]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/gfs2/ops_address.c
[GFS2] Clean up the glock core
[mv-sheeva.git] / fs / gfs2 / ops_address.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/lm_interface.h>
23 #include <linux/backing-dev.h>
24
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "ops_address.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39
40
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42                                    unsigned int from, unsigned int to)
43 {
44         struct buffer_head *head = page_buffers(page);
45         unsigned int bsize = head->b_size;
46         struct buffer_head *bh;
47         unsigned int start, end;
48
49         for (bh = head, start = 0; bh != head || !start;
50              bh = bh->b_this_page, start = end) {
51                 end = start + bsize;
52                 if (end <= from || start >= to)
53                         continue;
54                 if (gfs2_is_jdata(ip))
55                         set_buffer_uptodate(bh);
56                 gfs2_trans_add_bh(ip->i_gl, bh, 0);
57         }
58 }
59
60 /**
61  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62  * @inode: The inode
63  * @lblock: The block number to look up
64  * @bh_result: The buffer head to return the result in
65  * @create: Non-zero if we may add block to the file
66  *
67  * Returns: errno
68  */
69
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71                                   struct buffer_head *bh_result, int create)
72 {
73         int error;
74
75         error = gfs2_block_map(inode, lblock, bh_result, 0);
76         if (error)
77                 return error;
78         if (!buffer_mapped(bh_result))
79                 return -EIO;
80         return 0;
81 }
82
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84                                  struct buffer_head *bh_result, int create)
85 {
86         return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88
89 /**
90  * gfs2_writepage_common - Common bits of writepage
91  * @page: The page to be written
92  * @wbc: The writeback control
93  *
94  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95  */
96
97 static int gfs2_writepage_common(struct page *page,
98                                  struct writeback_control *wbc)
99 {
100         struct inode *inode = page->mapping->host;
101         struct gfs2_inode *ip = GFS2_I(inode);
102         struct gfs2_sbd *sdp = GFS2_SB(inode);
103         loff_t i_size = i_size_read(inode);
104         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
105         unsigned offset;
106
107         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108                 goto out;
109         if (current->journal_info)
110                 goto redirty;
111         /* Is the page fully outside i_size? (truncate in progress) */
112         offset = i_size & (PAGE_CACHE_SIZE-1);
113         if (page->index > end_index || (page->index == end_index && !offset)) {
114                 page->mapping->a_ops->invalidatepage(page, 0);
115                 goto out;
116         }
117         return 1;
118 redirty:
119         redirty_page_for_writepage(wbc, page);
120 out:
121         unlock_page(page);
122         return 0;
123 }
124
125 /**
126  * gfs2_writeback_writepage - Write page for writeback mappings
127  * @page: The page
128  * @wbc: The writeback control
129  *
130  */
131
132 static int gfs2_writeback_writepage(struct page *page,
133                                     struct writeback_control *wbc)
134 {
135         int ret;
136
137         ret = gfs2_writepage_common(page, wbc);
138         if (ret <= 0)
139                 return ret;
140
141         ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
142         if (ret == -EAGAIN)
143                 ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
144         return ret;
145 }
146
147 /**
148  * gfs2_ordered_writepage - Write page for ordered data files
149  * @page: The page to write
150  * @wbc: The writeback control
151  *
152  */
153
154 static int gfs2_ordered_writepage(struct page *page,
155                                   struct writeback_control *wbc)
156 {
157         struct inode *inode = page->mapping->host;
158         struct gfs2_inode *ip = GFS2_I(inode);
159         int ret;
160
161         ret = gfs2_writepage_common(page, wbc);
162         if (ret <= 0)
163                 return ret;
164
165         if (!page_has_buffers(page)) {
166                 create_empty_buffers(page, inode->i_sb->s_blocksize,
167                                      (1 << BH_Dirty)|(1 << BH_Uptodate));
168         }
169         gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
170         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
171 }
172
173 /**
174  * __gfs2_jdata_writepage - The core of jdata writepage
175  * @page: The page to write
176  * @wbc: The writeback control
177  *
178  * This is shared between writepage and writepages and implements the
179  * core of the writepage operation. If a transaction is required then
180  * PageChecked will have been set and the transaction will have
181  * already been started before this is called.
182  */
183
184 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
185 {
186         struct inode *inode = page->mapping->host;
187         struct gfs2_inode *ip = GFS2_I(inode);
188         struct gfs2_sbd *sdp = GFS2_SB(inode);
189
190         if (PageChecked(page)) {
191                 ClearPageChecked(page);
192                 if (!page_has_buffers(page)) {
193                         create_empty_buffers(page, inode->i_sb->s_blocksize,
194                                              (1 << BH_Dirty)|(1 << BH_Uptodate));
195                 }
196                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
197         }
198         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
199 }
200
201 /**
202  * gfs2_jdata_writepage - Write complete page
203  * @page: Page to write
204  *
205  * Returns: errno
206  *
207  */
208
209 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
210 {
211         struct inode *inode = page->mapping->host;
212         struct gfs2_sbd *sdp = GFS2_SB(inode);
213         int error;
214         int done_trans = 0;
215
216         error = gfs2_writepage_common(page, wbc);
217         if (error <= 0)
218                 return error;
219
220         if (PageChecked(page)) {
221                 if (wbc->sync_mode != WB_SYNC_ALL)
222                         goto out_ignore;
223                 error = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
224                 if (error)
225                         goto out_ignore;
226                 done_trans = 1;
227         }
228         error = __gfs2_jdata_writepage(page, wbc);
229         if (done_trans)
230                 gfs2_trans_end(sdp);
231         return error;
232
233 out_ignore:
234         redirty_page_for_writepage(wbc, page);
235         unlock_page(page);
236         return 0;
237 }
238
239 /**
240  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
241  * @mapping: The mapping to write
242  * @wbc: Write-back control
243  *
244  * For the data=writeback case we can already ignore buffer heads
245  * and write whole extents at once. This is a big reduction in the
246  * number of I/O requests we send and the bmap calls we make in this case.
247  */
248 static int gfs2_writeback_writepages(struct address_space *mapping,
249                                      struct writeback_control *wbc)
250 {
251         return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
252 }
253
254 /**
255  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
256  * @mapping: The mapping
257  * @wbc: The writeback control
258  * @writepage: The writepage function to call for each page
259  * @pvec: The vector of pages
260  * @nr_pages: The number of pages to write
261  *
262  * Returns: non-zero if loop should terminate, zero otherwise
263  */
264
265 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
266                                     struct writeback_control *wbc,
267                                     struct pagevec *pvec,
268                                     int nr_pages, pgoff_t end)
269 {
270         struct inode *inode = mapping->host;
271         struct gfs2_sbd *sdp = GFS2_SB(inode);
272         loff_t i_size = i_size_read(inode);
273         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
274         unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
275         unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
276         struct backing_dev_info *bdi = mapping->backing_dev_info;
277         int i;
278         int ret;
279
280         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
281         if (ret < 0)
282                 return ret;
283
284         for(i = 0; i < nr_pages; i++) {
285                 struct page *page = pvec->pages[i];
286
287                 lock_page(page);
288
289                 if (unlikely(page->mapping != mapping)) {
290                         unlock_page(page);
291                         continue;
292                 }
293
294                 if (!wbc->range_cyclic && page->index > end) {
295                         ret = 1;
296                         unlock_page(page);
297                         continue;
298                 }
299
300                 if (wbc->sync_mode != WB_SYNC_NONE)
301                         wait_on_page_writeback(page);
302
303                 if (PageWriteback(page) ||
304                     !clear_page_dirty_for_io(page)) {
305                         unlock_page(page);
306                         continue;
307                 }
308
309                 /* Is the page fully outside i_size? (truncate in progress) */
310                 if (page->index > end_index || (page->index == end_index && !offset)) {
311                         page->mapping->a_ops->invalidatepage(page, 0);
312                         unlock_page(page);
313                         continue;
314                 }
315
316                 ret = __gfs2_jdata_writepage(page, wbc);
317
318                 if (ret || (--(wbc->nr_to_write) <= 0))
319                         ret = 1;
320                 if (wbc->nonblocking && bdi_write_congested(bdi)) {
321                         wbc->encountered_congestion = 1;
322                         ret = 1;
323                 }
324
325         }
326         gfs2_trans_end(sdp);
327         return ret;
328 }
329
330 /**
331  * gfs2_write_cache_jdata - Like write_cache_pages but different
332  * @mapping: The mapping to write
333  * @wbc: The writeback control
334  * @writepage: The writepage function to call
335  * @data: The data to pass to writepage
336  *
337  * The reason that we use our own function here is that we need to
338  * start transactions before we grab page locks. This allows us
339  * to get the ordering right.
340  */
341
342 static int gfs2_write_cache_jdata(struct address_space *mapping,
343                                   struct writeback_control *wbc)
344 {
345         struct backing_dev_info *bdi = mapping->backing_dev_info;
346         int ret = 0;
347         int done = 0;
348         struct pagevec pvec;
349         int nr_pages;
350         pgoff_t index;
351         pgoff_t end;
352         int scanned = 0;
353         int range_whole = 0;
354
355         if (wbc->nonblocking && bdi_write_congested(bdi)) {
356                 wbc->encountered_congestion = 1;
357                 return 0;
358         }
359
360         pagevec_init(&pvec, 0);
361         if (wbc->range_cyclic) {
362                 index = mapping->writeback_index; /* Start from prev offset */
363                 end = -1;
364         } else {
365                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
366                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
367                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
368                         range_whole = 1;
369                 scanned = 1;
370         }
371
372 retry:
373          while (!done && (index <= end) &&
374                 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
375                                                PAGECACHE_TAG_DIRTY,
376                                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
377                 scanned = 1;
378                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
379                 if (ret)
380                         done = 1;
381                 if (ret > 0)
382                         ret = 0;
383
384                 pagevec_release(&pvec);
385                 cond_resched();
386         }
387
388         if (!scanned && !done) {
389                 /*
390                  * We hit the last page and there is more work to be done: wrap
391                  * back to the start of the file
392                  */
393                 scanned = 1;
394                 index = 0;
395                 goto retry;
396         }
397
398         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
399                 mapping->writeback_index = index;
400         return ret;
401 }
402
403
404 /**
405  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
406  * @mapping: The mapping to write
407  * @wbc: The writeback control
408  * 
409  */
410
411 static int gfs2_jdata_writepages(struct address_space *mapping,
412                                  struct writeback_control *wbc)
413 {
414         struct gfs2_inode *ip = GFS2_I(mapping->host);
415         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
416         int ret;
417
418         ret = gfs2_write_cache_jdata(mapping, wbc);
419         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
420                 gfs2_log_flush(sdp, ip->i_gl);
421                 ret = gfs2_write_cache_jdata(mapping, wbc);
422         }
423         return ret;
424 }
425
426 /**
427  * stuffed_readpage - Fill in a Linux page with stuffed file data
428  * @ip: the inode
429  * @page: the page
430  *
431  * Returns: errno
432  */
433
434 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
435 {
436         struct buffer_head *dibh;
437         void *kaddr;
438         int error;
439
440         /*
441          * Due to the order of unstuffing files and ->fault(), we can be
442          * asked for a zero page in the case of a stuffed file being extended,
443          * so we need to supply one here. It doesn't happen often.
444          */
445         if (unlikely(page->index)) {
446                 zero_user(page, 0, PAGE_CACHE_SIZE);
447                 return 0;
448         }
449
450         error = gfs2_meta_inode_buffer(ip, &dibh);
451         if (error)
452                 return error;
453
454         kaddr = kmap_atomic(page, KM_USER0);
455         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
456                ip->i_di.di_size);
457         memset(kaddr + ip->i_di.di_size, 0, PAGE_CACHE_SIZE - ip->i_di.di_size);
458         kunmap_atomic(kaddr, KM_USER0);
459         flush_dcache_page(page);
460         brelse(dibh);
461         SetPageUptodate(page);
462
463         return 0;
464 }
465
466
467 /**
468  * __gfs2_readpage - readpage
469  * @file: The file to read a page for
470  * @page: The page to read
471  *
472  * This is the core of gfs2's readpage. Its used by the internal file
473  * reading code as in that case we already hold the glock. Also its
474  * called by gfs2_readpage() once the required lock has been granted.
475  *
476  */
477
478 static int __gfs2_readpage(void *file, struct page *page)
479 {
480         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
481         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
482         int error;
483
484         if (gfs2_is_stuffed(ip)) {
485                 error = stuffed_readpage(ip, page);
486                 unlock_page(page);
487         } else {
488                 error = mpage_readpage(page, gfs2_block_map);
489         }
490
491         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
492                 return -EIO;
493
494         return error;
495 }
496
497 /**
498  * gfs2_readpage - read a page of a file
499  * @file: The file to read
500  * @page: The page of the file
501  *
502  * This deals with the locking required. We use a trylock in order to
503  * avoid the page lock / glock ordering problems returning AOP_TRUNCATED_PAGE
504  * in the event that we are unable to get the lock.
505  */
506
507 static int gfs2_readpage(struct file *file, struct page *page)
508 {
509         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
510         struct gfs2_holder gh;
511         int error;
512
513         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, GL_ATIME|LM_FLAG_TRY_1CB, &gh);
514         error = gfs2_glock_nq_atime(&gh);
515         if (unlikely(error)) {
516                 unlock_page(page);
517                 goto out;
518         }
519         error = __gfs2_readpage(file, page);
520         gfs2_glock_dq(&gh);
521 out:
522         gfs2_holder_uninit(&gh);
523         if (error == GLR_TRYFAILED) {
524                 yield();
525                 return AOP_TRUNCATED_PAGE;
526         }
527         return error;
528 }
529
530 /**
531  * gfs2_internal_read - read an internal file
532  * @ip: The gfs2 inode
533  * @ra_state: The readahead state (or NULL for no readahead)
534  * @buf: The buffer to fill
535  * @pos: The file position
536  * @size: The amount to read
537  *
538  */
539
540 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
541                        char *buf, loff_t *pos, unsigned size)
542 {
543         struct address_space *mapping = ip->i_inode.i_mapping;
544         unsigned long index = *pos / PAGE_CACHE_SIZE;
545         unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
546         unsigned copied = 0;
547         unsigned amt;
548         struct page *page;
549         void *p;
550
551         do {
552                 amt = size - copied;
553                 if (offset + size > PAGE_CACHE_SIZE)
554                         amt = PAGE_CACHE_SIZE - offset;
555                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
556                 if (IS_ERR(page))
557                         return PTR_ERR(page);
558                 p = kmap_atomic(page, KM_USER0);
559                 memcpy(buf + copied, p + offset, amt);
560                 kunmap_atomic(p, KM_USER0);
561                 mark_page_accessed(page);
562                 page_cache_release(page);
563                 copied += amt;
564                 index++;
565                 offset = 0;
566         } while(copied < size);
567         (*pos) += size;
568         return size;
569 }
570
571 /**
572  * gfs2_readpages - Read a bunch of pages at once
573  *
574  * Some notes:
575  * 1. This is only for readahead, so we can simply ignore any things
576  *    which are slightly inconvenient (such as locking conflicts between
577  *    the page lock and the glock) and return having done no I/O. Its
578  *    obviously not something we'd want to do on too regular a basis.
579  *    Any I/O we ignore at this time will be done via readpage later.
580  * 2. We don't handle stuffed files here we let readpage do the honours.
581  * 3. mpage_readpages() does most of the heavy lifting in the common case.
582  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
583  */
584
585 static int gfs2_readpages(struct file *file, struct address_space *mapping,
586                           struct list_head *pages, unsigned nr_pages)
587 {
588         struct inode *inode = mapping->host;
589         struct gfs2_inode *ip = GFS2_I(inode);
590         struct gfs2_sbd *sdp = GFS2_SB(inode);
591         struct gfs2_holder gh;
592         int ret;
593
594         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, GL_ATIME, &gh);
595         ret = gfs2_glock_nq_atime(&gh);
596         if (unlikely(ret))
597                 goto out_uninit;
598         if (!gfs2_is_stuffed(ip))
599                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
600         gfs2_glock_dq(&gh);
601 out_uninit:
602         gfs2_holder_uninit(&gh);
603         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
604                 ret = -EIO;
605         return ret;
606 }
607
608 /**
609  * gfs2_write_begin - Begin to write to a file
610  * @file: The file to write to
611  * @mapping: The mapping in which to write
612  * @pos: The file offset at which to start writing
613  * @len: Length of the write
614  * @flags: Various flags
615  * @pagep: Pointer to return the page
616  * @fsdata: Pointer to return fs data (unused by GFS2)
617  *
618  * Returns: errno
619  */
620
621 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
622                             loff_t pos, unsigned len, unsigned flags,
623                             struct page **pagep, void **fsdata)
624 {
625         struct gfs2_inode *ip = GFS2_I(mapping->host);
626         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
627         unsigned int data_blocks, ind_blocks, rblocks;
628         int alloc_required;
629         int error = 0;
630         struct gfs2_alloc *al;
631         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
632         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
633         unsigned to = from + len;
634         struct page *page;
635
636         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, GL_ATIME, &ip->i_gh);
637         error = gfs2_glock_nq_atime(&ip->i_gh);
638         if (unlikely(error))
639                 goto out_uninit;
640
641         gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
642         error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
643         if (error)
644                 goto out_unlock;
645
646         if (alloc_required) {
647                 al = gfs2_alloc_get(ip);
648                 if (!al) {
649                         error = -ENOMEM;
650                         goto out_unlock;
651                 }
652
653                 error = gfs2_quota_lock_check(ip);
654                 if (error)
655                         goto out_alloc_put;
656
657                 al->al_requested = data_blocks + ind_blocks;
658                 error = gfs2_inplace_reserve(ip);
659                 if (error)
660                         goto out_qunlock;
661         }
662
663         rblocks = RES_DINODE + ind_blocks;
664         if (gfs2_is_jdata(ip))
665                 rblocks += data_blocks ? data_blocks : 1;
666         if (ind_blocks || data_blocks)
667                 rblocks += RES_STATFS + RES_QUOTA;
668
669         error = gfs2_trans_begin(sdp, rblocks,
670                                  PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
671         if (error)
672                 goto out_trans_fail;
673
674         error = -ENOMEM;
675         page = __grab_cache_page(mapping, index);
676         *pagep = page;
677         if (unlikely(!page))
678                 goto out_endtrans;
679
680         if (gfs2_is_stuffed(ip)) {
681                 error = 0;
682                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
683                         error = gfs2_unstuff_dinode(ip, page);
684                         if (error == 0)
685                                 goto prepare_write;
686                 } else if (!PageUptodate(page)) {
687                         error = stuffed_readpage(ip, page);
688                 }
689                 goto out;
690         }
691
692 prepare_write:
693         error = block_prepare_write(page, from, to, gfs2_block_map);
694 out:
695         if (error == 0)
696                 return 0;
697
698         page_cache_release(page);
699         if (pos + len > ip->i_inode.i_size)
700                 vmtruncate(&ip->i_inode, ip->i_inode.i_size);
701 out_endtrans:
702         gfs2_trans_end(sdp);
703 out_trans_fail:
704         if (alloc_required) {
705                 gfs2_inplace_release(ip);
706 out_qunlock:
707                 gfs2_quota_unlock(ip);
708 out_alloc_put:
709                 gfs2_alloc_put(ip);
710         }
711 out_unlock:
712         gfs2_glock_dq(&ip->i_gh);
713 out_uninit:
714         gfs2_holder_uninit(&ip->i_gh);
715         return error;
716 }
717
718 /**
719  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
720  * @inode: the rindex inode
721  */
722 static void adjust_fs_space(struct inode *inode)
723 {
724         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
725         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
726         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
727         u64 fs_total, new_free;
728
729         /* Total up the file system space, according to the latest rindex. */
730         fs_total = gfs2_ri_total(sdp);
731
732         spin_lock(&sdp->sd_statfs_spin);
733         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
734                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
735         else
736                 new_free = 0;
737         spin_unlock(&sdp->sd_statfs_spin);
738         fs_warn(sdp, "File system extended by %llu blocks.\n",
739                 (unsigned long long)new_free);
740         gfs2_statfs_change(sdp, new_free, new_free, 0);
741 }
742
743 /**
744  * gfs2_stuffed_write_end - Write end for stuffed files
745  * @inode: The inode
746  * @dibh: The buffer_head containing the on-disk inode
747  * @pos: The file position
748  * @len: The length of the write
749  * @copied: How much was actually copied by the VFS
750  * @page: The page
751  *
752  * This copies the data from the page into the inode block after
753  * the inode data structure itself.
754  *
755  * Returns: errno
756  */
757 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
758                                   loff_t pos, unsigned len, unsigned copied,
759                                   struct page *page)
760 {
761         struct gfs2_inode *ip = GFS2_I(inode);
762         struct gfs2_sbd *sdp = GFS2_SB(inode);
763         u64 to = pos + copied;
764         void *kaddr;
765         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
766         struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
767
768         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
769         kaddr = kmap_atomic(page, KM_USER0);
770         memcpy(buf + pos, kaddr + pos, copied);
771         memset(kaddr + pos + copied, 0, len - copied);
772         flush_dcache_page(page);
773         kunmap_atomic(kaddr, KM_USER0);
774
775         if (!PageUptodate(page))
776                 SetPageUptodate(page);
777         unlock_page(page);
778         page_cache_release(page);
779
780         if (inode->i_size < to) {
781                 i_size_write(inode, to);
782                 ip->i_di.di_size = inode->i_size;
783                 di->di_size = cpu_to_be64(inode->i_size);
784                 mark_inode_dirty(inode);
785         }
786
787         if (inode == sdp->sd_rindex)
788                 adjust_fs_space(inode);
789
790         brelse(dibh);
791         gfs2_trans_end(sdp);
792         gfs2_glock_dq(&ip->i_gh);
793         gfs2_holder_uninit(&ip->i_gh);
794         return copied;
795 }
796
797 /**
798  * gfs2_write_end
799  * @file: The file to write to
800  * @mapping: The address space to write to
801  * @pos: The file position
802  * @len: The length of the data
803  * @copied:
804  * @page: The page that has been written
805  * @fsdata: The fsdata (unused in GFS2)
806  *
807  * The main write_end function for GFS2. We have a separate one for
808  * stuffed files as they are slightly different, otherwise we just
809  * put our locking around the VFS provided functions.
810  *
811  * Returns: errno
812  */
813
814 static int gfs2_write_end(struct file *file, struct address_space *mapping,
815                           loff_t pos, unsigned len, unsigned copied,
816                           struct page *page, void *fsdata)
817 {
818         struct inode *inode = page->mapping->host;
819         struct gfs2_inode *ip = GFS2_I(inode);
820         struct gfs2_sbd *sdp = GFS2_SB(inode);
821         struct buffer_head *dibh;
822         struct gfs2_alloc *al = ip->i_alloc;
823         struct gfs2_dinode *di;
824         unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
825         unsigned int to = from + len;
826         int ret;
827
828         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
829
830         ret = gfs2_meta_inode_buffer(ip, &dibh);
831         if (unlikely(ret)) {
832                 unlock_page(page);
833                 page_cache_release(page);
834                 goto failed;
835         }
836
837         gfs2_trans_add_bh(ip->i_gl, dibh, 1);
838
839         if (gfs2_is_stuffed(ip))
840                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
841
842         if (!gfs2_is_writeback(ip))
843                 gfs2_page_add_databufs(ip, page, from, to);
844
845         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
846
847         if (likely(ret >= 0) && (inode->i_size > ip->i_di.di_size)) {
848                 di = (struct gfs2_dinode *)dibh->b_data;
849                 ip->i_di.di_size = inode->i_size;
850                 di->di_size = cpu_to_be64(inode->i_size);
851                 mark_inode_dirty(inode);
852         }
853
854         if (inode == sdp->sd_rindex)
855                 adjust_fs_space(inode);
856
857         brelse(dibh);
858         gfs2_trans_end(sdp);
859 failed:
860         if (al) {
861                 gfs2_inplace_release(ip);
862                 gfs2_quota_unlock(ip);
863                 gfs2_alloc_put(ip);
864         }
865         gfs2_glock_dq(&ip->i_gh);
866         gfs2_holder_uninit(&ip->i_gh);
867         return ret;
868 }
869
870 /**
871  * gfs2_set_page_dirty - Page dirtying function
872  * @page: The page to dirty
873  *
874  * Returns: 1 if it dirtyed the page, or 0 otherwise
875  */
876  
877 static int gfs2_set_page_dirty(struct page *page)
878 {
879         SetPageChecked(page);
880         return __set_page_dirty_buffers(page);
881 }
882
883 /**
884  * gfs2_bmap - Block map function
885  * @mapping: Address space info
886  * @lblock: The block to map
887  *
888  * Returns: The disk address for the block or 0 on hole or error
889  */
890
891 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
892 {
893         struct gfs2_inode *ip = GFS2_I(mapping->host);
894         struct gfs2_holder i_gh;
895         sector_t dblock = 0;
896         int error;
897
898         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
899         if (error)
900                 return 0;
901
902         if (!gfs2_is_stuffed(ip))
903                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
904
905         gfs2_glock_dq_uninit(&i_gh);
906
907         return dblock;
908 }
909
910 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
911 {
912         struct gfs2_bufdata *bd;
913
914         lock_buffer(bh);
915         gfs2_log_lock(sdp);
916         clear_buffer_dirty(bh);
917         bd = bh->b_private;
918         if (bd) {
919                 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
920                         list_del_init(&bd->bd_le.le_list);
921                 else
922                         gfs2_remove_from_journal(bh, current->journal_info, 0);
923         }
924         bh->b_bdev = NULL;
925         clear_buffer_mapped(bh);
926         clear_buffer_req(bh);
927         clear_buffer_new(bh);
928         gfs2_log_unlock(sdp);
929         unlock_buffer(bh);
930 }
931
932 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
933 {
934         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
935         struct buffer_head *bh, *head;
936         unsigned long pos = 0;
937
938         BUG_ON(!PageLocked(page));
939         if (offset == 0)
940                 ClearPageChecked(page);
941         if (!page_has_buffers(page))
942                 goto out;
943
944         bh = head = page_buffers(page);
945         do {
946                 if (offset <= pos)
947                         gfs2_discard(sdp, bh);
948                 pos += bh->b_size;
949                 bh = bh->b_this_page;
950         } while (bh != head);
951 out:
952         if (offset == 0)
953                 try_to_release_page(page, 0);
954 }
955
956 /**
957  * gfs2_ok_for_dio - check that dio is valid on this file
958  * @ip: The inode
959  * @rw: READ or WRITE
960  * @offset: The offset at which we are reading or writing
961  *
962  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
963  *          1 (to accept the i/o request)
964  */
965 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
966 {
967         /*
968          * Should we return an error here? I can't see that O_DIRECT for
969          * a stuffed file makes any sense. For now we'll silently fall
970          * back to buffered I/O
971          */
972         if (gfs2_is_stuffed(ip))
973                 return 0;
974
975         if (offset > i_size_read(&ip->i_inode))
976                 return 0;
977         return 1;
978 }
979
980
981
982 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
983                               const struct iovec *iov, loff_t offset,
984                               unsigned long nr_segs)
985 {
986         struct file *file = iocb->ki_filp;
987         struct inode *inode = file->f_mapping->host;
988         struct gfs2_inode *ip = GFS2_I(inode);
989         struct gfs2_holder gh;
990         int rv;
991
992         /*
993          * Deferred lock, even if its a write, since we do no allocation
994          * on this path. All we need change is atime, and this lock mode
995          * ensures that other nodes have flushed their buffered read caches
996          * (i.e. their page cache entries for this inode). We do not,
997          * unfortunately have the option of only flushing a range like
998          * the VFS does.
999          */
1000         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, GL_ATIME, &gh);
1001         rv = gfs2_glock_nq_atime(&gh);
1002         if (rv)
1003                 return rv;
1004         rv = gfs2_ok_for_dio(ip, rw, offset);
1005         if (rv != 1)
1006                 goto out; /* dio not valid, fall back to buffered i/o */
1007
1008         rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1009                                            iov, offset, nr_segs,
1010                                            gfs2_get_block_direct, NULL);
1011 out:
1012         gfs2_glock_dq_m(1, &gh);
1013         gfs2_holder_uninit(&gh);
1014         return rv;
1015 }
1016
1017 /**
1018  * gfs2_releasepage - free the metadata associated with a page
1019  * @page: the page that's being released
1020  * @gfp_mask: passed from Linux VFS, ignored by us
1021  *
1022  * Call try_to_free_buffers() if the buffers in this page can be
1023  * released.
1024  *
1025  * Returns: 0
1026  */
1027
1028 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1029 {
1030         struct inode *aspace = page->mapping->host;
1031         struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1032         struct buffer_head *bh, *head;
1033         struct gfs2_bufdata *bd;
1034
1035         if (!page_has_buffers(page))
1036                 return 0;
1037
1038         gfs2_log_lock(sdp);
1039         head = bh = page_buffers(page);
1040         do {
1041                 if (atomic_read(&bh->b_count))
1042                         goto cannot_release;
1043                 bd = bh->b_private;
1044                 if (bd && bd->bd_ail)
1045                         goto cannot_release;
1046                 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1047                 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1048                 bh = bh->b_this_page;
1049         } while(bh != head);
1050         gfs2_log_unlock(sdp);
1051
1052         head = bh = page_buffers(page);
1053         do {
1054                 gfs2_log_lock(sdp);
1055                 bd = bh->b_private;
1056                 if (bd) {
1057                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1058                         gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1059                         if (!list_empty(&bd->bd_le.le_list)) {
1060                                 if (!buffer_pinned(bh))
1061                                         list_del_init(&bd->bd_le.le_list);
1062                                 else
1063                                         bd = NULL;
1064                         }
1065                         if (bd)
1066                                 bd->bd_bh = NULL;
1067                         bh->b_private = NULL;
1068                 }
1069                 gfs2_log_unlock(sdp);
1070                 if (bd)
1071                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1072
1073                 bh = bh->b_this_page;
1074         } while (bh != head);
1075
1076         return try_to_free_buffers(page);
1077 cannot_release:
1078         gfs2_log_unlock(sdp);
1079         return 0;
1080 }
1081
1082 static const struct address_space_operations gfs2_writeback_aops = {
1083         .writepage = gfs2_writeback_writepage,
1084         .writepages = gfs2_writeback_writepages,
1085         .readpage = gfs2_readpage,
1086         .readpages = gfs2_readpages,
1087         .sync_page = block_sync_page,
1088         .write_begin = gfs2_write_begin,
1089         .write_end = gfs2_write_end,
1090         .bmap = gfs2_bmap,
1091         .invalidatepage = gfs2_invalidatepage,
1092         .releasepage = gfs2_releasepage,
1093         .direct_IO = gfs2_direct_IO,
1094         .migratepage = buffer_migrate_page,
1095 };
1096
1097 static const struct address_space_operations gfs2_ordered_aops = {
1098         .writepage = gfs2_ordered_writepage,
1099         .readpage = gfs2_readpage,
1100         .readpages = gfs2_readpages,
1101         .sync_page = block_sync_page,
1102         .write_begin = gfs2_write_begin,
1103         .write_end = gfs2_write_end,
1104         .set_page_dirty = gfs2_set_page_dirty,
1105         .bmap = gfs2_bmap,
1106         .invalidatepage = gfs2_invalidatepage,
1107         .releasepage = gfs2_releasepage,
1108         .direct_IO = gfs2_direct_IO,
1109         .migratepage = buffer_migrate_page,
1110 };
1111
1112 static const struct address_space_operations gfs2_jdata_aops = {
1113         .writepage = gfs2_jdata_writepage,
1114         .writepages = gfs2_jdata_writepages,
1115         .readpage = gfs2_readpage,
1116         .readpages = gfs2_readpages,
1117         .sync_page = block_sync_page,
1118         .write_begin = gfs2_write_begin,
1119         .write_end = gfs2_write_end,
1120         .set_page_dirty = gfs2_set_page_dirty,
1121         .bmap = gfs2_bmap,
1122         .invalidatepage = gfs2_invalidatepage,
1123         .releasepage = gfs2_releasepage,
1124 };
1125
1126 void gfs2_set_aops(struct inode *inode)
1127 {
1128         struct gfs2_inode *ip = GFS2_I(inode);
1129
1130         if (gfs2_is_writeback(ip))
1131                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1132         else if (gfs2_is_ordered(ip))
1133                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1134         else if (gfs2_is_jdata(ip))
1135                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1136         else
1137                 BUG();
1138 }
1139