]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/fs-writeback.c
writeback: Initial tracing support
[karo-tx-linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75                 struct wb_writeback_work *work)
76 {
77         trace_writeback_queue(bdi, work);
78
79         spin_lock(&bdi->wb_lock);
80         list_add_tail(&work->list, &bdi->work_list);
81         spin_unlock(&bdi->wb_lock);
82
83         /*
84          * If the default thread isn't there, make sure we add it. When
85          * it gets created and wakes up, we'll run this work.
86          */
87         if (unlikely(!bdi->wb.task)) {
88                 trace_writeback_nothread(bdi, work);
89                 wake_up_process(default_backing_dev_info.wb.task);
90         } else {
91                 struct bdi_writeback *wb = &bdi->wb;
92
93                 if (wb->task)
94                         wake_up_process(wb->task);
95         }
96 }
97
98 static void
99 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
100                 bool range_cyclic, bool for_background)
101 {
102         struct wb_writeback_work *work;
103
104         /*
105          * This is WB_SYNC_NONE writeback, so if allocation fails just
106          * wakeup the thread for old dirty data writeback
107          */
108         work = kzalloc(sizeof(*work), GFP_ATOMIC);
109         if (!work) {
110                 if (bdi->wb.task) {
111                         trace_writeback_nowork(bdi);
112                         wake_up_process(bdi->wb.task);
113                 }
114                 return;
115         }
116
117         work->sync_mode = WB_SYNC_NONE;
118         work->nr_pages  = nr_pages;
119         work->range_cyclic = range_cyclic;
120         work->for_background = for_background;
121
122         bdi_queue_work(bdi, work);
123 }
124
125 /**
126  * bdi_start_writeback - start writeback
127  * @bdi: the backing device to write from
128  * @nr_pages: the number of pages to write
129  *
130  * Description:
131  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
132  *   started when this function returns, we make no guarentees on
133  *   completion. Caller need not hold sb s_umount semaphore.
134  *
135  */
136 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
137 {
138         __bdi_start_writeback(bdi, nr_pages, true, false);
139 }
140
141 /**
142  * bdi_start_background_writeback - start background writeback
143  * @bdi: the backing device to write from
144  *
145  * Description:
146  *   This does WB_SYNC_NONE background writeback. The IO is only
147  *   started when this function returns, we make no guarentees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  */
150 void bdi_start_background_writeback(struct backing_dev_info *bdi)
151 {
152         __bdi_start_writeback(bdi, LONG_MAX, true, true);
153 }
154
155 /*
156  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
157  * furthest end of its superblock's dirty-inode list.
158  *
159  * Before stamping the inode's ->dirtied_when, we check to see whether it is
160  * already the most-recently-dirtied inode on the b_dirty list.  If that is
161  * the case then the inode must have been redirtied while it was being written
162  * out and we don't reset its dirtied_when.
163  */
164 static void redirty_tail(struct inode *inode)
165 {
166         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
167
168         if (!list_empty(&wb->b_dirty)) {
169                 struct inode *tail;
170
171                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
172                 if (time_before(inode->dirtied_when, tail->dirtied_when))
173                         inode->dirtied_when = jiffies;
174         }
175         list_move(&inode->i_list, &wb->b_dirty);
176 }
177
178 /*
179  * requeue inode for re-scanning after bdi->b_io list is exhausted.
180  */
181 static void requeue_io(struct inode *inode)
182 {
183         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
184
185         list_move(&inode->i_list, &wb->b_more_io);
186 }
187
188 static void inode_sync_complete(struct inode *inode)
189 {
190         /*
191          * Prevent speculative execution through spin_unlock(&inode_lock);
192          */
193         smp_mb();
194         wake_up_bit(&inode->i_state, __I_SYNC);
195 }
196
197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
198 {
199         bool ret = time_after(inode->dirtied_when, t);
200 #ifndef CONFIG_64BIT
201         /*
202          * For inodes being constantly redirtied, dirtied_when can get stuck.
203          * It _appears_ to be in the future, but is actually in distant past.
204          * This test is necessary to prevent such wrapped-around relative times
205          * from permanently stopping the whole bdi writeback.
206          */
207         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
208 #endif
209         return ret;
210 }
211
212 /*
213  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
214  */
215 static void move_expired_inodes(struct list_head *delaying_queue,
216                                struct list_head *dispatch_queue,
217                                 unsigned long *older_than_this)
218 {
219         LIST_HEAD(tmp);
220         struct list_head *pos, *node;
221         struct super_block *sb = NULL;
222         struct inode *inode;
223         int do_sb_sort = 0;
224
225         while (!list_empty(delaying_queue)) {
226                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
227                 if (older_than_this &&
228                     inode_dirtied_after(inode, *older_than_this))
229                         break;
230                 if (sb && sb != inode->i_sb)
231                         do_sb_sort = 1;
232                 sb = inode->i_sb;
233                 list_move(&inode->i_list, &tmp);
234         }
235
236         /* just one sb in list, splice to dispatch_queue and we're done */
237         if (!do_sb_sort) {
238                 list_splice(&tmp, dispatch_queue);
239                 return;
240         }
241
242         /* Move inodes from one superblock together */
243         while (!list_empty(&tmp)) {
244                 inode = list_entry(tmp.prev, struct inode, i_list);
245                 sb = inode->i_sb;
246                 list_for_each_prev_safe(pos, node, &tmp) {
247                         inode = list_entry(pos, struct inode, i_list);
248                         if (inode->i_sb == sb)
249                                 list_move(&inode->i_list, dispatch_queue);
250                 }
251         }
252 }
253
254 /*
255  * Queue all expired dirty inodes for io, eldest first.
256  */
257 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
258 {
259         list_splice_init(&wb->b_more_io, wb->b_io.prev);
260         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
261 }
262
263 static int write_inode(struct inode *inode, struct writeback_control *wbc)
264 {
265         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
266                 return inode->i_sb->s_op->write_inode(inode, wbc);
267         return 0;
268 }
269
270 /*
271  * Wait for writeback on an inode to complete.
272  */
273 static void inode_wait_for_writeback(struct inode *inode)
274 {
275         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
276         wait_queue_head_t *wqh;
277
278         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
279          while (inode->i_state & I_SYNC) {
280                 spin_unlock(&inode_lock);
281                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
282                 spin_lock(&inode_lock);
283         }
284 }
285
286 /*
287  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
288  * caller has ref on the inode (either via __iget or via syscall against an fd)
289  * or the inode has I_WILL_FREE set (via generic_forget_inode)
290  *
291  * If `wait' is set, wait on the writeout.
292  *
293  * The whole writeout design is quite complex and fragile.  We want to avoid
294  * starvation of particular inodes when others are being redirtied, prevent
295  * livelocks, etc.
296  *
297  * Called under inode_lock.
298  */
299 static int
300 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302         struct address_space *mapping = inode->i_mapping;
303         unsigned dirty;
304         int ret;
305
306         if (!atomic_read(&inode->i_count))
307                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
308         else
309                 WARN_ON(inode->i_state & I_WILL_FREE);
310
311         if (inode->i_state & I_SYNC) {
312                 /*
313                  * If this inode is locked for writeback and we are not doing
314                  * writeback-for-data-integrity, move it to b_more_io so that
315                  * writeback can proceed with the other inodes on s_io.
316                  *
317                  * We'll have another go at writing back this inode when we
318                  * completed a full scan of b_io.
319                  */
320                 if (wbc->sync_mode != WB_SYNC_ALL) {
321                         requeue_io(inode);
322                         return 0;
323                 }
324
325                 /*
326                  * It's a data-integrity sync.  We must wait.
327                  */
328                 inode_wait_for_writeback(inode);
329         }
330
331         BUG_ON(inode->i_state & I_SYNC);
332
333         /* Set I_SYNC, reset I_DIRTY_PAGES */
334         inode->i_state |= I_SYNC;
335         inode->i_state &= ~I_DIRTY_PAGES;
336         spin_unlock(&inode_lock);
337
338         ret = do_writepages(mapping, wbc);
339
340         /*
341          * Make sure to wait on the data before writing out the metadata.
342          * This is important for filesystems that modify metadata on data
343          * I/O completion.
344          */
345         if (wbc->sync_mode == WB_SYNC_ALL) {
346                 int err = filemap_fdatawait(mapping);
347                 if (ret == 0)
348                         ret = err;
349         }
350
351         /*
352          * Some filesystems may redirty the inode during the writeback
353          * due to delalloc, clear dirty metadata flags right before
354          * write_inode()
355          */
356         spin_lock(&inode_lock);
357         dirty = inode->i_state & I_DIRTY;
358         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
359         spin_unlock(&inode_lock);
360         /* Don't write the inode if only I_DIRTY_PAGES was set */
361         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
362                 int err = write_inode(inode, wbc);
363                 if (ret == 0)
364                         ret = err;
365         }
366
367         spin_lock(&inode_lock);
368         inode->i_state &= ~I_SYNC;
369         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
370                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
371                         /*
372                          * More pages get dirtied by a fast dirtier.
373                          */
374                         goto select_queue;
375                 } else if (inode->i_state & I_DIRTY) {
376                         /*
377                          * At least XFS will redirty the inode during the
378                          * writeback (delalloc) and on io completion (isize).
379                          */
380                         redirty_tail(inode);
381                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
382                         /*
383                          * We didn't write back all the pages.  nfs_writepages()
384                          * sometimes bales out without doing anything. Redirty
385                          * the inode; Move it from b_io onto b_more_io/b_dirty.
386                          */
387                         /*
388                          * akpm: if the caller was the kupdate function we put
389                          * this inode at the head of b_dirty so it gets first
390                          * consideration.  Otherwise, move it to the tail, for
391                          * the reasons described there.  I'm not really sure
392                          * how much sense this makes.  Presumably I had a good
393                          * reasons for doing it this way, and I'd rather not
394                          * muck with it at present.
395                          */
396                         if (wbc->for_kupdate) {
397                                 /*
398                                  * For the kupdate function we move the inode
399                                  * to b_more_io so it will get more writeout as
400                                  * soon as the queue becomes uncongested.
401                                  */
402                                 inode->i_state |= I_DIRTY_PAGES;
403 select_queue:
404                                 if (wbc->nr_to_write <= 0) {
405                                         /*
406                                          * slice used up: queue for next turn
407                                          */
408                                         requeue_io(inode);
409                                 } else {
410                                         /*
411                                          * somehow blocked: retry later
412                                          */
413                                         redirty_tail(inode);
414                                 }
415                         } else {
416                                 /*
417                                  * Otherwise fully redirty the inode so that
418                                  * other inodes on this superblock will get some
419                                  * writeout.  Otherwise heavy writing to one
420                                  * file would indefinitely suspend writeout of
421                                  * all the other files.
422                                  */
423                                 inode->i_state |= I_DIRTY_PAGES;
424                                 redirty_tail(inode);
425                         }
426                 } else if (atomic_read(&inode->i_count)) {
427                         /*
428                          * The inode is clean, inuse
429                          */
430                         list_move(&inode->i_list, &inode_in_use);
431                 } else {
432                         /*
433                          * The inode is clean, unused
434                          */
435                         list_move(&inode->i_list, &inode_unused);
436                 }
437         }
438         inode_sync_complete(inode);
439         return ret;
440 }
441
442 /*
443  * For background writeback the caller does not have the sb pinned
444  * before calling writeback. So make sure that we do pin it, so it doesn't
445  * go away while we are writing inodes from it.
446  */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449         spin_lock(&sb_lock);
450         if (list_empty(&sb->s_instances)) {
451                 spin_unlock(&sb_lock);
452                 return false;
453         }
454
455         sb->s_count++;
456         spin_unlock(&sb_lock);
457
458         if (down_read_trylock(&sb->s_umount)) {
459                 if (sb->s_root)
460                         return true;
461                 up_read(&sb->s_umount);
462         }
463
464         put_super(sb);
465         return false;
466 }
467
468 /*
469  * Write a portion of b_io inodes which belong to @sb.
470  *
471  * If @only_this_sb is true, then find and write all such
472  * inodes. Otherwise write only ones which go sequentially
473  * in reverse order.
474  *
475  * Return 1, if the caller writeback routine should be
476  * interrupted. Otherwise return 0.
477  */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479                 struct writeback_control *wbc, bool only_this_sb)
480 {
481         while (!list_empty(&wb->b_io)) {
482                 long pages_skipped;
483                 struct inode *inode = list_entry(wb->b_io.prev,
484                                                  struct inode, i_list);
485
486                 if (inode->i_sb != sb) {
487                         if (only_this_sb) {
488                                 /*
489                                  * We only want to write back data for this
490                                  * superblock, move all inodes not belonging
491                                  * to it back onto the dirty list.
492                                  */
493                                 redirty_tail(inode);
494                                 continue;
495                         }
496
497                         /*
498                          * The inode belongs to a different superblock.
499                          * Bounce back to the caller to unpin this and
500                          * pin the next superblock.
501                          */
502                         return 0;
503                 }
504
505                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
506                         requeue_io(inode);
507                         continue;
508                 }
509                 /*
510                  * Was this inode dirtied after sync_sb_inodes was called?
511                  * This keeps sync from extra jobs and livelock.
512                  */
513                 if (inode_dirtied_after(inode, wbc->wb_start))
514                         return 1;
515
516                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
517                 __iget(inode);
518                 pages_skipped = wbc->pages_skipped;
519                 writeback_single_inode(inode, wbc);
520                 if (wbc->pages_skipped != pages_skipped) {
521                         /*
522                          * writeback is not making progress due to locked
523                          * buffers.  Skip this inode for now.
524                          */
525                         redirty_tail(inode);
526                 }
527                 spin_unlock(&inode_lock);
528                 iput(inode);
529                 cond_resched();
530                 spin_lock(&inode_lock);
531                 if (wbc->nr_to_write <= 0) {
532                         wbc->more_io = 1;
533                         return 1;
534                 }
535                 if (!list_empty(&wb->b_more_io))
536                         wbc->more_io = 1;
537         }
538         /* b_io is empty */
539         return 1;
540 }
541
542 void writeback_inodes_wb(struct bdi_writeback *wb,
543                 struct writeback_control *wbc)
544 {
545         int ret = 0;
546
547         wbc->wb_start = jiffies; /* livelock avoidance */
548         spin_lock(&inode_lock);
549         if (!wbc->for_kupdate || list_empty(&wb->b_io))
550                 queue_io(wb, wbc->older_than_this);
551
552         while (!list_empty(&wb->b_io)) {
553                 struct inode *inode = list_entry(wb->b_io.prev,
554                                                  struct inode, i_list);
555                 struct super_block *sb = inode->i_sb;
556
557                 if (!pin_sb_for_writeback(sb)) {
558                         requeue_io(inode);
559                         continue;
560                 }
561                 ret = writeback_sb_inodes(sb, wb, wbc, false);
562                 drop_super(sb);
563
564                 if (ret)
565                         break;
566         }
567         spin_unlock(&inode_lock);
568         /* Leave any unwritten inodes on b_io */
569 }
570
571 static void __writeback_inodes_sb(struct super_block *sb,
572                 struct bdi_writeback *wb, struct writeback_control *wbc)
573 {
574         WARN_ON(!rwsem_is_locked(&sb->s_umount));
575
576         wbc->wb_start = jiffies; /* livelock avoidance */
577         spin_lock(&inode_lock);
578         if (!wbc->for_kupdate || list_empty(&wb->b_io))
579                 queue_io(wb, wbc->older_than_this);
580         writeback_sb_inodes(sb, wb, wbc, true);
581         spin_unlock(&inode_lock);
582 }
583
584 /*
585  * The maximum number of pages to writeout in a single bdi flush/kupdate
586  * operation.  We do this so we don't hold I_SYNC against an inode for
587  * enormous amounts of time, which would block a userspace task which has
588  * been forced to throttle against that inode.  Also, the code reevaluates
589  * the dirty each time it has written this many pages.
590  */
591 #define MAX_WRITEBACK_PAGES     1024
592
593 static inline bool over_bground_thresh(void)
594 {
595         unsigned long background_thresh, dirty_thresh;
596
597         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
598
599         return (global_page_state(NR_FILE_DIRTY) +
600                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
601 }
602
603 /*
604  * Explicit flushing or periodic writeback of "old" data.
605  *
606  * Define "old": the first time one of an inode's pages is dirtied, we mark the
607  * dirtying-time in the inode's address_space.  So this periodic writeback code
608  * just walks the superblock inode list, writing back any inodes which are
609  * older than a specific point in time.
610  *
611  * Try to run once per dirty_writeback_interval.  But if a writeback event
612  * takes longer than a dirty_writeback_interval interval, then leave a
613  * one-second gap.
614  *
615  * older_than_this takes precedence over nr_to_write.  So we'll only write back
616  * all dirty pages if they are all attached to "old" mappings.
617  */
618 static long wb_writeback(struct bdi_writeback *wb,
619                          struct wb_writeback_work *work)
620 {
621         struct writeback_control wbc = {
622                 .sync_mode              = work->sync_mode,
623                 .older_than_this        = NULL,
624                 .for_kupdate            = work->for_kupdate,
625                 .for_background         = work->for_background,
626                 .range_cyclic           = work->range_cyclic,
627         };
628         unsigned long oldest_jif;
629         long wrote = 0;
630         struct inode *inode;
631
632         if (wbc.for_kupdate) {
633                 wbc.older_than_this = &oldest_jif;
634                 oldest_jif = jiffies -
635                                 msecs_to_jiffies(dirty_expire_interval * 10);
636         }
637         if (!wbc.range_cyclic) {
638                 wbc.range_start = 0;
639                 wbc.range_end = LLONG_MAX;
640         }
641
642         for (;;) {
643                 /*
644                  * Stop writeback when nr_pages has been consumed
645                  */
646                 if (work->nr_pages <= 0)
647                         break;
648
649                 /*
650                  * For background writeout, stop when we are below the
651                  * background dirty threshold
652                  */
653                 if (work->for_background && !over_bground_thresh())
654                         break;
655
656                 wbc.more_io = 0;
657                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
658                 wbc.pages_skipped = 0;
659                 if (work->sb)
660                         __writeback_inodes_sb(work->sb, wb, &wbc);
661                 else
662                         writeback_inodes_wb(wb, &wbc);
663                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
664                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665
666                 /*
667                  * If we consumed everything, see if we have more
668                  */
669                 if (wbc.nr_to_write <= 0)
670                         continue;
671                 /*
672                  * Didn't write everything and we don't have more IO, bail
673                  */
674                 if (!wbc.more_io)
675                         break;
676                 /*
677                  * Did we write something? Try for more
678                  */
679                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
680                         continue;
681                 /*
682                  * Nothing written. Wait for some inode to
683                  * become available for writeback. Otherwise
684                  * we'll just busyloop.
685                  */
686                 spin_lock(&inode_lock);
687                 if (!list_empty(&wb->b_more_io))  {
688                         inode = list_entry(wb->b_more_io.prev,
689                                                 struct inode, i_list);
690                         inode_wait_for_writeback(inode);
691                 }
692                 spin_unlock(&inode_lock);
693         }
694
695         return wrote;
696 }
697
698 /*
699  * Return the next wb_writeback_work struct that hasn't been processed yet.
700  */
701 static struct wb_writeback_work *
702 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb)
703 {
704         struct wb_writeback_work *work = NULL;
705
706         spin_lock(&bdi->wb_lock);
707         if (!list_empty(&bdi->work_list)) {
708                 work = list_entry(bdi->work_list.next,
709                                   struct wb_writeback_work, list);
710                 list_del_init(&work->list);
711         }
712         spin_unlock(&bdi->wb_lock);
713         return work;
714 }
715
716 static long wb_check_old_data_flush(struct bdi_writeback *wb)
717 {
718         unsigned long expired;
719         long nr_pages;
720
721         /*
722          * When set to zero, disable periodic writeback
723          */
724         if (!dirty_writeback_interval)
725                 return 0;
726
727         expired = wb->last_old_flush +
728                         msecs_to_jiffies(dirty_writeback_interval * 10);
729         if (time_before(jiffies, expired))
730                 return 0;
731
732         wb->last_old_flush = jiffies;
733         nr_pages = global_page_state(NR_FILE_DIRTY) +
734                         global_page_state(NR_UNSTABLE_NFS) +
735                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
736
737         if (nr_pages) {
738                 struct wb_writeback_work work = {
739                         .nr_pages       = nr_pages,
740                         .sync_mode      = WB_SYNC_NONE,
741                         .for_kupdate    = 1,
742                         .range_cyclic   = 1,
743                 };
744
745                 return wb_writeback(wb, &work);
746         }
747
748         return 0;
749 }
750
751 /*
752  * Retrieve work items and do the writeback they describe
753  */
754 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
755 {
756         struct backing_dev_info *bdi = wb->bdi;
757         struct wb_writeback_work *work;
758         long wrote = 0;
759
760         while ((work = get_next_work_item(bdi, wb)) != NULL) {
761                 /*
762                  * Override sync mode, in case we must wait for completion
763                  * because this thread is exiting now.
764                  */
765                 if (force_wait)
766                         work->sync_mode = WB_SYNC_ALL;
767
768                 trace_writeback_exec(bdi, work);
769
770                 wrote += wb_writeback(wb, work);
771
772                 /*
773                  * Notify the caller of completion if this is a synchronous
774                  * work item, otherwise just free it.
775                  */
776                 if (work->done)
777                         complete(work->done);
778                 else
779                         kfree(work);
780         }
781
782         /*
783          * Check for periodic writeback, kupdated() style
784          */
785         wrote += wb_check_old_data_flush(wb);
786
787         return wrote;
788 }
789
790 /*
791  * Handle writeback of dirty data for the device backed by this bdi. Also
792  * wakes up periodically and does kupdated style flushing.
793  */
794 int bdi_writeback_thread(void *data)
795 {
796         struct bdi_writeback *wb = data;
797         struct backing_dev_info *bdi = wb->bdi;
798         unsigned long last_active = jiffies;
799         unsigned long wait_jiffies = -1UL;
800         long pages_written;
801
802         /*
803          * Add us to the active bdi_list
804          */
805         spin_lock_bh(&bdi_lock);
806         list_add_rcu(&bdi->bdi_list, &bdi_list);
807         spin_unlock_bh(&bdi_lock);
808
809         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
810         set_freezable();
811
812         /*
813          * Our parent may run at a different priority, just set us to normal
814          */
815         set_user_nice(current, 0);
816
817         /*
818          * Clear pending bit and wakeup anybody waiting to tear us down
819          */
820         clear_bit(BDI_pending, &bdi->state);
821         smp_mb__after_clear_bit();
822         wake_up_bit(&bdi->state, BDI_pending);
823
824         trace_writeback_thread_start(bdi);
825
826         while (!kthread_should_stop()) {
827                 pages_written = wb_do_writeback(wb, 0);
828
829                 trace_writeback_pages_written(pages_written);
830
831                 if (pages_written)
832                         last_active = jiffies;
833                 else if (wait_jiffies != -1UL) {
834                         unsigned long max_idle;
835
836                         /*
837                          * Longest period of inactivity that we tolerate. If we
838                          * see dirty data again later, the task will get
839                          * recreated automatically.
840                          */
841                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
842                         if (time_after(jiffies, max_idle + last_active))
843                                 break;
844                 }
845
846                 if (dirty_writeback_interval) {
847                         wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
848                         schedule_timeout_interruptible(wait_jiffies);
849                 } else {
850                         set_current_state(TASK_INTERRUPTIBLE);
851                         if (list_empty_careful(&wb->bdi->work_list) &&
852                             !kthread_should_stop())
853                                 schedule();
854                         __set_current_state(TASK_RUNNING);
855                 }
856
857                 try_to_freeze();
858         }
859
860         wb->task = NULL;
861
862         /*
863          * Flush any work that raced with us exiting. No new work
864          * will be added, since this bdi isn't discoverable anymore.
865          */
866         if (!list_empty(&bdi->work_list))
867                 wb_do_writeback(wb, 1);
868
869         trace_writeback_thread_stop(bdi);
870         return 0;
871 }
872
873
874 /*
875  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
876  * the whole world.
877  */
878 void wakeup_flusher_threads(long nr_pages)
879 {
880         struct backing_dev_info *bdi;
881
882         if (!nr_pages) {
883                 nr_pages = global_page_state(NR_FILE_DIRTY) +
884                                 global_page_state(NR_UNSTABLE_NFS);
885         }
886
887         rcu_read_lock();
888         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
889                 if (!bdi_has_dirty_io(bdi))
890                         continue;
891                 __bdi_start_writeback(bdi, nr_pages, false, false);
892         }
893         rcu_read_unlock();
894 }
895
896 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
897 {
898         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
899                 struct dentry *dentry;
900                 const char *name = "?";
901
902                 dentry = d_find_alias(inode);
903                 if (dentry) {
904                         spin_lock(&dentry->d_lock);
905                         name = (const char *) dentry->d_name.name;
906                 }
907                 printk(KERN_DEBUG
908                        "%s(%d): dirtied inode %lu (%s) on %s\n",
909                        current->comm, task_pid_nr(current), inode->i_ino,
910                        name, inode->i_sb->s_id);
911                 if (dentry) {
912                         spin_unlock(&dentry->d_lock);
913                         dput(dentry);
914                 }
915         }
916 }
917
918 /**
919  *      __mark_inode_dirty -    internal function
920  *      @inode: inode to mark
921  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
922  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
923  *      mark_inode_dirty_sync.
924  *
925  * Put the inode on the super block's dirty list.
926  *
927  * CAREFUL! We mark it dirty unconditionally, but move it onto the
928  * dirty list only if it is hashed or if it refers to a blockdev.
929  * If it was not hashed, it will never be added to the dirty list
930  * even if it is later hashed, as it will have been marked dirty already.
931  *
932  * In short, make sure you hash any inodes _before_ you start marking
933  * them dirty.
934  *
935  * This function *must* be atomic for the I_DIRTY_PAGES case -
936  * set_page_dirty() is called under spinlock in several places.
937  *
938  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
939  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
940  * the kernel-internal blockdev inode represents the dirtying time of the
941  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
942  * page->mapping->host, so the page-dirtying time is recorded in the internal
943  * blockdev inode.
944  */
945 void __mark_inode_dirty(struct inode *inode, int flags)
946 {
947         struct super_block *sb = inode->i_sb;
948
949         /*
950          * Don't do this for I_DIRTY_PAGES - that doesn't actually
951          * dirty the inode itself
952          */
953         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
954                 if (sb->s_op->dirty_inode)
955                         sb->s_op->dirty_inode(inode);
956         }
957
958         /*
959          * make sure that changes are seen by all cpus before we test i_state
960          * -- mikulas
961          */
962         smp_mb();
963
964         /* avoid the locking if we can */
965         if ((inode->i_state & flags) == flags)
966                 return;
967
968         if (unlikely(block_dump))
969                 block_dump___mark_inode_dirty(inode);
970
971         spin_lock(&inode_lock);
972         if ((inode->i_state & flags) != flags) {
973                 const int was_dirty = inode->i_state & I_DIRTY;
974
975                 inode->i_state |= flags;
976
977                 /*
978                  * If the inode is being synced, just update its dirty state.
979                  * The unlocker will place the inode on the appropriate
980                  * superblock list, based upon its state.
981                  */
982                 if (inode->i_state & I_SYNC)
983                         goto out;
984
985                 /*
986                  * Only add valid (hashed) inodes to the superblock's
987                  * dirty list.  Add blockdev inodes as well.
988                  */
989                 if (!S_ISBLK(inode->i_mode)) {
990                         if (hlist_unhashed(&inode->i_hash))
991                                 goto out;
992                 }
993                 if (inode->i_state & (I_FREEING|I_CLEAR))
994                         goto out;
995
996                 /*
997                  * If the inode was already on b_dirty/b_io/b_more_io, don't
998                  * reposition it (that would break b_dirty time-ordering).
999                  */
1000                 if (!was_dirty) {
1001                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1002                         struct backing_dev_info *bdi = wb->bdi;
1003
1004                         if (bdi_cap_writeback_dirty(bdi) &&
1005                             !test_bit(BDI_registered, &bdi->state)) {
1006                                 WARN_ON(1);
1007                                 printk(KERN_ERR "bdi-%s not registered\n",
1008                                                                 bdi->name);
1009                         }
1010
1011                         inode->dirtied_when = jiffies;
1012                         list_move(&inode->i_list, &wb->b_dirty);
1013                 }
1014         }
1015 out:
1016         spin_unlock(&inode_lock);
1017 }
1018 EXPORT_SYMBOL(__mark_inode_dirty);
1019
1020 /*
1021  * Write out a superblock's list of dirty inodes.  A wait will be performed
1022  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1023  *
1024  * If older_than_this is non-NULL, then only write out inodes which
1025  * had their first dirtying at a time earlier than *older_than_this.
1026  *
1027  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1028  * This function assumes that the blockdev superblock's inodes are backed by
1029  * a variety of queues, so all inodes are searched.  For other superblocks,
1030  * assume that all inodes are backed by the same queue.
1031  *
1032  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1033  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1034  * on the writer throttling path, and we get decent balancing between many
1035  * throttled threads: we don't want them all piling up on inode_sync_wait.
1036  */
1037 static void wait_sb_inodes(struct super_block *sb)
1038 {
1039         struct inode *inode, *old_inode = NULL;
1040
1041         /*
1042          * We need to be protected against the filesystem going from
1043          * r/o to r/w or vice versa.
1044          */
1045         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1046
1047         spin_lock(&inode_lock);
1048
1049         /*
1050          * Data integrity sync. Must wait for all pages under writeback,
1051          * because there may have been pages dirtied before our sync
1052          * call, but which had writeout started before we write it out.
1053          * In which case, the inode may not be on the dirty list, but
1054          * we still have to wait for that writeout.
1055          */
1056         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1057                 struct address_space *mapping;
1058
1059                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1060                         continue;
1061                 mapping = inode->i_mapping;
1062                 if (mapping->nrpages == 0)
1063                         continue;
1064                 __iget(inode);
1065                 spin_unlock(&inode_lock);
1066                 /*
1067                  * We hold a reference to 'inode' so it couldn't have
1068                  * been removed from s_inodes list while we dropped the
1069                  * inode_lock.  We cannot iput the inode now as we can
1070                  * be holding the last reference and we cannot iput it
1071                  * under inode_lock. So we keep the reference and iput
1072                  * it later.
1073                  */
1074                 iput(old_inode);
1075                 old_inode = inode;
1076
1077                 filemap_fdatawait(mapping);
1078
1079                 cond_resched();
1080
1081                 spin_lock(&inode_lock);
1082         }
1083         spin_unlock(&inode_lock);
1084         iput(old_inode);
1085 }
1086
1087 /**
1088  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1089  * @sb: the superblock
1090  *
1091  * Start writeback on some inodes on this super_block. No guarantees are made
1092  * on how many (if any) will be written, and this function does not wait
1093  * for IO completion of submitted IO. The number of pages submitted is
1094  * returned.
1095  */
1096 void writeback_inodes_sb(struct super_block *sb)
1097 {
1098         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1099         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1100         DECLARE_COMPLETION_ONSTACK(done);
1101         struct wb_writeback_work work = {
1102                 .sb             = sb,
1103                 .sync_mode      = WB_SYNC_NONE,
1104                 .done           = &done,
1105         };
1106
1107         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1108
1109         work.nr_pages = nr_dirty + nr_unstable +
1110                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1111
1112         bdi_queue_work(sb->s_bdi, &work);
1113         wait_for_completion(&done);
1114 }
1115 EXPORT_SYMBOL(writeback_inodes_sb);
1116
1117 /**
1118  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1119  * @sb: the superblock
1120  *
1121  * Invoke writeback_inodes_sb if no writeback is currently underway.
1122  * Returns 1 if writeback was started, 0 if not.
1123  */
1124 int writeback_inodes_sb_if_idle(struct super_block *sb)
1125 {
1126         if (!writeback_in_progress(sb->s_bdi)) {
1127                 down_read(&sb->s_umount);
1128                 writeback_inodes_sb(sb);
1129                 up_read(&sb->s_umount);
1130                 return 1;
1131         } else
1132                 return 0;
1133 }
1134 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1135
1136 /**
1137  * sync_inodes_sb       -       sync sb inode pages
1138  * @sb: the superblock
1139  *
1140  * This function writes and waits on any dirty inode belonging to this
1141  * super_block. The number of pages synced is returned.
1142  */
1143 void sync_inodes_sb(struct super_block *sb)
1144 {
1145         DECLARE_COMPLETION_ONSTACK(done);
1146         struct wb_writeback_work work = {
1147                 .sb             = sb,
1148                 .sync_mode      = WB_SYNC_ALL,
1149                 .nr_pages       = LONG_MAX,
1150                 .range_cyclic   = 0,
1151                 .done           = &done,
1152         };
1153
1154         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1155
1156         bdi_queue_work(sb->s_bdi, &work);
1157         wait_for_completion(&done);
1158
1159         wait_sb_inodes(sb);
1160 }
1161 EXPORT_SYMBOL(sync_inodes_sb);
1162
1163 /**
1164  * write_inode_now      -       write an inode to disk
1165  * @inode: inode to write to disk
1166  * @sync: whether the write should be synchronous or not
1167  *
1168  * This function commits an inode to disk immediately if it is dirty. This is
1169  * primarily needed by knfsd.
1170  *
1171  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1172  */
1173 int write_inode_now(struct inode *inode, int sync)
1174 {
1175         int ret;
1176         struct writeback_control wbc = {
1177                 .nr_to_write = LONG_MAX,
1178                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1179                 .range_start = 0,
1180                 .range_end = LLONG_MAX,
1181         };
1182
1183         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1184                 wbc.nr_to_write = 0;
1185
1186         might_sleep();
1187         spin_lock(&inode_lock);
1188         ret = writeback_single_inode(inode, &wbc);
1189         spin_unlock(&inode_lock);
1190         if (sync)
1191                 inode_sync_wait(inode);
1192         return ret;
1193 }
1194 EXPORT_SYMBOL(write_inode_now);
1195
1196 /**
1197  * sync_inode - write an inode and its pages to disk.
1198  * @inode: the inode to sync
1199  * @wbc: controls the writeback mode
1200  *
1201  * sync_inode() will write an inode and its pages to disk.  It will also
1202  * correctly update the inode on its superblock's dirty inode lists and will
1203  * update inode->i_state.
1204  *
1205  * The caller must have a ref on the inode.
1206  */
1207 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1208 {
1209         int ret;
1210
1211         spin_lock(&inode_lock);
1212         ret = writeback_single_inode(inode, wbc);
1213         spin_unlock(&inode_lock);
1214         return ret;
1215 }
1216 EXPORT_SYMBOL(sync_inode);