]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/xattr.c
Merge branch 'regset' (PTRACE_SETREGSET data leakage)
[karo-tx-linux.git] / fs / f2fs / xattr.c
1 /*
2  * fs/f2fs/xattr.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * Portions of this code from linux/fs/ext2/xattr.c
8  *
9  * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
10  *
11  * Fix by Harrison Xing <harrison@mountainviewdata.com>.
12  * Extended attributes for symlinks and special files added per
13  *  suggestion of Luka Renko <luka.renko@hermes.si>.
14  * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
15  *  Red Hat Inc.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 #include <linux/rwsem.h>
22 #include <linux/f2fs_fs.h>
23 #include <linux/security.h>
24 #include <linux/posix_acl_xattr.h>
25 #include "f2fs.h"
26 #include "xattr.h"
27
28 static int f2fs_xattr_generic_get(const struct xattr_handler *handler,
29                 struct dentry *unused, struct inode *inode,
30                 const char *name, void *buffer, size_t size)
31 {
32         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
33
34         switch (handler->flags) {
35         case F2FS_XATTR_INDEX_USER:
36                 if (!test_opt(sbi, XATTR_USER))
37                         return -EOPNOTSUPP;
38                 break;
39         case F2FS_XATTR_INDEX_TRUSTED:
40                 if (!capable(CAP_SYS_ADMIN))
41                         return -EPERM;
42                 break;
43         case F2FS_XATTR_INDEX_SECURITY:
44                 break;
45         default:
46                 return -EINVAL;
47         }
48         return f2fs_getxattr(inode, handler->flags, name,
49                              buffer, size, NULL);
50 }
51
52 static int f2fs_xattr_generic_set(const struct xattr_handler *handler,
53                 struct dentry *unused, struct inode *inode,
54                 const char *name, const void *value,
55                 size_t size, int flags)
56 {
57         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
58
59         switch (handler->flags) {
60         case F2FS_XATTR_INDEX_USER:
61                 if (!test_opt(sbi, XATTR_USER))
62                         return -EOPNOTSUPP;
63                 break;
64         case F2FS_XATTR_INDEX_TRUSTED:
65                 if (!capable(CAP_SYS_ADMIN))
66                         return -EPERM;
67                 break;
68         case F2FS_XATTR_INDEX_SECURITY:
69                 break;
70         default:
71                 return -EINVAL;
72         }
73         return f2fs_setxattr(inode, handler->flags, name,
74                                         value, size, NULL, flags);
75 }
76
77 static bool f2fs_xattr_user_list(struct dentry *dentry)
78 {
79         struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
80
81         return test_opt(sbi, XATTR_USER);
82 }
83
84 static bool f2fs_xattr_trusted_list(struct dentry *dentry)
85 {
86         return capable(CAP_SYS_ADMIN);
87 }
88
89 static int f2fs_xattr_advise_get(const struct xattr_handler *handler,
90                 struct dentry *unused, struct inode *inode,
91                 const char *name, void *buffer, size_t size)
92 {
93         if (buffer)
94                 *((char *)buffer) = F2FS_I(inode)->i_advise;
95         return sizeof(char);
96 }
97
98 static int f2fs_xattr_advise_set(const struct xattr_handler *handler,
99                 struct dentry *unused, struct inode *inode,
100                 const char *name, const void *value,
101                 size_t size, int flags)
102 {
103         if (!inode_owner_or_capable(inode))
104                 return -EPERM;
105         if (value == NULL)
106                 return -EINVAL;
107
108         F2FS_I(inode)->i_advise |= *(char *)value;
109         f2fs_mark_inode_dirty_sync(inode, true);
110         return 0;
111 }
112
113 #ifdef CONFIG_F2FS_FS_SECURITY
114 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
115                 void *page)
116 {
117         const struct xattr *xattr;
118         int err = 0;
119
120         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
121                 err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
122                                 xattr->name, xattr->value,
123                                 xattr->value_len, (struct page *)page, 0);
124                 if (err < 0)
125                         break;
126         }
127         return err;
128 }
129
130 int f2fs_init_security(struct inode *inode, struct inode *dir,
131                                 const struct qstr *qstr, struct page *ipage)
132 {
133         return security_inode_init_security(inode, dir, qstr,
134                                 &f2fs_initxattrs, ipage);
135 }
136 #endif
137
138 const struct xattr_handler f2fs_xattr_user_handler = {
139         .prefix = XATTR_USER_PREFIX,
140         .flags  = F2FS_XATTR_INDEX_USER,
141         .list   = f2fs_xattr_user_list,
142         .get    = f2fs_xattr_generic_get,
143         .set    = f2fs_xattr_generic_set,
144 };
145
146 const struct xattr_handler f2fs_xattr_trusted_handler = {
147         .prefix = XATTR_TRUSTED_PREFIX,
148         .flags  = F2FS_XATTR_INDEX_TRUSTED,
149         .list   = f2fs_xattr_trusted_list,
150         .get    = f2fs_xattr_generic_get,
151         .set    = f2fs_xattr_generic_set,
152 };
153
154 const struct xattr_handler f2fs_xattr_advise_handler = {
155         .name   = F2FS_SYSTEM_ADVISE_NAME,
156         .flags  = F2FS_XATTR_INDEX_ADVISE,
157         .get    = f2fs_xattr_advise_get,
158         .set    = f2fs_xattr_advise_set,
159 };
160
161 const struct xattr_handler f2fs_xattr_security_handler = {
162         .prefix = XATTR_SECURITY_PREFIX,
163         .flags  = F2FS_XATTR_INDEX_SECURITY,
164         .get    = f2fs_xattr_generic_get,
165         .set    = f2fs_xattr_generic_set,
166 };
167
168 static const struct xattr_handler *f2fs_xattr_handler_map[] = {
169         [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
170 #ifdef CONFIG_F2FS_FS_POSIX_ACL
171         [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler,
172         [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler,
173 #endif
174         [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
175 #ifdef CONFIG_F2FS_FS_SECURITY
176         [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
177 #endif
178         [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
179 };
180
181 const struct xattr_handler *f2fs_xattr_handlers[] = {
182         &f2fs_xattr_user_handler,
183 #ifdef CONFIG_F2FS_FS_POSIX_ACL
184         &posix_acl_access_xattr_handler,
185         &posix_acl_default_xattr_handler,
186 #endif
187         &f2fs_xattr_trusted_handler,
188 #ifdef CONFIG_F2FS_FS_SECURITY
189         &f2fs_xattr_security_handler,
190 #endif
191         &f2fs_xattr_advise_handler,
192         NULL,
193 };
194
195 static inline const struct xattr_handler *f2fs_xattr_handler(int index)
196 {
197         const struct xattr_handler *handler = NULL;
198
199         if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map))
200                 handler = f2fs_xattr_handler_map[index];
201         return handler;
202 }
203
204 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int index,
205                                         size_t len, const char *name)
206 {
207         struct f2fs_xattr_entry *entry;
208
209         list_for_each_xattr(entry, base_addr) {
210                 if (entry->e_name_index != index)
211                         continue;
212                 if (entry->e_name_len != len)
213                         continue;
214                 if (!memcmp(entry->e_name, name, len))
215                         break;
216         }
217         return entry;
218 }
219
220 static struct f2fs_xattr_entry *__find_inline_xattr(void *base_addr,
221                                         void **last_addr, int index,
222                                         size_t len, const char *name)
223 {
224         struct f2fs_xattr_entry *entry;
225         unsigned int inline_size = F2FS_INLINE_XATTR_ADDRS << 2;
226
227         list_for_each_xattr(entry, base_addr) {
228                 if ((void *)entry + sizeof(__u32) > base_addr + inline_size ||
229                         (void *)XATTR_NEXT_ENTRY(entry) + sizeof(__u32) >
230                         base_addr + inline_size) {
231                         *last_addr = entry;
232                         return NULL;
233                 }
234                 if (entry->e_name_index != index)
235                         continue;
236                 if (entry->e_name_len != len)
237                         continue;
238                 if (!memcmp(entry->e_name, name, len))
239                         break;
240         }
241         return entry;
242 }
243
244 static int lookup_all_xattrs(struct inode *inode, struct page *ipage,
245                                 unsigned int index, unsigned int len,
246                                 const char *name, struct f2fs_xattr_entry **xe,
247                                 void **base_addr)
248 {
249         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250         void *cur_addr, *txattr_addr, *last_addr = NULL;
251         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
252         unsigned int size = xnid ? VALID_XATTR_BLOCK_SIZE : 0;
253         unsigned int inline_size = 0;
254         int err = 0;
255
256         inline_size = inline_xattr_size(inode);
257
258         if (!size && !inline_size)
259                 return -ENODATA;
260
261         txattr_addr = kzalloc(inline_size + size + sizeof(__u32),
262                                                         GFP_F2FS_ZERO);
263         if (!txattr_addr)
264                 return -ENOMEM;
265
266         /* read from inline xattr */
267         if (inline_size) {
268                 struct page *page = NULL;
269                 void *inline_addr;
270
271                 if (ipage) {
272                         inline_addr = inline_xattr_addr(ipage);
273                 } else {
274                         page = get_node_page(sbi, inode->i_ino);
275                         if (IS_ERR(page)) {
276                                 err = PTR_ERR(page);
277                                 goto out;
278                         }
279                         inline_addr = inline_xattr_addr(page);
280                 }
281                 memcpy(txattr_addr, inline_addr, inline_size);
282                 f2fs_put_page(page, 1);
283
284                 *xe = __find_inline_xattr(txattr_addr, &last_addr,
285                                                 index, len, name);
286                 if (*xe)
287                         goto check;
288         }
289
290         /* read from xattr node block */
291         if (xnid) {
292                 struct page *xpage;
293                 void *xattr_addr;
294
295                 /* The inode already has an extended attribute block. */
296                 xpage = get_node_page(sbi, xnid);
297                 if (IS_ERR(xpage)) {
298                         err = PTR_ERR(xpage);
299                         goto out;
300                 }
301
302                 xattr_addr = page_address(xpage);
303                 memcpy(txattr_addr + inline_size, xattr_addr, size);
304                 f2fs_put_page(xpage, 1);
305         }
306
307         if (last_addr)
308                 cur_addr = XATTR_HDR(last_addr) - 1;
309         else
310                 cur_addr = txattr_addr;
311
312         *xe = __find_xattr(cur_addr, index, len, name);
313 check:
314         if (IS_XATTR_LAST_ENTRY(*xe)) {
315                 err = -ENODATA;
316                 goto out;
317         }
318
319         *base_addr = txattr_addr;
320         return 0;
321 out:
322         kzfree(txattr_addr);
323         return err;
324 }
325
326 static int read_all_xattrs(struct inode *inode, struct page *ipage,
327                                                         void **base_addr)
328 {
329         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
330         struct f2fs_xattr_header *header;
331         size_t size = PAGE_SIZE, inline_size = 0;
332         void *txattr_addr;
333         int err;
334
335         inline_size = inline_xattr_size(inode);
336
337         txattr_addr = kzalloc(inline_size + size, GFP_F2FS_ZERO);
338         if (!txattr_addr)
339                 return -ENOMEM;
340
341         /* read from inline xattr */
342         if (inline_size) {
343                 struct page *page = NULL;
344                 void *inline_addr;
345
346                 if (ipage) {
347                         inline_addr = inline_xattr_addr(ipage);
348                 } else {
349                         page = get_node_page(sbi, inode->i_ino);
350                         if (IS_ERR(page)) {
351                                 err = PTR_ERR(page);
352                                 goto fail;
353                         }
354                         inline_addr = inline_xattr_addr(page);
355                 }
356                 memcpy(txattr_addr, inline_addr, inline_size);
357                 f2fs_put_page(page, 1);
358         }
359
360         /* read from xattr node block */
361         if (F2FS_I(inode)->i_xattr_nid) {
362                 struct page *xpage;
363                 void *xattr_addr;
364
365                 /* The inode already has an extended attribute block. */
366                 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
367                 if (IS_ERR(xpage)) {
368                         err = PTR_ERR(xpage);
369                         goto fail;
370                 }
371
372                 xattr_addr = page_address(xpage);
373                 memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE);
374                 f2fs_put_page(xpage, 1);
375         }
376
377         header = XATTR_HDR(txattr_addr);
378
379         /* never been allocated xattrs */
380         if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
381                 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
382                 header->h_refcount = cpu_to_le32(1);
383         }
384         *base_addr = txattr_addr;
385         return 0;
386 fail:
387         kzfree(txattr_addr);
388         return err;
389 }
390
391 static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
392                                 void *txattr_addr, struct page *ipage)
393 {
394         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
395         size_t inline_size = 0;
396         void *xattr_addr;
397         struct page *xpage;
398         nid_t new_nid = 0;
399         int err;
400
401         inline_size = inline_xattr_size(inode);
402
403         if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
404                 if (!alloc_nid(sbi, &new_nid))
405                         return -ENOSPC;
406
407         /* write to inline xattr */
408         if (inline_size) {
409                 struct page *page = NULL;
410                 void *inline_addr;
411
412                 if (ipage) {
413                         inline_addr = inline_xattr_addr(ipage);
414                         f2fs_wait_on_page_writeback(ipage, NODE, true);
415                         set_page_dirty(ipage);
416                 } else {
417                         page = get_node_page(sbi, inode->i_ino);
418                         if (IS_ERR(page)) {
419                                 alloc_nid_failed(sbi, new_nid);
420                                 return PTR_ERR(page);
421                         }
422                         inline_addr = inline_xattr_addr(page);
423                         f2fs_wait_on_page_writeback(page, NODE, true);
424                 }
425                 memcpy(inline_addr, txattr_addr, inline_size);
426                 f2fs_put_page(page, 1);
427
428                 /* no need to use xattr node block */
429                 if (hsize <= inline_size) {
430                         err = truncate_xattr_node(inode, ipage);
431                         alloc_nid_failed(sbi, new_nid);
432                         return err;
433                 }
434         }
435
436         /* write to xattr node block */
437         if (F2FS_I(inode)->i_xattr_nid) {
438                 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
439                 if (IS_ERR(xpage)) {
440                         alloc_nid_failed(sbi, new_nid);
441                         return PTR_ERR(xpage);
442                 }
443                 f2fs_bug_on(sbi, new_nid);
444                 f2fs_wait_on_page_writeback(xpage, NODE, true);
445         } else {
446                 struct dnode_of_data dn;
447                 set_new_dnode(&dn, inode, NULL, NULL, new_nid);
448                 xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage);
449                 if (IS_ERR(xpage)) {
450                         alloc_nid_failed(sbi, new_nid);
451                         return PTR_ERR(xpage);
452                 }
453                 alloc_nid_done(sbi, new_nid);
454         }
455
456         xattr_addr = page_address(xpage);
457         memcpy(xattr_addr, txattr_addr + inline_size, MAX_XATTR_BLOCK_SIZE);
458         set_page_dirty(xpage);
459         f2fs_put_page(xpage, 1);
460
461         return 0;
462 }
463
464 int f2fs_getxattr(struct inode *inode, int index, const char *name,
465                 void *buffer, size_t buffer_size, struct page *ipage)
466 {
467         struct f2fs_xattr_entry *entry = NULL;
468         int error = 0;
469         unsigned int size, len;
470         void *base_addr = NULL;
471
472         if (name == NULL)
473                 return -EINVAL;
474
475         len = strlen(name);
476         if (len > F2FS_NAME_LEN)
477                 return -ERANGE;
478
479         error = lookup_all_xattrs(inode, ipage, index, len, name,
480                                 &entry, &base_addr);
481         if (error)
482                 return error;
483
484         size = le16_to_cpu(entry->e_value_size);
485
486         if (buffer && size > buffer_size) {
487                 error = -ERANGE;
488                 goto out;
489         }
490
491         if (buffer) {
492                 char *pval = entry->e_name + entry->e_name_len;
493                 memcpy(buffer, pval, size);
494         }
495         error = size;
496 out:
497         kzfree(base_addr);
498         return error;
499 }
500
501 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
502 {
503         struct inode *inode = d_inode(dentry);
504         struct f2fs_xattr_entry *entry;
505         void *base_addr;
506         int error = 0;
507         size_t rest = buffer_size;
508
509         error = read_all_xattrs(inode, NULL, &base_addr);
510         if (error)
511                 return error;
512
513         list_for_each_xattr(entry, base_addr) {
514                 const struct xattr_handler *handler =
515                         f2fs_xattr_handler(entry->e_name_index);
516                 const char *prefix;
517                 size_t prefix_len;
518                 size_t size;
519
520                 if (!handler || (handler->list && !handler->list(dentry)))
521                         continue;
522
523                 prefix = handler->prefix ?: handler->name;
524                 prefix_len = strlen(prefix);
525                 size = prefix_len + entry->e_name_len + 1;
526                 if (buffer) {
527                         if (size > rest) {
528                                 error = -ERANGE;
529                                 goto cleanup;
530                         }
531                         memcpy(buffer, prefix, prefix_len);
532                         buffer += prefix_len;
533                         memcpy(buffer, entry->e_name, entry->e_name_len);
534                         buffer += entry->e_name_len;
535                         *buffer++ = 0;
536                 }
537                 rest -= size;
538         }
539         error = buffer_size - rest;
540 cleanup:
541         kzfree(base_addr);
542         return error;
543 }
544
545 static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry,
546                                         const void *value, size_t size)
547 {
548         void *pval = entry->e_name + entry->e_name_len;
549         return (entry->e_value_size == size) && !memcmp(pval, value, size);
550 }
551
552 static int __f2fs_setxattr(struct inode *inode, int index,
553                         const char *name, const void *value, size_t size,
554                         struct page *ipage, int flags)
555 {
556         struct f2fs_xattr_entry *here, *last;
557         void *base_addr;
558         int found, newsize;
559         size_t len;
560         __u32 new_hsize;
561         int error = 0;
562
563         if (name == NULL)
564                 return -EINVAL;
565
566         if (value == NULL)
567                 size = 0;
568
569         len = strlen(name);
570
571         if (len > F2FS_NAME_LEN)
572                 return -ERANGE;
573
574         if (size > MAX_VALUE_LEN(inode))
575                 return -E2BIG;
576
577         error = read_all_xattrs(inode, ipage, &base_addr);
578         if (error)
579                 return error;
580
581         /* find entry with wanted name. */
582         here = __find_xattr(base_addr, index, len, name);
583
584         found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
585
586         if (found) {
587                 if ((flags & XATTR_CREATE)) {
588                         error = -EEXIST;
589                         goto exit;
590                 }
591
592                 if (f2fs_xattr_value_same(here, value, size))
593                         goto exit;
594         } else if ((flags & XATTR_REPLACE)) {
595                 error = -ENODATA;
596                 goto exit;
597         }
598
599         last = here;
600         while (!IS_XATTR_LAST_ENTRY(last))
601                 last = XATTR_NEXT_ENTRY(last);
602
603         newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size);
604
605         /* 1. Check space */
606         if (value) {
607                 int free;
608                 /*
609                  * If value is NULL, it is remove operation.
610                  * In case of update operation, we calculate free.
611                  */
612                 free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
613                 if (found)
614                         free = free + ENTRY_SIZE(here);
615
616                 if (unlikely(free < newsize)) {
617                         error = -E2BIG;
618                         goto exit;
619                 }
620         }
621
622         /* 2. Remove old entry */
623         if (found) {
624                 /*
625                  * If entry is found, remove old entry.
626                  * If not found, remove operation is not needed.
627                  */
628                 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
629                 int oldsize = ENTRY_SIZE(here);
630
631                 memmove(here, next, (char *)last - (char *)next);
632                 last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
633                 memset(last, 0, oldsize);
634         }
635
636         new_hsize = (char *)last - (char *)base_addr;
637
638         /* 3. Write new entry */
639         if (value) {
640                 char *pval;
641                 /*
642                  * Before we come here, old entry is removed.
643                  * We just write new entry.
644                  */
645                 last->e_name_index = index;
646                 last->e_name_len = len;
647                 memcpy(last->e_name, name, len);
648                 pval = last->e_name + len;
649                 memcpy(pval, value, size);
650                 last->e_value_size = cpu_to_le16(size);
651                 new_hsize += newsize;
652         }
653
654         error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
655         if (error)
656                 goto exit;
657
658         if (is_inode_flag_set(inode, FI_ACL_MODE)) {
659                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
660                 inode->i_ctime = current_time(inode);
661                 clear_inode_flag(inode, FI_ACL_MODE);
662         }
663         if (index == F2FS_XATTR_INDEX_ENCRYPTION &&
664                         !strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT))
665                 f2fs_set_encrypted_inode(inode);
666         f2fs_mark_inode_dirty_sync(inode, true);
667         if (!error && S_ISDIR(inode->i_mode))
668                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP);
669 exit:
670         kzfree(base_addr);
671         return error;
672 }
673
674 int f2fs_setxattr(struct inode *inode, int index, const char *name,
675                                 const void *value, size_t size,
676                                 struct page *ipage, int flags)
677 {
678         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
679         int err;
680
681         /* this case is only from init_inode_metadata */
682         if (ipage)
683                 return __f2fs_setxattr(inode, index, name, value,
684                                                 size, ipage, flags);
685         f2fs_balance_fs(sbi, true);
686
687         f2fs_lock_op(sbi);
688         /* protect xattr_ver */
689         down_write(&F2FS_I(inode)->i_sem);
690         err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
691         up_write(&F2FS_I(inode)->i_sem);
692         f2fs_unlock_op(sbi);
693
694         f2fs_update_time(sbi, REQ_TIME);
695         return err;
696 }