]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/super.c
f2fs: introduce f2fs_issue_flush to avoid redundant flush issue
[karo-tx-linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42         Opt_gc_background,
43         Opt_disable_roll_forward,
44         Opt_discard,
45         Opt_noheap,
46         Opt_user_xattr,
47         Opt_nouser_xattr,
48         Opt_acl,
49         Opt_noacl,
50         Opt_active_logs,
51         Opt_disable_ext_identify,
52         Opt_inline_xattr,
53         Opt_inline_data,
54         Opt_flush_merge,
55         Opt_err,
56 };
57
58 static match_table_t f2fs_tokens = {
59         {Opt_gc_background, "background_gc=%s"},
60         {Opt_disable_roll_forward, "disable_roll_forward"},
61         {Opt_discard, "discard"},
62         {Opt_noheap, "no_heap"},
63         {Opt_user_xattr, "user_xattr"},
64         {Opt_nouser_xattr, "nouser_xattr"},
65         {Opt_acl, "acl"},
66         {Opt_noacl, "noacl"},
67         {Opt_active_logs, "active_logs=%u"},
68         {Opt_disable_ext_identify, "disable_ext_identify"},
69         {Opt_inline_xattr, "inline_xattr"},
70         {Opt_inline_data, "inline_data"},
71         {Opt_flush_merge, "flush_merge"},
72         {Opt_err, NULL},
73 };
74
75 /* Sysfs support for f2fs */
76 enum {
77         GC_THREAD,      /* struct f2fs_gc_thread */
78         SM_INFO,        /* struct f2fs_sm_info */
79         NM_INFO,        /* struct f2fs_nm_info */
80         F2FS_SBI,       /* struct f2fs_sb_info */
81 };
82
83 struct f2fs_attr {
84         struct attribute attr;
85         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
86         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
87                          const char *, size_t);
88         int struct_type;
89         int offset;
90 };
91
92 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
93 {
94         if (struct_type == GC_THREAD)
95                 return (unsigned char *)sbi->gc_thread;
96         else if (struct_type == SM_INFO)
97                 return (unsigned char *)SM_I(sbi);
98         else if (struct_type == NM_INFO)
99                 return (unsigned char *)NM_I(sbi);
100         else if (struct_type == F2FS_SBI)
101                 return (unsigned char *)sbi;
102         return NULL;
103 }
104
105 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
106                         struct f2fs_sb_info *sbi, char *buf)
107 {
108         unsigned char *ptr = NULL;
109         unsigned int *ui;
110
111         ptr = __struct_ptr(sbi, a->struct_type);
112         if (!ptr)
113                 return -EINVAL;
114
115         ui = (unsigned int *)(ptr + a->offset);
116
117         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
118 }
119
120 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
121                         struct f2fs_sb_info *sbi,
122                         const char *buf, size_t count)
123 {
124         unsigned char *ptr;
125         unsigned long t;
126         unsigned int *ui;
127         ssize_t ret;
128
129         ptr = __struct_ptr(sbi, a->struct_type);
130         if (!ptr)
131                 return -EINVAL;
132
133         ui = (unsigned int *)(ptr + a->offset);
134
135         ret = kstrtoul(skip_spaces(buf), 0, &t);
136         if (ret < 0)
137                 return ret;
138         *ui = t;
139         return count;
140 }
141
142 static ssize_t f2fs_attr_show(struct kobject *kobj,
143                                 struct attribute *attr, char *buf)
144 {
145         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
146                                                                 s_kobj);
147         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
148
149         return a->show ? a->show(a, sbi, buf) : 0;
150 }
151
152 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
153                                                 const char *buf, size_t len)
154 {
155         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
156                                                                         s_kobj);
157         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
158
159         return a->store ? a->store(a, sbi, buf, len) : 0;
160 }
161
162 static void f2fs_sb_release(struct kobject *kobj)
163 {
164         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
165                                                                 s_kobj);
166         complete(&sbi->s_kobj_unregister);
167 }
168
169 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
170 static struct f2fs_attr f2fs_attr_##_name = {                   \
171         .attr = {.name = __stringify(_name), .mode = _mode },   \
172         .show   = _show,                                        \
173         .store  = _store,                                       \
174         .struct_type = _struct_type,                            \
175         .offset = _offset                                       \
176 }
177
178 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
179         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
180                 f2fs_sbi_show, f2fs_sbi_store,                  \
181                 offsetof(struct struct_name, elname))
182
183 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
184 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
187 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
188 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
191 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
192 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
193 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
194
195 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
196 static struct attribute *f2fs_attrs[] = {
197         ATTR_LIST(gc_min_sleep_time),
198         ATTR_LIST(gc_max_sleep_time),
199         ATTR_LIST(gc_no_gc_sleep_time),
200         ATTR_LIST(gc_idle),
201         ATTR_LIST(reclaim_segments),
202         ATTR_LIST(max_small_discards),
203         ATTR_LIST(ipu_policy),
204         ATTR_LIST(min_ipu_util),
205         ATTR_LIST(max_victim_search),
206         ATTR_LIST(dir_level),
207         ATTR_LIST(ram_thresh),
208         NULL,
209 };
210
211 static const struct sysfs_ops f2fs_attr_ops = {
212         .show   = f2fs_attr_show,
213         .store  = f2fs_attr_store,
214 };
215
216 static struct kobj_type f2fs_ktype = {
217         .default_attrs  = f2fs_attrs,
218         .sysfs_ops      = &f2fs_attr_ops,
219         .release        = f2fs_sb_release,
220 };
221
222 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
223 {
224         struct va_format vaf;
225         va_list args;
226
227         va_start(args, fmt);
228         vaf.fmt = fmt;
229         vaf.va = &args;
230         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
231         va_end(args);
232 }
233
234 static void init_once(void *foo)
235 {
236         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
237
238         inode_init_once(&fi->vfs_inode);
239 }
240
241 static int parse_options(struct super_block *sb, char *options)
242 {
243         struct f2fs_sb_info *sbi = F2FS_SB(sb);
244         substring_t args[MAX_OPT_ARGS];
245         char *p, *name;
246         int arg = 0;
247
248         if (!options)
249                 return 0;
250
251         while ((p = strsep(&options, ",")) != NULL) {
252                 int token;
253                 if (!*p)
254                         continue;
255                 /*
256                  * Initialize args struct so we know whether arg was
257                  * found; some options take optional arguments.
258                  */
259                 args[0].to = args[0].from = NULL;
260                 token = match_token(p, f2fs_tokens, args);
261
262                 switch (token) {
263                 case Opt_gc_background:
264                         name = match_strdup(&args[0]);
265
266                         if (!name)
267                                 return -ENOMEM;
268                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
269                                 set_opt(sbi, BG_GC);
270                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
271                                 clear_opt(sbi, BG_GC);
272                         else {
273                                 kfree(name);
274                                 return -EINVAL;
275                         }
276                         kfree(name);
277                         break;
278                 case Opt_disable_roll_forward:
279                         set_opt(sbi, DISABLE_ROLL_FORWARD);
280                         break;
281                 case Opt_discard:
282                         set_opt(sbi, DISCARD);
283                         break;
284                 case Opt_noheap:
285                         set_opt(sbi, NOHEAP);
286                         break;
287 #ifdef CONFIG_F2FS_FS_XATTR
288                 case Opt_user_xattr:
289                         set_opt(sbi, XATTR_USER);
290                         break;
291                 case Opt_nouser_xattr:
292                         clear_opt(sbi, XATTR_USER);
293                         break;
294                 case Opt_inline_xattr:
295                         set_opt(sbi, INLINE_XATTR);
296                         break;
297 #else
298                 case Opt_user_xattr:
299                         f2fs_msg(sb, KERN_INFO,
300                                 "user_xattr options not supported");
301                         break;
302                 case Opt_nouser_xattr:
303                         f2fs_msg(sb, KERN_INFO,
304                                 "nouser_xattr options not supported");
305                         break;
306                 case Opt_inline_xattr:
307                         f2fs_msg(sb, KERN_INFO,
308                                 "inline_xattr options not supported");
309                         break;
310 #endif
311 #ifdef CONFIG_F2FS_FS_POSIX_ACL
312                 case Opt_acl:
313                         set_opt(sbi, POSIX_ACL);
314                         break;
315                 case Opt_noacl:
316                         clear_opt(sbi, POSIX_ACL);
317                         break;
318 #else
319                 case Opt_acl:
320                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
321                         break;
322                 case Opt_noacl:
323                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
324                         break;
325 #endif
326                 case Opt_active_logs:
327                         if (args->from && match_int(args, &arg))
328                                 return -EINVAL;
329                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
330                                 return -EINVAL;
331                         sbi->active_logs = arg;
332                         break;
333                 case Opt_disable_ext_identify:
334                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
335                         break;
336                 case Opt_inline_data:
337                         set_opt(sbi, INLINE_DATA);
338                         break;
339                 case Opt_flush_merge:
340                         set_opt(sbi, FLUSH_MERGE);
341                         break;
342                 default:
343                         f2fs_msg(sb, KERN_ERR,
344                                 "Unrecognized mount option \"%s\" or missing value",
345                                 p);
346                         return -EINVAL;
347                 }
348         }
349         return 0;
350 }
351
352 static struct inode *f2fs_alloc_inode(struct super_block *sb)
353 {
354         struct f2fs_inode_info *fi;
355
356         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
357         if (!fi)
358                 return NULL;
359
360         init_once((void *) fi);
361
362         /* Initialize f2fs-specific inode info */
363         fi->vfs_inode.i_version = 1;
364         atomic_set(&fi->dirty_dents, 0);
365         fi->i_current_depth = 1;
366         fi->i_advise = 0;
367         rwlock_init(&fi->ext.ext_lock);
368         init_rwsem(&fi->i_sem);
369
370         set_inode_flag(fi, FI_NEW_INODE);
371
372         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
373                 set_inode_flag(fi, FI_INLINE_XATTR);
374
375         /* Will be used by directory only */
376         fi->i_dir_level = F2FS_SB(sb)->dir_level;
377
378         return &fi->vfs_inode;
379 }
380
381 static int f2fs_drop_inode(struct inode *inode)
382 {
383         /*
384          * This is to avoid a deadlock condition like below.
385          * writeback_single_inode(inode)
386          *  - f2fs_write_data_page
387          *    - f2fs_gc -> iput -> evict
388          *       - inode_wait_for_writeback(inode)
389          */
390         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
391                 return 0;
392         return generic_drop_inode(inode);
393 }
394
395 /*
396  * f2fs_dirty_inode() is called from __mark_inode_dirty()
397  *
398  * We should call set_dirty_inode to write the dirty inode through write_inode.
399  */
400 static void f2fs_dirty_inode(struct inode *inode, int flags)
401 {
402         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
403 }
404
405 static void f2fs_i_callback(struct rcu_head *head)
406 {
407         struct inode *inode = container_of(head, struct inode, i_rcu);
408         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
409 }
410
411 static void f2fs_destroy_inode(struct inode *inode)
412 {
413         call_rcu(&inode->i_rcu, f2fs_i_callback);
414 }
415
416 static void f2fs_put_super(struct super_block *sb)
417 {
418         struct f2fs_sb_info *sbi = F2FS_SB(sb);
419
420         if (sbi->s_proc) {
421                 remove_proc_entry("segment_info", sbi->s_proc);
422                 remove_proc_entry(sb->s_id, f2fs_proc_root);
423         }
424         kobject_del(&sbi->s_kobj);
425
426         f2fs_destroy_stats(sbi);
427         stop_gc_thread(sbi);
428
429         /* We don't need to do checkpoint when it's clean */
430         if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
431                 write_checkpoint(sbi, true);
432
433         iput(sbi->node_inode);
434         iput(sbi->meta_inode);
435
436         /* destroy f2fs internal modules */
437         destroy_node_manager(sbi);
438         destroy_segment_manager(sbi);
439
440         kfree(sbi->ckpt);
441         kobject_put(&sbi->s_kobj);
442         wait_for_completion(&sbi->s_kobj_unregister);
443
444         sb->s_fs_info = NULL;
445         brelse(sbi->raw_super_buf);
446         kfree(sbi);
447 }
448
449 int f2fs_sync_fs(struct super_block *sb, int sync)
450 {
451         struct f2fs_sb_info *sbi = F2FS_SB(sb);
452
453         trace_f2fs_sync_fs(sb, sync);
454
455         if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
456                 return 0;
457
458         if (sync) {
459                 mutex_lock(&sbi->gc_mutex);
460                 write_checkpoint(sbi, false);
461                 mutex_unlock(&sbi->gc_mutex);
462         } else {
463                 f2fs_balance_fs(sbi);
464         }
465
466         return 0;
467 }
468
469 static int f2fs_freeze(struct super_block *sb)
470 {
471         int err;
472
473         if (f2fs_readonly(sb))
474                 return 0;
475
476         err = f2fs_sync_fs(sb, 1);
477         return err;
478 }
479
480 static int f2fs_unfreeze(struct super_block *sb)
481 {
482         return 0;
483 }
484
485 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
486 {
487         struct super_block *sb = dentry->d_sb;
488         struct f2fs_sb_info *sbi = F2FS_SB(sb);
489         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
490         block_t total_count, user_block_count, start_count, ovp_count;
491
492         total_count = le64_to_cpu(sbi->raw_super->block_count);
493         user_block_count = sbi->user_block_count;
494         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
495         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
496         buf->f_type = F2FS_SUPER_MAGIC;
497         buf->f_bsize = sbi->blocksize;
498
499         buf->f_blocks = total_count - start_count;
500         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
501         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
502
503         buf->f_files = sbi->total_node_count;
504         buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
505
506         buf->f_namelen = F2FS_NAME_LEN;
507         buf->f_fsid.val[0] = (u32)id;
508         buf->f_fsid.val[1] = (u32)(id >> 32);
509
510         return 0;
511 }
512
513 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
514 {
515         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
516
517         if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
518                 seq_printf(seq, ",background_gc=%s", "on");
519         else
520                 seq_printf(seq, ",background_gc=%s", "off");
521         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
522                 seq_puts(seq, ",disable_roll_forward");
523         if (test_opt(sbi, DISCARD))
524                 seq_puts(seq, ",discard");
525         if (test_opt(sbi, NOHEAP))
526                 seq_puts(seq, ",no_heap_alloc");
527 #ifdef CONFIG_F2FS_FS_XATTR
528         if (test_opt(sbi, XATTR_USER))
529                 seq_puts(seq, ",user_xattr");
530         else
531                 seq_puts(seq, ",nouser_xattr");
532         if (test_opt(sbi, INLINE_XATTR))
533                 seq_puts(seq, ",inline_xattr");
534 #endif
535 #ifdef CONFIG_F2FS_FS_POSIX_ACL
536         if (test_opt(sbi, POSIX_ACL))
537                 seq_puts(seq, ",acl");
538         else
539                 seq_puts(seq, ",noacl");
540 #endif
541         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
542                 seq_puts(seq, ",disable_ext_identify");
543         if (test_opt(sbi, INLINE_DATA))
544                 seq_puts(seq, ",inline_data");
545         if (test_opt(sbi, FLUSH_MERGE))
546                 seq_puts(seq, ",flush_merge");
547         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
548
549         return 0;
550 }
551
552 static int segment_info_seq_show(struct seq_file *seq, void *offset)
553 {
554         struct super_block *sb = seq->private;
555         struct f2fs_sb_info *sbi = F2FS_SB(sb);
556         unsigned int total_segs =
557                         le32_to_cpu(sbi->raw_super->segment_count_main);
558         int i;
559
560         seq_puts(seq, "format: segment_type|valid_blocks\n"
561                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
562
563         for (i = 0; i < total_segs; i++) {
564                 struct seg_entry *se = get_seg_entry(sbi, i);
565
566                 if ((i % 10) == 0)
567                         seq_printf(seq, "%-5d", i);
568                 seq_printf(seq, "%d|%-3u", se->type,
569                                         get_valid_blocks(sbi, i, 1));
570                 if ((i % 10) == 9 || i == (total_segs - 1))
571                         seq_putc(seq, '\n');
572                 else
573                         seq_putc(seq, ' ');
574         }
575
576         return 0;
577 }
578
579 static int segment_info_open_fs(struct inode *inode, struct file *file)
580 {
581         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
582 }
583
584 static const struct file_operations f2fs_seq_segment_info_fops = {
585         .owner = THIS_MODULE,
586         .open = segment_info_open_fs,
587         .read = seq_read,
588         .llseek = seq_lseek,
589         .release = single_release,
590 };
591
592 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
593 {
594         struct f2fs_sb_info *sbi = F2FS_SB(sb);
595         struct f2fs_mount_info org_mount_opt;
596         int err, active_logs;
597
598         /*
599          * Save the old mount options in case we
600          * need to restore them.
601          */
602         org_mount_opt = sbi->mount_opt;
603         active_logs = sbi->active_logs;
604
605         /* parse mount options */
606         err = parse_options(sb, data);
607         if (err)
608                 goto restore_opts;
609
610         /*
611          * Previous and new state of filesystem is RO,
612          * so no point in checking GC conditions.
613          */
614         if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
615                 goto skip;
616
617         /*
618          * We stop the GC thread if FS is mounted as RO
619          * or if background_gc = off is passed in mount
620          * option. Also sync the filesystem.
621          */
622         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
623                 if (sbi->gc_thread) {
624                         stop_gc_thread(sbi);
625                         f2fs_sync_fs(sb, 1);
626                 }
627         } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
628                 err = start_gc_thread(sbi);
629                 if (err)
630                         goto restore_opts;
631         }
632 skip:
633         /* Update the POSIXACL Flag */
634          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
635                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
636         return 0;
637
638 restore_opts:
639         sbi->mount_opt = org_mount_opt;
640         sbi->active_logs = active_logs;
641         return err;
642 }
643
644 static struct super_operations f2fs_sops = {
645         .alloc_inode    = f2fs_alloc_inode,
646         .drop_inode     = f2fs_drop_inode,
647         .destroy_inode  = f2fs_destroy_inode,
648         .write_inode    = f2fs_write_inode,
649         .dirty_inode    = f2fs_dirty_inode,
650         .show_options   = f2fs_show_options,
651         .evict_inode    = f2fs_evict_inode,
652         .put_super      = f2fs_put_super,
653         .sync_fs        = f2fs_sync_fs,
654         .freeze_fs      = f2fs_freeze,
655         .unfreeze_fs    = f2fs_unfreeze,
656         .statfs         = f2fs_statfs,
657         .remount_fs     = f2fs_remount,
658 };
659
660 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
661                 u64 ino, u32 generation)
662 {
663         struct f2fs_sb_info *sbi = F2FS_SB(sb);
664         struct inode *inode;
665
666         if (unlikely(ino < F2FS_ROOT_INO(sbi)))
667                 return ERR_PTR(-ESTALE);
668         if (unlikely(ino >= NM_I(sbi)->max_nid))
669                 return ERR_PTR(-ESTALE);
670
671         /*
672          * f2fs_iget isn't quite right if the inode is currently unallocated!
673          * However f2fs_iget currently does appropriate checks to handle stale
674          * inodes so everything is OK.
675          */
676         inode = f2fs_iget(sb, ino);
677         if (IS_ERR(inode))
678                 return ERR_CAST(inode);
679         if (unlikely(generation && inode->i_generation != generation)) {
680                 /* we didn't find the right inode.. */
681                 iput(inode);
682                 return ERR_PTR(-ESTALE);
683         }
684         return inode;
685 }
686
687 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
688                 int fh_len, int fh_type)
689 {
690         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
691                                     f2fs_nfs_get_inode);
692 }
693
694 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
695                 int fh_len, int fh_type)
696 {
697         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
698                                     f2fs_nfs_get_inode);
699 }
700
701 static const struct export_operations f2fs_export_ops = {
702         .fh_to_dentry = f2fs_fh_to_dentry,
703         .fh_to_parent = f2fs_fh_to_parent,
704         .get_parent = f2fs_get_parent,
705 };
706
707 static loff_t max_file_size(unsigned bits)
708 {
709         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
710         loff_t leaf_count = ADDRS_PER_BLOCK;
711
712         /* two direct node blocks */
713         result += (leaf_count * 2);
714
715         /* two indirect node blocks */
716         leaf_count *= NIDS_PER_BLOCK;
717         result += (leaf_count * 2);
718
719         /* one double indirect node block */
720         leaf_count *= NIDS_PER_BLOCK;
721         result += leaf_count;
722
723         result <<= bits;
724         return result;
725 }
726
727 static int sanity_check_raw_super(struct super_block *sb,
728                         struct f2fs_super_block *raw_super)
729 {
730         unsigned int blocksize;
731
732         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
733                 f2fs_msg(sb, KERN_INFO,
734                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
735                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
736                 return 1;
737         }
738
739         /* Currently, support only 4KB page cache size */
740         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
741                 f2fs_msg(sb, KERN_INFO,
742                         "Invalid page_cache_size (%lu), supports only 4KB\n",
743                         PAGE_CACHE_SIZE);
744                 return 1;
745         }
746
747         /* Currently, support only 4KB block size */
748         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
749         if (blocksize != F2FS_BLKSIZE) {
750                 f2fs_msg(sb, KERN_INFO,
751                         "Invalid blocksize (%u), supports only 4KB\n",
752                         blocksize);
753                 return 1;
754         }
755
756         if (le32_to_cpu(raw_super->log_sectorsize) !=
757                                         F2FS_LOG_SECTOR_SIZE) {
758                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
759                 return 1;
760         }
761         if (le32_to_cpu(raw_super->log_sectors_per_block) !=
762                                         F2FS_LOG_SECTORS_PER_BLOCK) {
763                 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
764                 return 1;
765         }
766         return 0;
767 }
768
769 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
770 {
771         unsigned int total, fsmeta;
772         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
773         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
774
775         total = le32_to_cpu(raw_super->segment_count);
776         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
777         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
778         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
779         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
780         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
781
782         if (unlikely(fsmeta >= total))
783                 return 1;
784
785         if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
786                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
787                 return 1;
788         }
789         return 0;
790 }
791
792 static void init_sb_info(struct f2fs_sb_info *sbi)
793 {
794         struct f2fs_super_block *raw_super = sbi->raw_super;
795         int i;
796
797         sbi->log_sectors_per_block =
798                 le32_to_cpu(raw_super->log_sectors_per_block);
799         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
800         sbi->blocksize = 1 << sbi->log_blocksize;
801         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
802         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
803         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
804         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
805         sbi->total_sections = le32_to_cpu(raw_super->section_count);
806         sbi->total_node_count =
807                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
808                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
809         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
810         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
811         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
812         sbi->cur_victim_sec = NULL_SECNO;
813         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
814
815         for (i = 0; i < NR_COUNT_TYPE; i++)
816                 atomic_set(&sbi->nr_pages[i], 0);
817
818         sbi->dir_level = DEF_DIR_LEVEL;
819 }
820
821 /*
822  * Read f2fs raw super block.
823  * Because we have two copies of super block, so read the first one at first,
824  * if the first one is invalid, move to read the second one.
825  */
826 static int read_raw_super_block(struct super_block *sb,
827                         struct f2fs_super_block **raw_super,
828                         struct buffer_head **raw_super_buf)
829 {
830         int block = 0;
831
832 retry:
833         *raw_super_buf = sb_bread(sb, block);
834         if (!*raw_super_buf) {
835                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
836                                 block + 1);
837                 if (block == 0) {
838                         block++;
839                         goto retry;
840                 } else {
841                         return -EIO;
842                 }
843         }
844
845         *raw_super = (struct f2fs_super_block *)
846                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
847
848         /* sanity checking of raw super */
849         if (sanity_check_raw_super(sb, *raw_super)) {
850                 brelse(*raw_super_buf);
851                 f2fs_msg(sb, KERN_ERR,
852                         "Can't find valid F2FS filesystem in %dth superblock",
853                                                                 block + 1);
854                 if (block == 0) {
855                         block++;
856                         goto retry;
857                 } else {
858                         return -EINVAL;
859                 }
860         }
861
862         return 0;
863 }
864
865 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
866 {
867         struct f2fs_sb_info *sbi;
868         struct f2fs_super_block *raw_super;
869         struct buffer_head *raw_super_buf;
870         struct inode *root;
871         long err = -EINVAL;
872         int i;
873
874         /* allocate memory for f2fs-specific super block info */
875         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
876         if (!sbi)
877                 return -ENOMEM;
878
879         /* set a block size */
880         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
881                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
882                 goto free_sbi;
883         }
884
885         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
886         if (err)
887                 goto free_sbi;
888
889         sb->s_fs_info = sbi;
890         /* init some FS parameters */
891         sbi->active_logs = NR_CURSEG_TYPE;
892
893         set_opt(sbi, BG_GC);
894
895 #ifdef CONFIG_F2FS_FS_XATTR
896         set_opt(sbi, XATTR_USER);
897 #endif
898 #ifdef CONFIG_F2FS_FS_POSIX_ACL
899         set_opt(sbi, POSIX_ACL);
900 #endif
901         /* parse mount options */
902         err = parse_options(sb, (char *)data);
903         if (err)
904                 goto free_sb_buf;
905
906         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
907         sb->s_max_links = F2FS_LINK_MAX;
908         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
909
910         sb->s_op = &f2fs_sops;
911         sb->s_xattr = f2fs_xattr_handlers;
912         sb->s_export_op = &f2fs_export_ops;
913         sb->s_magic = F2FS_SUPER_MAGIC;
914         sb->s_time_gran = 1;
915         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
916                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
917         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
918
919         /* init f2fs-specific super block info */
920         sbi->sb = sb;
921         sbi->raw_super = raw_super;
922         sbi->raw_super_buf = raw_super_buf;
923         mutex_init(&sbi->gc_mutex);
924         mutex_init(&sbi->writepages);
925         mutex_init(&sbi->cp_mutex);
926         mutex_init(&sbi->node_write);
927         sbi->por_doing = false;
928         spin_lock_init(&sbi->stat_lock);
929
930         init_rwsem(&sbi->read_io.io_rwsem);
931         sbi->read_io.sbi = sbi;
932         sbi->read_io.bio = NULL;
933         for (i = 0; i < NR_PAGE_TYPE; i++) {
934                 init_rwsem(&sbi->write_io[i].io_rwsem);
935                 sbi->write_io[i].sbi = sbi;
936                 sbi->write_io[i].bio = NULL;
937         }
938
939         init_rwsem(&sbi->cp_rwsem);
940         init_waitqueue_head(&sbi->cp_wait);
941         init_sb_info(sbi);
942
943         /* get an inode for meta space */
944         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
945         if (IS_ERR(sbi->meta_inode)) {
946                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
947                 err = PTR_ERR(sbi->meta_inode);
948                 goto free_sb_buf;
949         }
950
951         err = get_valid_checkpoint(sbi);
952         if (err) {
953                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
954                 goto free_meta_inode;
955         }
956
957         /* sanity checking of checkpoint */
958         err = -EINVAL;
959         if (sanity_check_ckpt(sbi)) {
960                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
961                 goto free_cp;
962         }
963
964         sbi->total_valid_node_count =
965                                 le32_to_cpu(sbi->ckpt->valid_node_count);
966         sbi->total_valid_inode_count =
967                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
968         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
969         sbi->total_valid_block_count =
970                                 le64_to_cpu(sbi->ckpt->valid_block_count);
971         sbi->last_valid_block_count = sbi->total_valid_block_count;
972         sbi->alloc_valid_block_count = 0;
973         INIT_LIST_HEAD(&sbi->dir_inode_list);
974         spin_lock_init(&sbi->dir_inode_lock);
975
976         init_orphan_info(sbi);
977
978         /* setup f2fs internal modules */
979         err = build_segment_manager(sbi);
980         if (err) {
981                 f2fs_msg(sb, KERN_ERR,
982                         "Failed to initialize F2FS segment manager");
983                 goto free_sm;
984         }
985         err = build_node_manager(sbi);
986         if (err) {
987                 f2fs_msg(sb, KERN_ERR,
988                         "Failed to initialize F2FS node manager");
989                 goto free_nm;
990         }
991
992         build_gc_manager(sbi);
993
994         /* get an inode for node space */
995         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
996         if (IS_ERR(sbi->node_inode)) {
997                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
998                 err = PTR_ERR(sbi->node_inode);
999                 goto free_nm;
1000         }
1001
1002         /* if there are nt orphan nodes free them */
1003         recover_orphan_inodes(sbi);
1004
1005         /* read root inode and dentry */
1006         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1007         if (IS_ERR(root)) {
1008                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1009                 err = PTR_ERR(root);
1010                 goto free_node_inode;
1011         }
1012         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1013                 err = -EINVAL;
1014                 goto free_root_inode;
1015         }
1016
1017         sb->s_root = d_make_root(root); /* allocate root dentry */
1018         if (!sb->s_root) {
1019                 err = -ENOMEM;
1020                 goto free_root_inode;
1021         }
1022
1023         err = f2fs_build_stats(sbi);
1024         if (err)
1025                 goto free_root_inode;
1026
1027         if (f2fs_proc_root)
1028                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1029
1030         if (sbi->s_proc)
1031                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1032                                  &f2fs_seq_segment_info_fops, sb);
1033
1034         if (test_opt(sbi, DISCARD)) {
1035                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1036                 if (!blk_queue_discard(q))
1037                         f2fs_msg(sb, KERN_WARNING,
1038                                         "mounting with \"discard\" option, but "
1039                                         "the device does not support discard");
1040         }
1041
1042         sbi->s_kobj.kset = f2fs_kset;
1043         init_completion(&sbi->s_kobj_unregister);
1044         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1045                                                         "%s", sb->s_id);
1046         if (err)
1047                 goto free_proc;
1048
1049         /* recover fsynced data */
1050         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1051                 err = recover_fsync_data(sbi);
1052                 if (err)
1053                         f2fs_msg(sb, KERN_ERR,
1054                                 "Cannot recover all fsync data errno=%ld", err);
1055         }
1056
1057         /*
1058          * If filesystem is not mounted as read-only then
1059          * do start the gc_thread.
1060          */
1061         if (!(sb->s_flags & MS_RDONLY)) {
1062                 /* After POR, we can run background GC thread.*/
1063                 err = start_gc_thread(sbi);
1064                 if (err)
1065                         goto free_kobj;
1066         }
1067         return 0;
1068
1069 free_kobj:
1070         kobject_del(&sbi->s_kobj);
1071 free_proc:
1072         if (sbi->s_proc) {
1073                 remove_proc_entry("segment_info", sbi->s_proc);
1074                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1075         }
1076         f2fs_destroy_stats(sbi);
1077 free_root_inode:
1078         dput(sb->s_root);
1079         sb->s_root = NULL;
1080 free_node_inode:
1081         iput(sbi->node_inode);
1082 free_nm:
1083         destroy_node_manager(sbi);
1084 free_sm:
1085         destroy_segment_manager(sbi);
1086 free_cp:
1087         kfree(sbi->ckpt);
1088 free_meta_inode:
1089         make_bad_inode(sbi->meta_inode);
1090         iput(sbi->meta_inode);
1091 free_sb_buf:
1092         brelse(raw_super_buf);
1093 free_sbi:
1094         kfree(sbi);
1095         return err;
1096 }
1097
1098 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1099                         const char *dev_name, void *data)
1100 {
1101         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1102 }
1103
1104 static struct file_system_type f2fs_fs_type = {
1105         .owner          = THIS_MODULE,
1106         .name           = "f2fs",
1107         .mount          = f2fs_mount,
1108         .kill_sb        = kill_block_super,
1109         .fs_flags       = FS_REQUIRES_DEV,
1110 };
1111 MODULE_ALIAS_FS("f2fs");
1112
1113 static int __init init_inodecache(void)
1114 {
1115         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1116                         sizeof(struct f2fs_inode_info));
1117         if (!f2fs_inode_cachep)
1118                 return -ENOMEM;
1119         return 0;
1120 }
1121
1122 static void destroy_inodecache(void)
1123 {
1124         /*
1125          * Make sure all delayed rcu free inodes are flushed before we
1126          * destroy cache.
1127          */
1128         rcu_barrier();
1129         kmem_cache_destroy(f2fs_inode_cachep);
1130 }
1131
1132 static int __init init_f2fs_fs(void)
1133 {
1134         int err;
1135
1136         err = init_inodecache();
1137         if (err)
1138                 goto fail;
1139         err = create_node_manager_caches();
1140         if (err)
1141                 goto free_inodecache;
1142         err = create_segment_manager_caches();
1143         if (err)
1144                 goto free_node_manager_caches;
1145         err = create_gc_caches();
1146         if (err)
1147                 goto free_segment_manager_caches;
1148         err = create_checkpoint_caches();
1149         if (err)
1150                 goto free_gc_caches;
1151         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1152         if (!f2fs_kset) {
1153                 err = -ENOMEM;
1154                 goto free_checkpoint_caches;
1155         }
1156         err = register_filesystem(&f2fs_fs_type);
1157         if (err)
1158                 goto free_kset;
1159         f2fs_create_root_stats();
1160         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1161         return 0;
1162
1163 free_kset:
1164         kset_unregister(f2fs_kset);
1165 free_checkpoint_caches:
1166         destroy_checkpoint_caches();
1167 free_gc_caches:
1168         destroy_gc_caches();
1169 free_segment_manager_caches:
1170         destroy_segment_manager_caches();
1171 free_node_manager_caches:
1172         destroy_node_manager_caches();
1173 free_inodecache:
1174         destroy_inodecache();
1175 fail:
1176         return err;
1177 }
1178
1179 static void __exit exit_f2fs_fs(void)
1180 {
1181         remove_proc_entry("fs/f2fs", NULL);
1182         f2fs_destroy_root_stats();
1183         unregister_filesystem(&f2fs_fs_type);
1184         destroy_checkpoint_caches();
1185         destroy_gc_caches();
1186         destroy_segment_manager_caches();
1187         destroy_node_manager_caches();
1188         destroy_inodecache();
1189         kset_unregister(f2fs_kset);
1190 }
1191
1192 module_init(init_f2fs_fs)
1193 module_exit(exit_f2fs_fs)
1194
1195 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1196 MODULE_DESCRIPTION("Flash Friendly File System");
1197 MODULE_LICENSE("GPL");