]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
f2fs: format segment_info's show for better legibility
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42         Opt_gc_background,
43         Opt_disable_roll_forward,
44         Opt_discard,
45         Opt_noheap,
46         Opt_user_xattr,
47         Opt_nouser_xattr,
48         Opt_acl,
49         Opt_noacl,
50         Opt_active_logs,
51         Opt_disable_ext_identify,
52         Opt_inline_xattr,
53         Opt_inline_data,
54         Opt_err,
55 };
56
57 static match_table_t f2fs_tokens = {
58         {Opt_gc_background, "background_gc=%s"},
59         {Opt_disable_roll_forward, "disable_roll_forward"},
60         {Opt_discard, "discard"},
61         {Opt_noheap, "no_heap"},
62         {Opt_user_xattr, "user_xattr"},
63         {Opt_nouser_xattr, "nouser_xattr"},
64         {Opt_acl, "acl"},
65         {Opt_noacl, "noacl"},
66         {Opt_active_logs, "active_logs=%u"},
67         {Opt_disable_ext_identify, "disable_ext_identify"},
68         {Opt_inline_xattr, "inline_xattr"},
69         {Opt_inline_data, "inline_data"},
70         {Opt_err, NULL},
71 };
72
73 /* Sysfs support for f2fs */
74 enum {
75         GC_THREAD,      /* struct f2fs_gc_thread */
76         SM_INFO,        /* struct f2fs_sm_info */
77         F2FS_SBI,       /* struct f2fs_sb_info */
78 };
79
80 struct f2fs_attr {
81         struct attribute attr;
82         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
83         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
84                          const char *, size_t);
85         int struct_type;
86         int offset;
87 };
88
89 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
90 {
91         if (struct_type == GC_THREAD)
92                 return (unsigned char *)sbi->gc_thread;
93         else if (struct_type == SM_INFO)
94                 return (unsigned char *)SM_I(sbi);
95         else if (struct_type == F2FS_SBI)
96                 return (unsigned char *)sbi;
97         return NULL;
98 }
99
100 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
101                         struct f2fs_sb_info *sbi, char *buf)
102 {
103         unsigned char *ptr = NULL;
104         unsigned int *ui;
105
106         ptr = __struct_ptr(sbi, a->struct_type);
107         if (!ptr)
108                 return -EINVAL;
109
110         ui = (unsigned int *)(ptr + a->offset);
111
112         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
113 }
114
115 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
116                         struct f2fs_sb_info *sbi,
117                         const char *buf, size_t count)
118 {
119         unsigned char *ptr;
120         unsigned long t;
121         unsigned int *ui;
122         ssize_t ret;
123
124         ptr = __struct_ptr(sbi, a->struct_type);
125         if (!ptr)
126                 return -EINVAL;
127
128         ui = (unsigned int *)(ptr + a->offset);
129
130         ret = kstrtoul(skip_spaces(buf), 0, &t);
131         if (ret < 0)
132                 return ret;
133         *ui = t;
134         return count;
135 }
136
137 static ssize_t f2fs_attr_show(struct kobject *kobj,
138                                 struct attribute *attr, char *buf)
139 {
140         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
141                                                                 s_kobj);
142         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
143
144         return a->show ? a->show(a, sbi, buf) : 0;
145 }
146
147 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
148                                                 const char *buf, size_t len)
149 {
150         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
151                                                                         s_kobj);
152         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
153
154         return a->store ? a->store(a, sbi, buf, len) : 0;
155 }
156
157 static void f2fs_sb_release(struct kobject *kobj)
158 {
159         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
160                                                                 s_kobj);
161         complete(&sbi->s_kobj_unregister);
162 }
163
164 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
165 static struct f2fs_attr f2fs_attr_##_name = {                   \
166         .attr = {.name = __stringify(_name), .mode = _mode },   \
167         .show   = _show,                                        \
168         .store  = _store,                                       \
169         .struct_type = _struct_type,                            \
170         .offset = _offset                                       \
171 }
172
173 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
174         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
175                 f2fs_sbi_show, f2fs_sbi_store,                  \
176                 offsetof(struct struct_name, elname))
177
178 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
179 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
180 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
181 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
182 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
183 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
184 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
185 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
186 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
187 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
188
189 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
190 static struct attribute *f2fs_attrs[] = {
191         ATTR_LIST(gc_min_sleep_time),
192         ATTR_LIST(gc_max_sleep_time),
193         ATTR_LIST(gc_no_gc_sleep_time),
194         ATTR_LIST(gc_idle),
195         ATTR_LIST(reclaim_segments),
196         ATTR_LIST(max_small_discards),
197         ATTR_LIST(ipu_policy),
198         ATTR_LIST(min_ipu_util),
199         ATTR_LIST(max_victim_search),
200         ATTR_LIST(dir_level),
201         NULL,
202 };
203
204 static const struct sysfs_ops f2fs_attr_ops = {
205         .show   = f2fs_attr_show,
206         .store  = f2fs_attr_store,
207 };
208
209 static struct kobj_type f2fs_ktype = {
210         .default_attrs  = f2fs_attrs,
211         .sysfs_ops      = &f2fs_attr_ops,
212         .release        = f2fs_sb_release,
213 };
214
215 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
216 {
217         struct va_format vaf;
218         va_list args;
219
220         va_start(args, fmt);
221         vaf.fmt = fmt;
222         vaf.va = &args;
223         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
224         va_end(args);
225 }
226
227 static void init_once(void *foo)
228 {
229         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
230
231         inode_init_once(&fi->vfs_inode);
232 }
233
234 static int parse_options(struct super_block *sb, char *options)
235 {
236         struct f2fs_sb_info *sbi = F2FS_SB(sb);
237         substring_t args[MAX_OPT_ARGS];
238         char *p, *name;
239         int arg = 0;
240
241         if (!options)
242                 return 0;
243
244         while ((p = strsep(&options, ",")) != NULL) {
245                 int token;
246                 if (!*p)
247                         continue;
248                 /*
249                  * Initialize args struct so we know whether arg was
250                  * found; some options take optional arguments.
251                  */
252                 args[0].to = args[0].from = NULL;
253                 token = match_token(p, f2fs_tokens, args);
254
255                 switch (token) {
256                 case Opt_gc_background:
257                         name = match_strdup(&args[0]);
258
259                         if (!name)
260                                 return -ENOMEM;
261                         if (!strncmp(name, "on", 2))
262                                 set_opt(sbi, BG_GC);
263                         else if (!strncmp(name, "off", 3))
264                                 clear_opt(sbi, BG_GC);
265                         else {
266                                 kfree(name);
267                                 return -EINVAL;
268                         }
269                         kfree(name);
270                         break;
271                 case Opt_disable_roll_forward:
272                         set_opt(sbi, DISABLE_ROLL_FORWARD);
273                         break;
274                 case Opt_discard:
275                         set_opt(sbi, DISCARD);
276                         break;
277                 case Opt_noheap:
278                         set_opt(sbi, NOHEAP);
279                         break;
280 #ifdef CONFIG_F2FS_FS_XATTR
281                 case Opt_user_xattr:
282                         set_opt(sbi, XATTR_USER);
283                         break;
284                 case Opt_nouser_xattr:
285                         clear_opt(sbi, XATTR_USER);
286                         break;
287                 case Opt_inline_xattr:
288                         set_opt(sbi, INLINE_XATTR);
289                         break;
290 #else
291                 case Opt_user_xattr:
292                         f2fs_msg(sb, KERN_INFO,
293                                 "user_xattr options not supported");
294                         break;
295                 case Opt_nouser_xattr:
296                         f2fs_msg(sb, KERN_INFO,
297                                 "nouser_xattr options not supported");
298                         break;
299                 case Opt_inline_xattr:
300                         f2fs_msg(sb, KERN_INFO,
301                                 "inline_xattr options not supported");
302                         break;
303 #endif
304 #ifdef CONFIG_F2FS_FS_POSIX_ACL
305                 case Opt_acl:
306                         set_opt(sbi, POSIX_ACL);
307                         break;
308                 case Opt_noacl:
309                         clear_opt(sbi, POSIX_ACL);
310                         break;
311 #else
312                 case Opt_acl:
313                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
314                         break;
315                 case Opt_noacl:
316                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
317                         break;
318 #endif
319                 case Opt_active_logs:
320                         if (args->from && match_int(args, &arg))
321                                 return -EINVAL;
322                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
323                                 return -EINVAL;
324                         sbi->active_logs = arg;
325                         break;
326                 case Opt_disable_ext_identify:
327                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
328                         break;
329                 case Opt_inline_data:
330                         set_opt(sbi, INLINE_DATA);
331                         break;
332                 default:
333                         f2fs_msg(sb, KERN_ERR,
334                                 "Unrecognized mount option \"%s\" or missing value",
335                                 p);
336                         return -EINVAL;
337                 }
338         }
339         return 0;
340 }
341
342 static struct inode *f2fs_alloc_inode(struct super_block *sb)
343 {
344         struct f2fs_inode_info *fi;
345
346         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
347         if (!fi)
348                 return NULL;
349
350         init_once((void *) fi);
351
352         /* Initialize f2fs-specific inode info */
353         fi->vfs_inode.i_version = 1;
354         atomic_set(&fi->dirty_dents, 0);
355         fi->i_current_depth = 1;
356         fi->i_advise = 0;
357         rwlock_init(&fi->ext.ext_lock);
358
359         set_inode_flag(fi, FI_NEW_INODE);
360
361         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
362                 set_inode_flag(fi, FI_INLINE_XATTR);
363
364         /* Will be used by directory only */
365         fi->i_dir_level = F2FS_SB(sb)->dir_level;
366
367         return &fi->vfs_inode;
368 }
369
370 static int f2fs_drop_inode(struct inode *inode)
371 {
372         /*
373          * This is to avoid a deadlock condition like below.
374          * writeback_single_inode(inode)
375          *  - f2fs_write_data_page
376          *    - f2fs_gc -> iput -> evict
377          *       - inode_wait_for_writeback(inode)
378          */
379         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
380                 return 0;
381         return generic_drop_inode(inode);
382 }
383
384 /*
385  * f2fs_dirty_inode() is called from __mark_inode_dirty()
386  *
387  * We should call set_dirty_inode to write the dirty inode through write_inode.
388  */
389 static void f2fs_dirty_inode(struct inode *inode, int flags)
390 {
391         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
392 }
393
394 static void f2fs_i_callback(struct rcu_head *head)
395 {
396         struct inode *inode = container_of(head, struct inode, i_rcu);
397         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
398 }
399
400 static void f2fs_destroy_inode(struct inode *inode)
401 {
402         call_rcu(&inode->i_rcu, f2fs_i_callback);
403 }
404
405 static void f2fs_put_super(struct super_block *sb)
406 {
407         struct f2fs_sb_info *sbi = F2FS_SB(sb);
408
409         if (sbi->s_proc) {
410                 remove_proc_entry("segment_info", sbi->s_proc);
411                 remove_proc_entry(sb->s_id, f2fs_proc_root);
412         }
413         kobject_del(&sbi->s_kobj);
414
415         f2fs_destroy_stats(sbi);
416         stop_gc_thread(sbi);
417
418         /* We don't need to do checkpoint when it's clean */
419         if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
420                 write_checkpoint(sbi, true);
421
422         iput(sbi->node_inode);
423         iput(sbi->meta_inode);
424
425         /* destroy f2fs internal modules */
426         destroy_node_manager(sbi);
427         destroy_segment_manager(sbi);
428
429         kfree(sbi->ckpt);
430         kobject_put(&sbi->s_kobj);
431         wait_for_completion(&sbi->s_kobj_unregister);
432
433         sb->s_fs_info = NULL;
434         brelse(sbi->raw_super_buf);
435         kfree(sbi);
436 }
437
438 int f2fs_sync_fs(struct super_block *sb, int sync)
439 {
440         struct f2fs_sb_info *sbi = F2FS_SB(sb);
441
442         trace_f2fs_sync_fs(sb, sync);
443
444         if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
445                 return 0;
446
447         if (sync) {
448                 mutex_lock(&sbi->gc_mutex);
449                 write_checkpoint(sbi, false);
450                 mutex_unlock(&sbi->gc_mutex);
451         } else {
452                 f2fs_balance_fs(sbi);
453         }
454
455         return 0;
456 }
457
458 static int f2fs_freeze(struct super_block *sb)
459 {
460         int err;
461
462         if (f2fs_readonly(sb))
463                 return 0;
464
465         err = f2fs_sync_fs(sb, 1);
466         return err;
467 }
468
469 static int f2fs_unfreeze(struct super_block *sb)
470 {
471         return 0;
472 }
473
474 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
475 {
476         struct super_block *sb = dentry->d_sb;
477         struct f2fs_sb_info *sbi = F2FS_SB(sb);
478         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
479         block_t total_count, user_block_count, start_count, ovp_count;
480
481         total_count = le64_to_cpu(sbi->raw_super->block_count);
482         user_block_count = sbi->user_block_count;
483         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
484         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
485         buf->f_type = F2FS_SUPER_MAGIC;
486         buf->f_bsize = sbi->blocksize;
487
488         buf->f_blocks = total_count - start_count;
489         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
490         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
491
492         buf->f_files = sbi->total_node_count;
493         buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
494
495         buf->f_namelen = F2FS_NAME_LEN;
496         buf->f_fsid.val[0] = (u32)id;
497         buf->f_fsid.val[1] = (u32)(id >> 32);
498
499         return 0;
500 }
501
502 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
503 {
504         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
505
506         if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
507                 seq_printf(seq, ",background_gc=%s", "on");
508         else
509                 seq_printf(seq, ",background_gc=%s", "off");
510         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
511                 seq_puts(seq, ",disable_roll_forward");
512         if (test_opt(sbi, DISCARD))
513                 seq_puts(seq, ",discard");
514         if (test_opt(sbi, NOHEAP))
515                 seq_puts(seq, ",no_heap_alloc");
516 #ifdef CONFIG_F2FS_FS_XATTR
517         if (test_opt(sbi, XATTR_USER))
518                 seq_puts(seq, ",user_xattr");
519         else
520                 seq_puts(seq, ",nouser_xattr");
521         if (test_opt(sbi, INLINE_XATTR))
522                 seq_puts(seq, ",inline_xattr");
523 #endif
524 #ifdef CONFIG_F2FS_FS_POSIX_ACL
525         if (test_opt(sbi, POSIX_ACL))
526                 seq_puts(seq, ",acl");
527         else
528                 seq_puts(seq, ",noacl");
529 #endif
530         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
531                 seq_puts(seq, ",disable_ext_identify");
532         if (test_opt(sbi, INLINE_DATA))
533                 seq_puts(seq, ",inline_data");
534         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
535
536         return 0;
537 }
538
539 static int segment_info_seq_show(struct seq_file *seq, void *offset)
540 {
541         struct super_block *sb = seq->private;
542         struct f2fs_sb_info *sbi = F2FS_SB(sb);
543         unsigned int total_segs =
544                         le32_to_cpu(sbi->raw_super->segment_count_main);
545         int i;
546
547         for (i = 0; i < total_segs; i++) {
548                 seq_printf(seq, "%u", get_valid_blocks(sbi, i, 1));
549                 if ((i % 10) == 9 || i == (total_segs - 1))
550                         seq_putc(seq, '\n');
551                 else
552                         seq_putc(seq, ' ');
553         }
554
555         return 0;
556 }
557
558 static int segment_info_open_fs(struct inode *inode, struct file *file)
559 {
560         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
561 }
562
563 static const struct file_operations f2fs_seq_segment_info_fops = {
564         .owner = THIS_MODULE,
565         .open = segment_info_open_fs,
566         .read = seq_read,
567         .llseek = seq_lseek,
568         .release = single_release,
569 };
570
571 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
572 {
573         struct f2fs_sb_info *sbi = F2FS_SB(sb);
574         struct f2fs_mount_info org_mount_opt;
575         int err, active_logs;
576
577         /*
578          * Save the old mount options in case we
579          * need to restore them.
580          */
581         org_mount_opt = sbi->mount_opt;
582         active_logs = sbi->active_logs;
583
584         /* parse mount options */
585         err = parse_options(sb, data);
586         if (err)
587                 goto restore_opts;
588
589         /*
590          * Previous and new state of filesystem is RO,
591          * so no point in checking GC conditions.
592          */
593         if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
594                 goto skip;
595
596         /*
597          * We stop the GC thread if FS is mounted as RO
598          * or if background_gc = off is passed in mount
599          * option. Also sync the filesystem.
600          */
601         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
602                 if (sbi->gc_thread) {
603                         stop_gc_thread(sbi);
604                         f2fs_sync_fs(sb, 1);
605                 }
606         } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
607                 err = start_gc_thread(sbi);
608                 if (err)
609                         goto restore_opts;
610         }
611 skip:
612         /* Update the POSIXACL Flag */
613          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
614                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
615         return 0;
616
617 restore_opts:
618         sbi->mount_opt = org_mount_opt;
619         sbi->active_logs = active_logs;
620         return err;
621 }
622
623 static struct super_operations f2fs_sops = {
624         .alloc_inode    = f2fs_alloc_inode,
625         .drop_inode     = f2fs_drop_inode,
626         .destroy_inode  = f2fs_destroy_inode,
627         .write_inode    = f2fs_write_inode,
628         .dirty_inode    = f2fs_dirty_inode,
629         .show_options   = f2fs_show_options,
630         .evict_inode    = f2fs_evict_inode,
631         .put_super      = f2fs_put_super,
632         .sync_fs        = f2fs_sync_fs,
633         .freeze_fs      = f2fs_freeze,
634         .unfreeze_fs    = f2fs_unfreeze,
635         .statfs         = f2fs_statfs,
636         .remount_fs     = f2fs_remount,
637 };
638
639 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
640                 u64 ino, u32 generation)
641 {
642         struct f2fs_sb_info *sbi = F2FS_SB(sb);
643         struct inode *inode;
644
645         if (unlikely(ino < F2FS_ROOT_INO(sbi)))
646                 return ERR_PTR(-ESTALE);
647
648         /*
649          * f2fs_iget isn't quite right if the inode is currently unallocated!
650          * However f2fs_iget currently does appropriate checks to handle stale
651          * inodes so everything is OK.
652          */
653         inode = f2fs_iget(sb, ino);
654         if (IS_ERR(inode))
655                 return ERR_CAST(inode);
656         if (unlikely(generation && inode->i_generation != generation)) {
657                 /* we didn't find the right inode.. */
658                 iput(inode);
659                 return ERR_PTR(-ESTALE);
660         }
661         return inode;
662 }
663
664 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
665                 int fh_len, int fh_type)
666 {
667         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
668                                     f2fs_nfs_get_inode);
669 }
670
671 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
672                 int fh_len, int fh_type)
673 {
674         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
675                                     f2fs_nfs_get_inode);
676 }
677
678 static const struct export_operations f2fs_export_ops = {
679         .fh_to_dentry = f2fs_fh_to_dentry,
680         .fh_to_parent = f2fs_fh_to_parent,
681         .get_parent = f2fs_get_parent,
682 };
683
684 static loff_t max_file_size(unsigned bits)
685 {
686         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
687         loff_t leaf_count = ADDRS_PER_BLOCK;
688
689         /* two direct node blocks */
690         result += (leaf_count * 2);
691
692         /* two indirect node blocks */
693         leaf_count *= NIDS_PER_BLOCK;
694         result += (leaf_count * 2);
695
696         /* one double indirect node block */
697         leaf_count *= NIDS_PER_BLOCK;
698         result += leaf_count;
699
700         result <<= bits;
701         return result;
702 }
703
704 static int sanity_check_raw_super(struct super_block *sb,
705                         struct f2fs_super_block *raw_super)
706 {
707         unsigned int blocksize;
708
709         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
710                 f2fs_msg(sb, KERN_INFO,
711                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
712                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
713                 return 1;
714         }
715
716         /* Currently, support only 4KB page cache size */
717         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
718                 f2fs_msg(sb, KERN_INFO,
719                         "Invalid page_cache_size (%lu), supports only 4KB\n",
720                         PAGE_CACHE_SIZE);
721                 return 1;
722         }
723
724         /* Currently, support only 4KB block size */
725         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
726         if (blocksize != F2FS_BLKSIZE) {
727                 f2fs_msg(sb, KERN_INFO,
728                         "Invalid blocksize (%u), supports only 4KB\n",
729                         blocksize);
730                 return 1;
731         }
732
733         if (le32_to_cpu(raw_super->log_sectorsize) !=
734                                         F2FS_LOG_SECTOR_SIZE) {
735                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
736                 return 1;
737         }
738         if (le32_to_cpu(raw_super->log_sectors_per_block) !=
739                                         F2FS_LOG_SECTORS_PER_BLOCK) {
740                 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
741                 return 1;
742         }
743         return 0;
744 }
745
746 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
747 {
748         unsigned int total, fsmeta;
749         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
750         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
751
752         total = le32_to_cpu(raw_super->segment_count);
753         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
754         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
755         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
756         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
757         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
758
759         if (unlikely(fsmeta >= total))
760                 return 1;
761
762         if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
763                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
764                 return 1;
765         }
766         return 0;
767 }
768
769 static void init_sb_info(struct f2fs_sb_info *sbi)
770 {
771         struct f2fs_super_block *raw_super = sbi->raw_super;
772         int i;
773
774         sbi->log_sectors_per_block =
775                 le32_to_cpu(raw_super->log_sectors_per_block);
776         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
777         sbi->blocksize = 1 << sbi->log_blocksize;
778         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
779         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
780         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
781         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
782         sbi->total_sections = le32_to_cpu(raw_super->section_count);
783         sbi->total_node_count =
784                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
785                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
786         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
787         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
788         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
789         sbi->cur_victim_sec = NULL_SECNO;
790         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
791
792         for (i = 0; i < NR_COUNT_TYPE; i++)
793                 atomic_set(&sbi->nr_pages[i], 0);
794
795         sbi->dir_level = DEF_DIR_LEVEL;
796 }
797
798 /*
799  * Read f2fs raw super block.
800  * Because we have two copies of super block, so read the first one at first,
801  * if the first one is invalid, move to read the second one.
802  */
803 static int read_raw_super_block(struct super_block *sb,
804                         struct f2fs_super_block **raw_super,
805                         struct buffer_head **raw_super_buf)
806 {
807         int block = 0;
808
809 retry:
810         *raw_super_buf = sb_bread(sb, block);
811         if (!*raw_super_buf) {
812                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
813                                 block + 1);
814                 if (block == 0) {
815                         block++;
816                         goto retry;
817                 } else {
818                         return -EIO;
819                 }
820         }
821
822         *raw_super = (struct f2fs_super_block *)
823                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
824
825         /* sanity checking of raw super */
826         if (sanity_check_raw_super(sb, *raw_super)) {
827                 brelse(*raw_super_buf);
828                 f2fs_msg(sb, KERN_ERR,
829                         "Can't find valid F2FS filesystem in %dth superblock",
830                                                                 block + 1);
831                 if (block == 0) {
832                         block++;
833                         goto retry;
834                 } else {
835                         return -EINVAL;
836                 }
837         }
838
839         return 0;
840 }
841
842 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
843 {
844         struct f2fs_sb_info *sbi;
845         struct f2fs_super_block *raw_super;
846         struct buffer_head *raw_super_buf;
847         struct inode *root;
848         long err = -EINVAL;
849         int i;
850
851         /* allocate memory for f2fs-specific super block info */
852         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
853         if (!sbi)
854                 return -ENOMEM;
855
856         /* set a block size */
857         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
858                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
859                 goto free_sbi;
860         }
861
862         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
863         if (err)
864                 goto free_sbi;
865
866         sb->s_fs_info = sbi;
867         /* init some FS parameters */
868         sbi->active_logs = NR_CURSEG_TYPE;
869
870         set_opt(sbi, BG_GC);
871
872 #ifdef CONFIG_F2FS_FS_XATTR
873         set_opt(sbi, XATTR_USER);
874 #endif
875 #ifdef CONFIG_F2FS_FS_POSIX_ACL
876         set_opt(sbi, POSIX_ACL);
877 #endif
878         /* parse mount options */
879         err = parse_options(sb, (char *)data);
880         if (err)
881                 goto free_sb_buf;
882
883         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
884         sb->s_max_links = F2FS_LINK_MAX;
885         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
886
887         sb->s_op = &f2fs_sops;
888         sb->s_xattr = f2fs_xattr_handlers;
889         sb->s_export_op = &f2fs_export_ops;
890         sb->s_magic = F2FS_SUPER_MAGIC;
891         sb->s_time_gran = 1;
892         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
893                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
894         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
895
896         /* init f2fs-specific super block info */
897         sbi->sb = sb;
898         sbi->raw_super = raw_super;
899         sbi->raw_super_buf = raw_super_buf;
900         mutex_init(&sbi->gc_mutex);
901         mutex_init(&sbi->writepages);
902         mutex_init(&sbi->cp_mutex);
903         mutex_init(&sbi->node_write);
904         sbi->por_doing = false;
905         spin_lock_init(&sbi->stat_lock);
906
907         mutex_init(&sbi->read_io.io_mutex);
908         sbi->read_io.sbi = sbi;
909         sbi->read_io.bio = NULL;
910         for (i = 0; i < NR_PAGE_TYPE; i++) {
911                 mutex_init(&sbi->write_io[i].io_mutex);
912                 sbi->write_io[i].sbi = sbi;
913                 sbi->write_io[i].bio = NULL;
914         }
915
916         init_rwsem(&sbi->cp_rwsem);
917         init_waitqueue_head(&sbi->cp_wait);
918         init_sb_info(sbi);
919
920         /* get an inode for meta space */
921         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
922         if (IS_ERR(sbi->meta_inode)) {
923                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
924                 err = PTR_ERR(sbi->meta_inode);
925                 goto free_sb_buf;
926         }
927
928         err = get_valid_checkpoint(sbi);
929         if (err) {
930                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
931                 goto free_meta_inode;
932         }
933
934         /* sanity checking of checkpoint */
935         err = -EINVAL;
936         if (sanity_check_ckpt(sbi)) {
937                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
938                 goto free_cp;
939         }
940
941         sbi->total_valid_node_count =
942                                 le32_to_cpu(sbi->ckpt->valid_node_count);
943         sbi->total_valid_inode_count =
944                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
945         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
946         sbi->total_valid_block_count =
947                                 le64_to_cpu(sbi->ckpt->valid_block_count);
948         sbi->last_valid_block_count = sbi->total_valid_block_count;
949         sbi->alloc_valid_block_count = 0;
950         INIT_LIST_HEAD(&sbi->dir_inode_list);
951         spin_lock_init(&sbi->dir_inode_lock);
952
953         init_orphan_info(sbi);
954
955         /* setup f2fs internal modules */
956         err = build_segment_manager(sbi);
957         if (err) {
958                 f2fs_msg(sb, KERN_ERR,
959                         "Failed to initialize F2FS segment manager");
960                 goto free_sm;
961         }
962         err = build_node_manager(sbi);
963         if (err) {
964                 f2fs_msg(sb, KERN_ERR,
965                         "Failed to initialize F2FS node manager");
966                 goto free_nm;
967         }
968
969         build_gc_manager(sbi);
970
971         /* get an inode for node space */
972         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
973         if (IS_ERR(sbi->node_inode)) {
974                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
975                 err = PTR_ERR(sbi->node_inode);
976                 goto free_nm;
977         }
978
979         /* if there are nt orphan nodes free them */
980         recover_orphan_inodes(sbi);
981
982         /* read root inode and dentry */
983         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
984         if (IS_ERR(root)) {
985                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
986                 err = PTR_ERR(root);
987                 goto free_node_inode;
988         }
989         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
990                 err = -EINVAL;
991                 goto free_root_inode;
992         }
993
994         sb->s_root = d_make_root(root); /* allocate root dentry */
995         if (!sb->s_root) {
996                 err = -ENOMEM;
997                 goto free_root_inode;
998         }
999
1000         err = f2fs_build_stats(sbi);
1001         if (err)
1002                 goto free_root_inode;
1003
1004         if (f2fs_proc_root)
1005                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1006
1007         if (sbi->s_proc)
1008                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1009                                  &f2fs_seq_segment_info_fops, sb);
1010
1011         if (test_opt(sbi, DISCARD)) {
1012                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1013                 if (!blk_queue_discard(q))
1014                         f2fs_msg(sb, KERN_WARNING,
1015                                         "mounting with \"discard\" option, but "
1016                                         "the device does not support discard");
1017         }
1018
1019         sbi->s_kobj.kset = f2fs_kset;
1020         init_completion(&sbi->s_kobj_unregister);
1021         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1022                                                         "%s", sb->s_id);
1023         if (err)
1024                 goto free_proc;
1025
1026         /* recover fsynced data */
1027         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1028                 err = recover_fsync_data(sbi);
1029                 if (err)
1030                         f2fs_msg(sb, KERN_ERR,
1031                                 "Cannot recover all fsync data errno=%ld", err);
1032         }
1033
1034         /*
1035          * If filesystem is not mounted as read-only then
1036          * do start the gc_thread.
1037          */
1038         if (!(sb->s_flags & MS_RDONLY)) {
1039                 /* After POR, we can run background GC thread.*/
1040                 err = start_gc_thread(sbi);
1041                 if (err)
1042                         goto free_kobj;
1043         }
1044         return 0;
1045
1046 free_kobj:
1047         kobject_del(&sbi->s_kobj);
1048 free_proc:
1049         if (sbi->s_proc) {
1050                 remove_proc_entry("segment_info", sbi->s_proc);
1051                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1052         }
1053         f2fs_destroy_stats(sbi);
1054 free_root_inode:
1055         dput(sb->s_root);
1056         sb->s_root = NULL;
1057 free_node_inode:
1058         iput(sbi->node_inode);
1059 free_nm:
1060         destroy_node_manager(sbi);
1061 free_sm:
1062         destroy_segment_manager(sbi);
1063 free_cp:
1064         kfree(sbi->ckpt);
1065 free_meta_inode:
1066         make_bad_inode(sbi->meta_inode);
1067         iput(sbi->meta_inode);
1068 free_sb_buf:
1069         brelse(raw_super_buf);
1070 free_sbi:
1071         kfree(sbi);
1072         return err;
1073 }
1074
1075 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1076                         const char *dev_name, void *data)
1077 {
1078         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1079 }
1080
1081 static struct file_system_type f2fs_fs_type = {
1082         .owner          = THIS_MODULE,
1083         .name           = "f2fs",
1084         .mount          = f2fs_mount,
1085         .kill_sb        = kill_block_super,
1086         .fs_flags       = FS_REQUIRES_DEV,
1087 };
1088 MODULE_ALIAS_FS("f2fs");
1089
1090 static int __init init_inodecache(void)
1091 {
1092         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1093                         sizeof(struct f2fs_inode_info));
1094         if (!f2fs_inode_cachep)
1095                 return -ENOMEM;
1096         return 0;
1097 }
1098
1099 static void destroy_inodecache(void)
1100 {
1101         /*
1102          * Make sure all delayed rcu free inodes are flushed before we
1103          * destroy cache.
1104          */
1105         rcu_barrier();
1106         kmem_cache_destroy(f2fs_inode_cachep);
1107 }
1108
1109 static int __init init_f2fs_fs(void)
1110 {
1111         int err;
1112
1113         err = init_inodecache();
1114         if (err)
1115                 goto fail;
1116         err = create_node_manager_caches();
1117         if (err)
1118                 goto free_inodecache;
1119         err = create_segment_manager_caches();
1120         if (err)
1121                 goto free_node_manager_caches;
1122         err = create_gc_caches();
1123         if (err)
1124                 goto free_segment_manager_caches;
1125         err = create_checkpoint_caches();
1126         if (err)
1127                 goto free_gc_caches;
1128         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1129         if (!f2fs_kset) {
1130                 err = -ENOMEM;
1131                 goto free_checkpoint_caches;
1132         }
1133         err = register_filesystem(&f2fs_fs_type);
1134         if (err)
1135                 goto free_kset;
1136         f2fs_create_root_stats();
1137         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1138         return 0;
1139
1140 free_kset:
1141         kset_unregister(f2fs_kset);
1142 free_checkpoint_caches:
1143         destroy_checkpoint_caches();
1144 free_gc_caches:
1145         destroy_gc_caches();
1146 free_segment_manager_caches:
1147         destroy_segment_manager_caches();
1148 free_node_manager_caches:
1149         destroy_node_manager_caches();
1150 free_inodecache:
1151         destroy_inodecache();
1152 fail:
1153         return err;
1154 }
1155
1156 static void __exit exit_f2fs_fs(void)
1157 {
1158         remove_proc_entry("fs/f2fs", NULL);
1159         f2fs_destroy_root_stats();
1160         unregister_filesystem(&f2fs_fs_type);
1161         destroy_checkpoint_caches();
1162         destroy_gc_caches();
1163         destroy_segment_manager_caches();
1164         destroy_node_manager_caches();
1165         destroy_inodecache();
1166         kset_unregister(f2fs_kset);
1167 }
1168
1169 module_init(init_f2fs_fs)
1170 module_exit(exit_f2fs_fs)
1171
1172 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1173 MODULE_DESCRIPTION("Flash Friendly File System");
1174 MODULE_LICENSE("GPL");