4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
26 #include <asm/siginfo.h>
27 #include <asm/uaccess.h>
29 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31 static int setfl(int fd, struct file * filp, unsigned long arg)
33 struct inode * inode = file_inode(filp);
37 * O_APPEND cannot be cleared if the file is marked as append-only
38 * and the file is open for write.
40 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
43 /* O_NOATIME can only be set by the owner or superuser */
44 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
45 if (!inode_owner_or_capable(inode))
48 /* required for strict SunOS emulation */
49 if (O_NONBLOCK != O_NDELAY)
54 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
55 !filp->f_mapping->a_ops->direct_IO)
59 if (filp->f_op->check_flags)
60 error = filp->f_op->check_flags(arg);
65 * ->fasync() is responsible for setting the FASYNC bit.
67 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
68 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
74 spin_lock(&filp->f_lock);
75 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
76 spin_unlock(&filp->f_lock);
82 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
85 write_lock_irq(&filp->f_owner.lock);
86 if (force || !filp->f_owner.pid) {
87 put_pid(filp->f_owner.pid);
88 filp->f_owner.pid = get_pid(pid);
89 filp->f_owner.pid_type = type;
92 const struct cred *cred = current_cred();
93 filp->f_owner.uid = cred->uid;
94 filp->f_owner.euid = cred->euid;
97 write_unlock_irq(&filp->f_owner.lock);
100 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
105 err = security_file_set_fowner(filp);
109 f_modown(filp, pid, type, force);
112 EXPORT_SYMBOL(__f_setown);
114 int f_setown(struct file *filp, unsigned long arg, int force)
126 pid = find_vpid(who);
127 result = __f_setown(filp, pid, type, force);
131 EXPORT_SYMBOL(f_setown);
133 void f_delown(struct file *filp)
135 f_modown(filp, NULL, PIDTYPE_PID, 1);
138 pid_t f_getown(struct file *filp)
141 read_lock(&filp->f_owner.lock);
142 pid = pid_vnr(filp->f_owner.pid);
143 if (filp->f_owner.pid_type == PIDTYPE_PGID)
145 read_unlock(&filp->f_owner.lock);
149 static int f_setown_ex(struct file *filp, unsigned long arg)
151 struct f_owner_ex __user *owner_p = (void __user *)arg;
152 struct f_owner_ex owner;
157 ret = copy_from_user(&owner, owner_p, sizeof(owner));
161 switch (owner.type) {
179 pid = find_vpid(owner.pid);
180 if (owner.pid && !pid)
183 ret = __f_setown(filp, pid, type, 1);
189 static int f_getown_ex(struct file *filp, unsigned long arg)
191 struct f_owner_ex __user *owner_p = (void __user *)arg;
192 struct f_owner_ex owner;
195 read_lock(&filp->f_owner.lock);
196 owner.pid = pid_vnr(filp->f_owner.pid);
197 switch (filp->f_owner.pid_type) {
199 owner.type = F_OWNER_TID;
203 owner.type = F_OWNER_PID;
207 owner.type = F_OWNER_PGRP;
215 read_unlock(&filp->f_owner.lock);
218 ret = copy_to_user(owner_p, &owner, sizeof(owner));
225 #ifdef CONFIG_CHECKPOINT_RESTORE
226 static int f_getowner_uids(struct file *filp, unsigned long arg)
228 struct user_namespace *user_ns = current_user_ns();
229 uid_t __user *dst = (void __user *)arg;
233 read_lock(&filp->f_owner.lock);
234 src[0] = from_kuid(user_ns, filp->f_owner.uid);
235 src[1] = from_kuid(user_ns, filp->f_owner.euid);
236 read_unlock(&filp->f_owner.lock);
238 err = put_user(src[0], &dst[0]);
239 err |= put_user(src[1], &dst[1]);
244 static int f_getowner_uids(struct file *filp, unsigned long arg)
250 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
257 err = f_dupfd(arg, filp, 0);
259 case F_DUPFD_CLOEXEC:
260 err = f_dupfd(arg, filp, O_CLOEXEC);
263 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
267 set_close_on_exec(fd, arg & FD_CLOEXEC);
273 err = setfl(fd, filp, arg);
275 #if BITS_PER_LONG != 32
276 /* 32-bit arches must use fcntl64() */
280 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
282 #if BITS_PER_LONG != 32
283 /* 32-bit arches must use fcntl64() */
290 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
294 * XXX If f_owner is a process group, the
295 * negative return value will get converted
296 * into an error. Oops. If we keep the
297 * current syscall conventions, the only way
298 * to fix this will be in libc.
300 err = f_getown(filp);
301 force_successful_syscall_return();
304 err = f_setown(filp, arg, 1);
307 err = f_getown_ex(filp, arg);
310 err = f_setown_ex(filp, arg);
312 case F_GETOWNER_UIDS:
313 err = f_getowner_uids(filp, arg);
316 err = filp->f_owner.signum;
319 /* arg == 0 restores default behaviour. */
320 if (!valid_signal(arg)) {
324 filp->f_owner.signum = arg;
327 err = fcntl_getlease(filp);
330 err = fcntl_setlease(fd, filp, arg);
333 err = fcntl_dirnotify(fd, filp, arg);
337 err = pipe_fcntl(filp, cmd, arg);
345 static int check_fcntl_cmd(unsigned cmd)
349 case F_DUPFD_CLOEXEC:
358 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
360 struct fd f = fdget_raw(fd);
366 if (unlikely(f.file->f_mode & FMODE_PATH)) {
367 if (!check_fcntl_cmd(cmd))
371 err = security_file_fcntl(f.file, cmd, arg);
373 err = do_fcntl(fd, cmd, arg, f.file);
381 #if BITS_PER_LONG == 32
382 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
385 struct fd f = fdget_raw(fd);
391 if (unlikely(f.file->f_mode & FMODE_PATH)) {
392 if (!check_fcntl_cmd(cmd))
396 err = security_file_fcntl(f.file, cmd, arg);
403 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
409 err = fcntl_setlk64(fd, f.file, cmd,
410 (struct flock64 __user *) arg);
413 err = do_fcntl(fd, cmd, arg, f.file);
423 /* Table to convert sigio signal codes into poll band bitmaps */
425 static const long band_table[NSIGPOLL] = {
426 POLLIN | POLLRDNORM, /* POLL_IN */
427 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
428 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
429 POLLERR, /* POLL_ERR */
430 POLLPRI | POLLRDBAND, /* POLL_PRI */
431 POLLHUP | POLLERR /* POLL_HUP */
434 static inline int sigio_perm(struct task_struct *p,
435 struct fown_struct *fown, int sig)
437 const struct cred *cred;
441 cred = __task_cred(p);
442 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
443 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
444 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
445 !security_file_send_sigiotask(p, fown, sig));
450 static void send_sigio_to_task(struct task_struct *p,
451 struct fown_struct *fown,
452 int fd, int reason, int group)
455 * F_SETSIG can change ->signum lockless in parallel, make
456 * sure we read it once and use the same value throughout.
458 int signum = ACCESS_ONCE(fown->signum);
460 if (!sigio_perm(p, fown, signum))
466 /* Queue a rt signal with the appropriate fd as its
467 value. We use SI_SIGIO as the source, not
468 SI_KERNEL, since kernel signals always get
469 delivered even if we can't queue. Failure to
470 queue in this case _should_ be reported; we fall
471 back to SIGIO in that case. --sct */
472 si.si_signo = signum;
475 /* Make sure we are called with one of the POLL_*
476 reasons, otherwise we could leak kernel stack into
478 BUG_ON((reason & __SI_MASK) != __SI_POLL);
479 if (reason - POLL_IN >= NSIGPOLL)
482 si.si_band = band_table[reason - POLL_IN];
484 if (!do_send_sig_info(signum, &si, p, group))
486 /* fall-through: fall back on the old plain SIGIO signal */
488 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
492 void send_sigio(struct fown_struct *fown, int fd, int band)
494 struct task_struct *p;
499 read_lock(&fown->lock);
501 type = fown->pid_type;
502 if (type == PIDTYPE_MAX) {
509 goto out_unlock_fown;
511 read_lock(&tasklist_lock);
512 do_each_pid_task(pid, type, p) {
513 send_sigio_to_task(p, fown, fd, band, group);
514 } while_each_pid_task(pid, type, p);
515 read_unlock(&tasklist_lock);
517 read_unlock(&fown->lock);
520 static void send_sigurg_to_task(struct task_struct *p,
521 struct fown_struct *fown, int group)
523 if (sigio_perm(p, fown, SIGURG))
524 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
527 int send_sigurg(struct fown_struct *fown)
529 struct task_struct *p;
535 read_lock(&fown->lock);
537 type = fown->pid_type;
538 if (type == PIDTYPE_MAX) {
545 goto out_unlock_fown;
549 read_lock(&tasklist_lock);
550 do_each_pid_task(pid, type, p) {
551 send_sigurg_to_task(p, fown, group);
552 } while_each_pid_task(pid, type, p);
553 read_unlock(&tasklist_lock);
555 read_unlock(&fown->lock);
559 static DEFINE_SPINLOCK(fasync_lock);
560 static struct kmem_cache *fasync_cache __read_mostly;
562 static void fasync_free_rcu(struct rcu_head *head)
564 kmem_cache_free(fasync_cache,
565 container_of(head, struct fasync_struct, fa_rcu));
569 * Remove a fasync entry. If successfully removed, return
570 * positive and clear the FASYNC flag. If no entry exists,
571 * do nothing and return 0.
573 * NOTE! It is very important that the FASYNC flag always
574 * match the state "is the filp on a fasync list".
577 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
579 struct fasync_struct *fa, **fp;
582 spin_lock(&filp->f_lock);
583 spin_lock(&fasync_lock);
584 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
585 if (fa->fa_file != filp)
588 spin_lock_irq(&fa->fa_lock);
590 spin_unlock_irq(&fa->fa_lock);
593 call_rcu(&fa->fa_rcu, fasync_free_rcu);
594 filp->f_flags &= ~FASYNC;
598 spin_unlock(&fasync_lock);
599 spin_unlock(&filp->f_lock);
603 struct fasync_struct *fasync_alloc(void)
605 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
609 * NOTE! This can be used only for unused fasync entries:
610 * entries that actually got inserted on the fasync list
611 * need to be released by rcu - see fasync_remove_entry.
613 void fasync_free(struct fasync_struct *new)
615 kmem_cache_free(fasync_cache, new);
619 * Insert a new entry into the fasync list. Return the pointer to the
620 * old one if we didn't use the new one.
622 * NOTE! It is very important that the FASYNC flag always
623 * match the state "is the filp on a fasync list".
625 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
627 struct fasync_struct *fa, **fp;
629 spin_lock(&filp->f_lock);
630 spin_lock(&fasync_lock);
631 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
632 if (fa->fa_file != filp)
635 spin_lock_irq(&fa->fa_lock);
637 spin_unlock_irq(&fa->fa_lock);
641 spin_lock_init(&new->fa_lock);
642 new->magic = FASYNC_MAGIC;
645 new->fa_next = *fapp;
646 rcu_assign_pointer(*fapp, new);
647 filp->f_flags |= FASYNC;
650 spin_unlock(&fasync_lock);
651 spin_unlock(&filp->f_lock);
656 * Add a fasync entry. Return negative on error, positive if
657 * added, and zero if did nothing but change an existing one.
659 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
661 struct fasync_struct *new;
663 new = fasync_alloc();
668 * fasync_insert_entry() returns the old (update) entry if
671 * So free the (unused) new entry and return 0 to let the
672 * caller know that we didn't add any new fasync entries.
674 if (fasync_insert_entry(fd, filp, fapp, new)) {
683 * fasync_helper() is used by almost all character device drivers
684 * to set up the fasync queue, and for regular files by the file
685 * lease code. It returns negative on error, 0 if it did no changes
686 * and positive if it added/deleted the entry.
688 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
691 return fasync_remove_entry(filp, fapp);
692 return fasync_add_entry(fd, filp, fapp);
695 EXPORT_SYMBOL(fasync_helper);
698 * rcu_read_lock() is held
700 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
703 struct fown_struct *fown;
706 if (fa->magic != FASYNC_MAGIC) {
707 printk(KERN_ERR "kill_fasync: bad magic number in "
711 spin_lock_irqsave(&fa->fa_lock, flags);
713 fown = &fa->fa_file->f_owner;
714 /* Don't send SIGURG to processes which have not set a
715 queued signum: SIGURG has its own default signalling
717 if (!(sig == SIGURG && fown->signum == 0))
718 send_sigio(fown, fa->fa_fd, band);
720 spin_unlock_irqrestore(&fa->fa_lock, flags);
721 fa = rcu_dereference(fa->fa_next);
725 void kill_fasync(struct fasync_struct **fp, int sig, int band)
727 /* First a quick test without locking: usually
732 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
736 EXPORT_SYMBOL(kill_fasync);
738 static int __init fcntl_init(void)
741 * Please add new bits here to ensure allocation uniqueness.
742 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
743 * is defined as O_NONBLOCK on some platforms and not on others.
745 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
746 O_RDONLY | O_WRONLY | O_RDWR |
747 O_CREAT | O_EXCL | O_NOCTTY |
748 O_TRUNC | O_APPEND | /* O_NONBLOCK | */
749 __O_SYNC | O_DSYNC | FASYNC |
750 O_DIRECT | O_LARGEFILE | O_DIRECTORY |
751 O_NOFOLLOW | O_NOATIME | O_CLOEXEC |
752 __FMODE_EXEC | O_PATH | __O_TMPFILE
755 fasync_cache = kmem_cache_create("fasync_cache",
756 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
760 module_init(fcntl_init)