoul(skip_spaces(buf), 0, &t);
143         if (ret < 0)
144                 return ret;
145         *ui = t;
146         return count;
147 }
148
149 static ssize_t f2fs_attr_show(struct kobject *kobj,
150                                 struct attribute *attr, char *buf)
151 {
152         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
153                                                                 s_kobj);
154         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
155
156         return a->show ? a->show(a, sbi, buf) : 0;
157 }
158
159 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
160                                                 const char *buf, size_t len)
161 {
162         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
163                                                                         s_kobj);
164         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
165
166         return a->store ? a->store(a, sbi, buf, len) : 0;
167 }
168
169 static void f2fs_sb_release(struct kobject *kobj)
170 {
171         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
172                                                                 s_kobj);
173         complete(&sbi->s_kobj_unregister);
174 }
175
176 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
177 static struct f2fs_attr f2fs_attr_##_name = {                   \
178         .attr = {.name = __stringify(_name), .mode = _mode },   \
179         .show   = _show,                                        \
180         .store  = _store,                                       \
181         .struct_type = _struct_type,                            \
182         .offset = _offset                                       \
183 }
184
185 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
186         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
187                 f2fs_sbi_show, f2fs_sbi_store,                  \
188                 offsetof(struct struct_name, elname))
189
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
193 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
199 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
201 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
202
203 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
204 static struct attribute *f2fs_attrs[] = {
205         ATTR_LIST(gc_min_sleep_time),
206         ATTR_LIST(gc_max_sleep_time),
207         ATTR_LIST(gc_no_gc_sleep_time),
208         ATTR_LIST(gc_idle),
209         ATTR_LIST(reclaim_segments),
210         ATTR_LIST(max_small_discards),
211         ATTR_LIST(ipu_policy),
212         ATTR_LIST(min_ipu_util),
213         ATTR_LIST(min_fsync_blocks),
214         ATTR_LIST(max_victim_search),
215         ATTR_LIST(dir_level),
216         ATTR_LIST(ram_thresh),
217         NULL,
218 };
219
220 static const struct sysfs_ops f2fs_attr_ops = {
221         .show   = f2fs_attr_show,
222         .store  = f2fs_attr_store,
223 };
224
225 static struct kobj_type f2fs_ktype = {
226         .default_attrs  = f2fs_attrs,
227         .sysfs_ops      = &f2fs_attr_ops,
228         .release        = f2fs_sb_release,
229 };
230
231 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
232 {
233         struct va_format vaf;
234         va_list args;
235
236         va_start(args, fmt);
237         vaf.fmt = fmt;
238         vaf.va = &args;
239         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
240         va_end(args);
241 }
242
243 static void init_once(void *foo)
244 {
245         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
246
247         inode_init_once(&fi->vfs_inode);
248 }
249
250 static int parse_options(struct super_block *sb, char *options)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         substring_t args[MAX_OPT_ARGS];
254         char *p, *name;
255         int arg = 0;
256
257         if (!options)
258                 return 0;
259
260         while ((p = strsep(&options, ",")) != NULL) {
261                 int token;
262                 if (!*p)
263                         continue;
264                 /*
265                  * Initialize args struct so we know whether arg was
266                  * found; some options take optional arguments.
267                  */
268                 args[0].to = args[0].from = NULL;
269                 token = match_token(p, f2fs_tokens, args);
270
271                 switch (token) {
272                 case Opt_gc_background:
273                         name = match_strdup(&args[0]);
274
275                         if (!name)
276                                 return -ENOMEM;
277                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
278                                 set_opt(sbi, BG_GC);
279                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
280                                 clear_opt(sbi, BG_GC);
281                         else {
282                                 kfree(name);
283                                 return -EINVAL;
284                         }
285                         kfree(name);
286                         break;
287                 case Opt_disable_roll_forward:
288                         set_opt(sbi, DISABLE_ROLL_FORWARD);
289                         break;
290                 case Opt_discard:
291                         set_opt(sbi, DISCARD);
292                         break;
293                 case Opt_noheap:
294                         set_opt(sbi, NOHEAP);
295                         break;
296 #ifdef CONFIG_F2FS_FS_XATTR
297                 case Opt_user_xattr:
298                         set_opt(sbi, XATTR_USER);
299                         break;
300                 case Opt_nouser_xattr:
301                         clear_opt(sbi, XATTR_USER);
302                         break;
303                 case Opt_inline_xattr:
304                         set_opt(sbi, INLINE_XATTR);
305                         break;
306 #else
307                 case Opt_user_xattr:
308                         f2fs_msg(sb, KERN_INFO,
309                                 "user_xattr options not supported");
310                         break;
311                 case Opt_nouser_xattr:
312                         f2fs_msg(sb, KERN_INFO,
313                                 "nouser_xattr options not supported");
314                         break;
315                 case Opt_inline_xattr:
316                         f2fs_msg(sb, KERN_INFO,
317                                 "inline_xattr options not supported");
318                         break;
319 #endif
320 #ifdef CONFIG_F2FS_FS_POSIX_ACL
321                 case Opt_acl:
322                         set_opt(sbi, POSIX_ACL);
323                         break;
324                 case Opt_noacl:
325                         clear_opt(sbi, POSIX_ACL);
326                         break;
327 #else
328                 case Opt_acl:
329                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
330                         break;
331                 case Opt_noacl:
332                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
333                         break;
334 #endif
335                 case Opt_active_logs:
336                         if (args->from && match_int(args, &arg))
337                                 return -EINVAL;
338                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
339                                 return -EINVAL;
340                         sbi->active_logs = arg;
341                         break;
342                 case Opt_disable_ext_identify:
343                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
344                         break;
345                 case Opt_inline_data:
346                         set_opt(sbi, INLINE_DATA);
347                         break;
348                 case Opt_inline_dentry:
349                         set_opt(sbi, INLINE_DENTRY);
350                         break;
351                 case Opt_flush_merge:
352                         set_opt(sbi, FLUSH_MERGE);
353                         break;
354                 case Opt_nobarrier:
355                         set_opt(sbi, NOBARRIER);
356                         break;
357                 case Opt_fastboot:
358                         set_opt(sbi, FASTBOOT);
359                         break;
360                 default:
361                         f2fs_msg(sb, KERN_ERR,
362                                 "Unrecognized mount option \"%s\" or missing value",
363                                 p);
364                         return -EINVAL;
365                 }
366         }
367         return 0;
368 }
369
370 static struct inode *f2fs_alloc_inode(struct super_block *sb)
371 {
372         struct f2fs_inode_info *fi;
373
374         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
375         if (!fi)
376                 return NULL;
377
378         init_once((void *) fi);
379
380         /* Initialize f2fs-specific inode info */
381         fi->vfs_inode.i_version = 1;
382         atomic_set(&fi->dirty_pages, 0);
383         fi->i_current_depth = 1;
384         fi->i_advise = 0;
385         rwlock_init(&fi->ext.ext_lock);
386         init_rwsem(&fi->i_sem);
387         INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
388         INIT_LIST_HEAD(&fi->inmem_pages);
389         mutex_init(&fi->inmem_lock);
390
391         set_inode_flag(fi, FI_NEW_INODE);
392
393         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
394                 set_inode_flag(fi, FI_INLINE_XATTR);
395
396         /* Will be used by directory only */
397         fi->i_dir_level = F2FS_SB(sb)->dir_level;
398
399         return &fi->vfs_inode;
400 }
401
402 static int f2fs_drop_inode(struct inode *inode)
403 {
404         /*
405          * This is to avoid a deadlock condition like below.
406          * writeback_single_inode(inode)
407          *  - f2fs_write_data_page
408          *    - f2fs_gc -> iput -> evict
409          *       - inode_wait_for_writeback(inode)
410          */
411         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
412                 return 0;
413         return generic_drop_inode(inode);
414 }
415
416 /*
417  * f2fs_dirty_inode() is called from __mark_inode_dirty()
418  *
419  * We should call set_dirty_inode to write the dirty inode through write_inode.
420  */
421 static void f2fs_dirty_inode(struct inode *inode, int flags)
422 {
423         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
424 }
425
426 static void f2fs_i_callback(struct rcu_head *head)
427 {
428         struct inode *inode = container_of(head, struct inode, i_rcu);
429         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
430 }
431
432 static void f2fs_destroy_inode(struct inode *inode)
433 {
434         call_rcu(&inode->i_rcu, f2fs_i_callback);
435 }
436
437 static void f2fs_put_super(struct super_block *sb)
438 {
439         struct f2fs_sb_info *sbi = F2FS_SB(sb);
440
441         if (sbi->s_proc) {
442                 remove_proc_entry("segment_info", sbi->s_proc);
443                 remove_proc_entry(sb->s_id, f2fs_proc_root);
444         }
445         kobject_del(&sbi->s_kobj);
446
447         f2fs_destroy_stats(sbi);
448         stop_gc_thread(sbi);
449
450         /*
451          * We don't need to do checkpoint when superblock is clean.
452          * But, the previous checkpoint was not done by umount, it needs to do
453          * clean checkpoint again.
454          */
455         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
456                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
457                 struct cp_control cpc = {
458                         .reason = CP_UMOUNT,
459                 };
460                 write_checkpoint(sbi, &cpc);
461         }
462
463         /*
464          * normally superblock is clean, so we need to release this.
465          * In addition, EIO will skip do checkpoint, we need this as well.
466          */
467         release_dirty_inode(sbi);
468         release_discard_addrs(sbi);
469
470         iput(sbi->node_inode);
471         iput(sbi->meta_inode);
472
473         /* destroy f2fs internal modules */
474         destroy_node_manager(sbi);
475         destroy_segment_manager(sbi);
476
477         kfree(sbi->ckpt);
478         kobject_put(&sbi->s_kobj);
479         wait_for_completion(&sbi->s_kobj_unregister);
480
481         sb->s_fs_info = NULL;
482         brelse(sbi->raw_super_buf);
483         kfree(sbi);
484 }
485
486 int f2fs_sync_fs(struct super_block *sb, int sync)
487 {
488         struct f2fs_sb_info *sbi = F2FS_SB(sb);
489
490         trace_f2fs_sync_fs(sb, sync);
491
492         if (sync) {
493                 struct cp_control cpc;
494
495                 cpc.reason = (test_opt(sbi, FASTBOOT) ||
496                                         is_sbi_flag_set(sbi, SBI_IS_CLOSE)) ?
497                                                 CP_UMOUNT : CP_SYNC;
498                 mutex_lock(&sbi->gc_mutex);
499                 write_checkpoint(sbi, &cpc);
500                 mutex_unlock(&sbi->gc_mutex);
501         } else {
502                 f2fs_balance_fs(sbi);
503         }
504         f2fs_trace_ios(NULL, NULL, 1);
505
506         return 0;
507 }
508
509 static int f2fs_freeze(struct super_block *sb)
510 {
511         int err;
512
513         if (f2fs_readonly(sb))
514                 return 0;
515
516         err = f2fs_sync_fs(sb, 1);
517         return err;
518 }
519
520 static int f2fs_unfreeze(struct super_block *sb)
521 {
522         return 0;
523 }
524
525 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
526 {
527         struct super_block *sb = dentry->d_sb;
528         struct f2fs_sb_info *sbi = F2FS_SB(sb);
529         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
530         block_t total_count, user_block_count, start_count, ovp_count;
531
532         total_count = le64_to_cpu(sbi->raw_super->block_count);
533         user_block_count = sbi->user_block_count;
534         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
535         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
536         buf->f_type = F2FS_SUPER_MAGIC;
537         buf->f_bsize = sbi->blocksize;
538
539         buf->f_blocks = total_count - start_count;
540         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
541         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
542
543         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
544         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
545
546         buf->f_namelen = F2FS_NAME_LEN;
547         buf->f_fsid.val[0] = (u32)id;
548         buf->f_fsid.val[1] = (u32)(id >> 32);
549
550         return 0;
551 }
552
553 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
554 {
555         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
556
557         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
558                 seq_printf(seq, ",background_gc=%s", "on");
559         else
560                 seq_printf(seq, ",background_gc=%s", "off");
561         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
562                 seq_puts(seq, ",disable_roll_forward");
563         if (test_opt(sbi, DISCARD))
564                 seq_puts(seq, ",discard");
565         if (test_opt(sbi, NOHEAP))
566                 seq_puts(seq, ",no_heap_alloc");
567 #ifdef CONFIG_F2FS_FS_XATTR
568         if (test_opt(sbi, XATTR_USER))
569                 seq_puts(seq, ",user_xattr");
570         else
571                 seq_puts(seq, ",nouser_xattr");
572         if (test_opt(sbi, INLINE_XATTR))
573                 seq_puts(seq, ",inline_xattr");
574 #endif
575 #ifdef CONFIG_F2FS_FS_POSIX_ACL
576         if (test_opt(sbi, POSIX_ACL))
577                 seq_puts(seq, ",acl");
578         else
579                 seq_puts(seq, ",noacl");
580 #endif
581         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
582                 seq_puts(seq, ",disable_ext_identify");
583         if (test_opt(sbi, INLINE_DATA))
584                 seq_puts(seq, ",inline_data");
585         if (test_opt(sbi, INLINE_DENTRY))
586                 seq_puts(seq, ",inline_dentry");
587         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
588                 seq_puts(seq, ",flush_merge");
589         if (test_opt(sbi, NOBARRIER))
590                 seq_puts(seq, ",nobarrier");
591         if (test_opt(sbi, FASTBOOT))
592                 seq_puts(seq, ",fastboot");
593         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
594
595         return 0;
596 }
597
598 static int segment_info_seq_show(struct seq_file *seq, void *offset)
599 {
600         struct super_block *sb = seq->private;
601         struct f2fs_sb_info *sbi = F2FS_SB(sb);
602         unsigned int total_segs =
603                         le32_to_cpu(sbi->raw_super->segment_count_main);
604         int i;
605
606         seq_puts(seq, "format: segment_type|valid_blocks\n"
607                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
608
609         for (i = 0; i < total_segs; i++) {
610                 struct seg_entry *se = get_seg_entry(sbi, i);
611
612                 if ((i % 10) == 0)
613                         seq_printf(seq, "%-5d", i);
614                 seq_printf(seq, "%d|%-3u", se->type,
615                                         get_valid_blocks(sbi, i, 1));
616                 if ((i % 10) == 9 || i == (total_segs - 1))
617                         seq_putc(seq, '\n');
618                 else
619                         seq_putc(seq, ' ');
620         }
621
622         return 0;
623 }
624
625 static int segment_info_open_fs(struct inode *inode, struct file *file)
626 {
627         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
628 }
629
630 static const struct file_operations f2fs_seq_segment_info_fops = {
631         .owner = THIS_MODULE,
632         .open = segment_info_open_fs,
633         .read = seq_read,
634         .llseek = seq_lseek,
635         .release = single_release,
636 };
637
638 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
639 {
640         struct f2fs_sb_info *sbi = F2FS_SB(sb);
641         struct f2fs_mount_info org_mount_opt;
642         int err, active_logs;
643         bool need_restart_gc = false;
644         bool need_stop_gc = false;
645
646         sync_filesystem(sb);
647
648         /*
649          * Save the old mount options in case we
650          * need to restore them.
651          */
652         org_mount_opt = sbi->mount_opt;
653         active_logs = sbi->active_logs;
654
655         sbi->mount_opt.opt = 0;
656         sbi->active_logs = NR_CURSEG_TYPE;
657
658         /* parse mount options */
659         err = parse_options(sb, data);
660         if (err)
661                 goto restore_opts;
662
663         /*
664          * Previous and new state of filesystem is RO,
665          * so skip checking GC and FLUSH_MERGE conditions.
666          */
667         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
668                 goto skip;
669
670         /*
671          * We stop the GC thread if FS is mounted as RO
672          * or if background_gc = off is passed in mount
673          * option. Also sync the filesystem.
674          */
675         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
676                 if (sbi->gc_thread) {
677                         stop_gc_thread(sbi);
678                         f2fs_sync_fs(sb, 1);
679                         need_restart_gc = true;
680                 }
681         } else if (!sbi->gc_thread) {
682                 err = start_gc_thread(sbi);
683                 if (err)
684                         goto restore_opts;
685                 need_stop_gc = true;
686         }
687
688         /*
689          * We stop issue flush thread if FS is mounted as RO
690          * or if flush_merge is not passed in mount option.
691          */
692         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
693                 destroy_flush_cmd_control(sbi);
694         } else if (!SM_I(sbi)->cmd_control_info) {
695                 err = create_flush_cmd_control(sbi);
696                 if (err)
697                         goto restore_gc;
698         }
699 skip:
700         /* Update the POSIXACL Flag */
701          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
702                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
703         return 0;
704 restore_gc:
705         if (need_restart_gc) {
706                 if (start_gc_thread(sbi))
707                         f2fs_msg(sbi->sb, KERN_WARNING,
708                                 "background gc thread has stopped");
709         } else if (need_stop_gc) {
710                 stop_gc_thread(sbi);
711         }
712 restore_opts:
713         sbi->mount_opt = org_mount_opt;
714         sbi->active_logs = active_logs;
715         return err;
716 }
717
718 static struct super_operations f2fs_sops = {
719         .alloc_inode    = f2fs_alloc_inode,
720         .drop_inode     = f2fs_drop_inode,
721         .destroy_inode  = f2fs_destroy_inode,
722         .write_inode    = f2fs_write_inode,
723         .dirty_inode    = f2fs_dirty_inode,
724         .show_options   = f2fs_show_options,
725         .evict_inode    = f2fs_evict_inode,
726         .put_super      = f2fs_put_super,
727         .sync_fs        = f2fs_sync_fs,
728         .freeze_fs      = f2fs_freeze,
729         .unfreeze_fs    = f2fs_unfreeze,
730         .statfs         = f2fs_statfs,
731         .remount_fs     = f2fs_remount,
732 };
733
734 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
735                 u64 ino, u32 generation)
736 {
737         struct f2fs_sb_info *sbi = F2FS_SB(sb);
738         struct inode *inode;
739
740         if (check_nid_range(sbi, ino))
741                 return ERR_PTR(-ESTALE);
742
743         /*
744          * f2fs_iget isn't quite right if the inode is currently unallocated!
745          * However f2fs_iget currently does appropriate checks to handle stale
746          * inodes so everything is OK.
747          */
748         inode = f2fs_iget(sb, ino);
749         if (IS_ERR(inode))
750                 return ERR_CAST(inode);
751         if (unlikely(generation && inode->i_generation != generation)) {
752                 /* we didn't find the right inode.. */
753                 iput(inode);
754                 return ERR_PTR(-ESTALE);
755         }
756         return inode;
757 }
758
759 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
760                 int fh_len, int fh_type)
761 {
762         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
763                                     f2fs_nfs_get_inode);
764 }
765
766 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
767                 int fh_len, int fh_type)
768 {
769         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
770                                     f2fs_nfs_get_inode);
771 }
772
773 static const struct export_operations f2fs_export_ops = {
774         .fh_to_dentry = f2fs_fh_to_dentry,
775         .fh_to_parent = f2fs_fh_to_parent,
776         .get_parent = f2fs_get_parent,
777 };
778
779 static loff_t max_file_size(unsigned bits)
780 {
781         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
782         loff_t leaf_count = ADDRS_PER_BLOCK;
783
784         /* two direct node blocks */
785         result += (leaf_count * 2);
786
787         /* two indirect node blocks */
788         leaf_count *= NIDS_PER_BLOCK;
789         result += (leaf_count * 2);
790
791         /* one double indirect node block */
792         leaf_count *= NIDS_PER_BLOCK;
793         result += leaf_count;
794
795         result <<= bits;
796         return result;
797 }
798
799 static int sanity_check_raw_super(struct super_block *sb,
800                         struct f2fs_super_block *raw_super)
801 {
802         unsigned int blocksize;
803
804         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
805                 f2fs_msg(sb, KERN_INFO,
806                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
807                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
808                 return 1;
809         }
810
811         /* Currently, support only 4KB page cache size */
812         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
813                 f2fs_msg(sb, KERN_INFO,
814                         "Invalid page_cache_size (%lu), supports only 4KB\n",
815                         PAGE_CACHE_SIZE);
816                 return 1;
817         }
818
819         /* Currently, support only 4KB block size */
820         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
821         if (blocksize != F2FS_BLKSIZE) {
822                 f2fs_msg(sb, KERN_INFO,
823                         "Invalid blocksize (%u), supports only 4KB\n",
824                         blocksize);
825                 return 1;
826         }
827
828         /* Currently, support 512/1024/2048/4096 bytes sector size */
829         if (le32_to_cpu(raw_super->log_sectorsize) >
830                                 F2FS_MAX_LOG_SECTOR_SIZE ||
831                 le32_to_cpu(raw_super->log_sectorsize) <
832                                 F2FS_MIN_LOG_SECTOR_SIZE) {
833                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
834                         le32_to_cpu(raw_super->log_sectorsize));
835                 return 1;
836         }
837         if (le32_to_cpu(raw_super->log_sectors_per_block) +
838                 le32_to_cpu(raw_super->log_sectorsize) !=
839                         F2FS_MAX_LOG_SECTOR_SIZE) {
840                 f2fs_msg(sb, KERN_INFO,
841                         "Invalid log sectors per block(%u) log sectorsize(%u)",
842                         le32_to_cpu(raw_super->log_sectors_per_block),
843                         le32_to_cpu(raw_super->log_sectorsize));
844                 return 1;
845         }
846         return 0;
847 }
848
849 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
850 {
851         unsigned int total, fsmeta;
852         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
853         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
854
855         total = le32_to_cpu(raw_super->segment_count);
856         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
857         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
858         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
859         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
860         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
861
862         if (unlikely(fsmeta >= total))
863                 return 1;
864
865         if (unlikely(f2fs_cp_error(sbi))) {
866                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
867                 return 1;
868         }
869         return 0;
870 }
871
872 static void init_sb_info(struct f2fs_sb_info *sbi)
873 {
874         struct f2fs_super_block *raw_super = sbi->raw_super;
875         int i;
876
877         sbi->log_sectors_per_block =
878                 le32_to_cpu(raw_super->log_sectors_per_block);
879         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
880         sbi->blocksize = 1 << sbi->log_blocksize;
881         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
882         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
883         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
884         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
885         sbi->total_sections = le32_to_cpu(raw_super->section_count);
886         sbi->total_node_count =
887                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
888                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
889         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
890         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
891         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
892         sbi->cur_victim_sec = NULL_SECNO;
893         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
894
895         for (i = 0; i < NR_COUNT_TYPE; i++)
896                 atomic_set(&sbi->nr_pages[i], 0);
897
898         sbi->dir_level = DEF_DIR_LEVEL;
899         clear_sbi_flag(sbi, SBI_NEED_FSCK);
900 }
901
902 /*
903  * Read f2fs raw super block.
904  * Because we have two copies of super block, so read the first one at first,
905  * if the first one is invalid, move to read the second one.
906  */
907 static int read_raw_super_block(struct super_block *sb,
908                         struct f2fs_super_block **raw_super,
909                         struct buffer_head **raw_super_buf)
910 {
911         int block = 0;
912
913 retry:
914         *raw_super_buf = sb_bread(sb, block);
915         if (!*raw_super_buf) {
916                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
917                                 block + 1);
918                 if (block == 0) {
919                         block++;
920                         goto retry;
921                 } else {
922                         return -EIO;
923                 }
924         }
925
926         *raw_super = (struct f2fs_super_block *)
927                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
928
929         /* sanity checking of raw super */
930         if (sanity_check_raw_super(sb, *raw_super)) {
931                 brelse(*raw_super_buf);
932                 f2fs_msg(sb, KERN_ERR,
933                         "Can't find valid F2FS filesystem in %dth superblock",
934                                                                 block + 1);
935                 if (block == 0) {
936                         block++;
937                         goto retry;
938                 } else {
939                         return -EINVAL;
940                 }
941         }
942
943         return 0;
944 }
945
946 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
947 {
948         struct f2fs_sb_info *sbi;
949         struct f2fs_super_block *raw_super = NULL;
950         struct buffer_head *raw_super_buf;
951         struct inode *root;
952         long err = -EINVAL;
953         bool retry = true;
954         int i;
955
956 try_onemore:
957         /* allocate memory for f2fs-specific super block info */
958         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
959         if (!sbi)
960                 return -ENOMEM;
961
962         /* set a block size */
963         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
964                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
965                 goto free_sbi;
966         }
967
968         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
969         if (err)
970                 goto free_sbi;
971
972         sb->s_fs_info = sbi;
973         /* init some FS parameters */
974         sbi->active_logs = NR_CURSEG_TYPE;
975
976         set_opt(sbi, BG_GC);
977
978 #ifdef CONFIG_F2FS_FS_XATTR
979         set_opt(sbi, XATTR_USER);
980 #endif
981 #ifdef CONFIG_F2FS_FS_POSIX_ACL
982         set_opt(sbi, POSIX_ACL);
983 #endif
984         /* parse mount options */
985         err = parse_options(sb, (char *)data);
986         if (err)
987                 goto free_sb_buf;
988
989         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
990         sb->s_max_links = F2FS_LINK_MAX;
991         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
992
993         sb->s_op = &f2fs_sops;
994         sb->s_xattr = f2fs_xattr_handlers;
995         sb->s_export_op = &f2fs_export_ops;
996         sb->s_magic = F2FS_SUPER_MAGIC;
997         sb->s_time_gran = 1;
998         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
999                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1000         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1001
1002         /* init f2fs-specific super block info */
1003         sbi->sb = sb;
1004         sbi->raw_super = raw_super;
1005         sbi->raw_super_buf = raw_super_buf;
1006         mutex_init(&sbi->gc_mutex);
1007         mutex_init(&sbi->writepages);
1008         mutex_init(&sbi->cp_mutex);
1009         init_rwsem(&sbi->node_write);
1010         clear_sbi_flag(sbi, SBI_POR_DOING);
1011         spin_lock_init(&sbi->stat_lock);
1012
1013         init_rwsem(&sbi->read_io.io_rwsem);
1014         sbi->read_io.sbi = sbi;
1015         sbi->read_io.bio = NULL;
1016         for (i = 0; i < NR_PAGE_TYPE; i++) {
1017                 init_rwsem(&sbi->write_io[i].io_rwsem);
1018                 sbi->write_io[i].sbi = sbi;
1019                 sbi->write_io[i].bio = NULL;
1020         }
1021
1022         init_rwsem(&sbi->cp_rwsem);
1023         init_waitqueue_head(&sbi->cp_wait);
1024         init_sb_info(sbi);
1025
1026         /* get an inode for meta space */
1027         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1028         if (IS_ERR(sbi->meta_inode)) {
1029                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1030                 err = PTR_ERR(sbi->meta_inode);
1031                 goto free_sb_buf;
1032         }
1033
1034         err = get_valid_checkpoint(sbi);
1035         if (err) {
1036                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1037                 goto free_meta_inode;
1038         }
1039
1040         /* sanity checking of checkpoint */
1041         err = -EINVAL;
1042         if (sanity_check_ckpt(sbi)) {
1043                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1044                 goto free_cp;
1045         }
1046
1047         sbi->total_valid_node_count =
1048                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1049         sbi->total_valid_inode_count =
1050                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1051         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1052         sbi->total_valid_block_count =
1053                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1054         sbi->last_valid_block_count = sbi->total_valid_block_count;
1055         sbi->alloc_valid_block_count = 0;
1056         INIT_LIST_HEAD(&sbi->dir_inode_list);
1057         spin_lock_init(&sbi->dir_inode_lock);
1058
1059         init_ino_entry_info(sbi);
1060
1061         /* setup f2fs internal modules */
1062         err = build_segment_manager(sbi);
1063         if (err) {
1064                 f2fs_msg(sb, KERN_ERR,
1065                         "Failed to initialize F2FS segment manager");
1066                 goto free_sm;
1067         }
1068         err = build_node_manager(sbi);
1069         if (err) {
1070                 f2fs_msg(sb, KERN_ERR,
1071                         "Failed to initialize F2FS node manager");
1072                 goto free_nm;
1073         }
1074
1075         build_gc_manager(sbi);
1076
1077         /* get an inode for node space */
1078         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1079         if (IS_ERR(sbi->node_inode)) {
1080                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1081                 err = PTR_ERR(sbi->node_inode);
1082                 goto free_nm;
1083         }
1084
1085         /* if there are nt orphan nodes free them */
1086         recover_orphan_inodes(sbi);
1087
1088         /* read root inode and dentry */
1089         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1090         if (IS_ERR(root)) {
1091                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1092                 err = PTR_ERR(root);
1093                 goto free_node_inode;
1094         }
1095         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1096                 iput(root);
1097                 err = -EINVAL;
1098                 goto free_node_inode;
1099         }
1100
1101         sb->s_root = d_make_root(root); /* allocate root dentry */
1102         if (!sb->s_root) {
1103                 err = -ENOMEM;
1104                 goto free_root_inode;
1105         }
1106
1107         err = f2fs_build_stats(sbi);
1108         if (err)
1109                 goto free_root_inode;
1110
1111         if (f2fs_proc_root)
1112                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1113
1114         if (sbi->s_proc)
1115                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1116                                  &f2fs_seq_segment_info_fops, sb);
1117
1118         if (test_opt(sbi, DISCARD)) {
1119                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1120                 if (!blk_queue_discard(q))
1121                         f2fs_msg(sb, KERN_WARNING,
1122                                         "mounting with \"discard\" option, but "
1123                                         "the device does not support discard");
1124         }
1125
1126         sbi->s_kobj.kset = f2fs_kset;
1127         init_completion(&sbi->s_kobj_unregister);
1128         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1129                                                         "%s", sb->s_id);
1130         if (err)
1131                 goto free_proc;
1132
1133         if (!retry)
1134                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1135
1136         /* recover fsynced data */
1137         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1138                 err = recover_fsync_data(sbi);
1139                 if (err) {
1140                         f2fs_msg(sb, KERN_ERR,
1141                                 "Cannot recover all fsync data errno=%ld", err);
1142                         goto free_kobj;
1143                 }
1144         }
1145
1146         /*
1147          * If filesystem is not mounted as read-only then
1148          * do start the gc_thread.
1149          */
1150         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1151                 /* After POR, we can run background GC thread.*/
1152                 err = start_gc_thread(sbi);
1153                 if (err)
1154                         goto free_kobj;
1155         }
1156         return 0;
1157
1158 free_kobj:
1159         kobject_del(&sbi->s_kobj);
1160 free_proc:
1161         if (sbi->s_proc) {
1162                 remove_proc_entry("segment_info", sbi->s_proc);
1163                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1164         }
1165         f2fs_destroy_stats(sbi);
1166 free_root_inode:
1167         dput(sb->s_root);
1168         sb->s_root = NULL;
1169 free_node_inode:
1170         iput(sbi->node_inode);
1171 free_nm:
1172         destroy_node_manager(sbi);
1173 free_sm:
1174         destroy_segment_manager(sbi);
1175 free_cp:
1176         kfree(sbi->ckpt);
1177 free_meta_inode:
1178         make_bad_inode(sbi->meta_inode);
1179         iput(sbi->meta_inode);
1180 free_sb_buf:
1181         brelse(raw_super_buf);
1182 free_sbi:
1183         kfree(sbi);
1184
1185         /* give only one another chance */
1186         if (retry) {
1187                 retry = 0;
1188                 shrink_dcache_sb(sb);
1189                 goto try_onemore;
1190         }
1191         return err;
1192 }
1193
1194 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1195                         const char *dev_name, void *data)
1196 {
1197         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1198 }
1199
1200 static void kill_f2fs_super(struct super_block *sb)
1201 {
1202         if (sb->s_root)
1203                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1204         kill_block_super(sb);
1205 }
1206
1207 static struct file_system_type f2fs_fs_type = {
1208         .owner          = THIS_MODULE,
1209         .name           = "f2fs",
1210         .mount          = f2fs_mount,
1211         .kill_sb        = kill_f2fs_super,
1212         .fs_flags       = FS_REQUIRES_DEV,
1213 };
1214 MODULE_ALIAS_FS("f2fs");
1215
1216 static int __init init_inodecache(void)
1217 {
1218         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1219                         sizeof(struct f2fs_inode_info));
1220         if (!f2fs_inode_cachep)
1221                 return -ENOMEM;
1222         return 0;
1223 }
1224
1225 static void destroy_inodecache(void)
1226 {
1227         /*
1228          * Make sure all delayed rcu free inodes are flushed before we
1229          * destroy cache.
1230          */
1231         rcu_barrier();
1232         kmem_cache_destroy(f2fs_inode_cachep);
1233 }
1234
1235 static int __init init_f2fs_fs(void)
1236 {
1237         int err;
1238
1239         f2fs_build_trace_ios();
1240
1241         err = init_inodecache();
1242         if (err)
1243                 goto fail;
1244         err = create_node_manager_caches();
1245         if (err)
1246                 goto free_inodecache;
1247         err = create_segment_manager_caches();
1248         if (err)
1249                 goto free_node_manager_caches;
1250         err = create_checkpoint_caches();
1251         if (err)
1252                 goto free_segment_manager_caches;
1253         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1254         if (!f2fs_kset) {
1255                 err = -ENOMEM;
1256                 goto free_checkpoint_caches;
1257         }
1258         err = register_filesystem(&f2fs_fs_type);
1259         if (err)
1260                 goto free_kset;
1261         f2fs_create_root_stats();
1262         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1263         return 0;
1264
1265 free_kset:
1266         kset_unregister(f2fs_kset);
1267 free_checkpoint_caches:
1268         destroy_checkpoint_caches();
1269 free_segment_manager_caches:
1270         destroy_segment_manager_caches();
1271 free_node_manager_caches:
1272         destroy_node_manager_caches();
1273 free_inodecache:
1274         destroy_inodecache();
1275 fail:
1276         return err;
1277 }
1278
1279 static void __exit exit_f2fs_fs(void)
1280 {
1281         remove_proc_entry("fs/f2fs", NULL);
1282         f2fs_destroy_root_stats();
1283         unregister_filesystem(&f2fs_fs_type);
1284         destroy_checkpoint_caches();
1285         destroy_segment_manager_caches();
1286         destroy_node_manager_caches();
1287         destroy_inodecache();
1288         kset_unregister(f2fs_kset);
1289         f2fs_destroy_trace_ios();
1290 }
1291
1292 module_init(init_f2fs_fs)
1293 module_exit(exit_f2fs_fs)
1294
1295 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1296 MODULE_DESCRIPTION("Flash Friendly File System");
1297 MODULE_LICENSE("GPL");