2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
24 * Inode locking rules:
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
41 * Inode LRU list locks
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops = {
67 EXPORT_SYMBOL(empty_aops);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 static struct kmem_cache *inode_cachep __read_mostly;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
125 int inode_init_always(struct super_block *sb, struct inode *inode)
127 static const struct inode_operations empty_iops;
128 static const struct file_operations empty_fops;
129 struct address_space *const mapping = &inode->i_data;
132 inode->i_blkbits = sb->s_blocksize_bits;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
137 inode->__i_nlink = 1;
138 inode->i_opflags = 0;
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
141 atomic_set(&inode->i_writecount, 0);
145 inode->i_generation = 0;
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
153 inode->dirtied_when = 0;
155 if (security_inode_alloc(inode))
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163 atomic_set(&inode->i_dio_count, 0);
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 mapping->private_data = NULL;
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
179 struct backing_dev_info *bdi;
181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 mapping->backing_dev_info = bdi;
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
195 this_cpu_inc(nr_inodes);
201 EXPORT_SYMBOL(inode_init_always);
203 static struct inode *alloc_inode(struct super_block *sb)
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
219 kmem_cache_free(inode_cachep, inode);
226 void free_inode_nonrcu(struct inode *inode)
228 kmem_cache_free(inode_cachep, inode);
230 EXPORT_SYMBOL(free_inode_nonrcu);
232 void __destroy_inode(struct inode *inode)
234 BUG_ON(inode_has_buffers(inode));
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 if (!inode->i_nlink) {
238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 atomic_long_dec(&inode->i_sb->s_remove_count);
242 #ifdef CONFIG_FS_POSIX_ACL
243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_acl);
245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_default_acl);
248 this_cpu_dec(nr_inodes);
250 EXPORT_SYMBOL(__destroy_inode);
252 static void i_callback(struct rcu_head *head)
254 struct inode *inode = container_of(head, struct inode, i_rcu);
255 kmem_cache_free(inode_cachep, inode);
258 static void destroy_inode(struct inode *inode)
260 BUG_ON(!list_empty(&inode->i_lru));
261 __destroy_inode(inode);
262 if (inode->i_sb->s_op->destroy_inode)
263 inode->i_sb->s_op->destroy_inode(inode);
265 call_rcu(&inode->i_rcu, i_callback);
269 * drop_nlink - directly drop an inode's link count
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
279 void drop_nlink(struct inode *inode)
281 WARN_ON(inode->i_nlink == 0);
284 atomic_long_inc(&inode->i_sb->s_remove_count);
286 EXPORT_SYMBOL(drop_nlink);
289 * clear_nlink - directly zero an inode's link count
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
296 void clear_nlink(struct inode *inode)
298 if (inode->i_nlink) {
299 inode->__i_nlink = 0;
300 atomic_long_inc(&inode->i_sb->s_remove_count);
303 EXPORT_SYMBOL(clear_nlink);
306 * set_nlink - directly set an inode's link count
308 * @nlink: new nlink (should be non-zero)
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
313 void set_nlink(struct inode *inode, unsigned int nlink)
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode->i_nlink == 0)
320 atomic_long_dec(&inode->i_sb->s_remove_count);
322 inode->__i_nlink = nlink;
325 EXPORT_SYMBOL(set_nlink);
328 * inc_nlink - directly increment an inode's link count
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
335 void inc_nlink(struct inode *inode)
337 if (unlikely(inode->i_nlink == 0)) {
338 WARN_ON(!(inode->i_state & I_LINKABLE));
339 atomic_long_dec(&inode->i_sb->s_remove_count);
344 EXPORT_SYMBOL(inc_nlink);
346 void address_space_init_once(struct address_space *mapping)
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
351 mutex_init(&mapping->i_mmap_mutex);
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
354 mapping->i_mmap = RB_ROOT;
355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
357 EXPORT_SYMBOL(address_space_init_once);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode *inode)
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
371 address_space_init_once(&inode->i_data);
372 i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
377 EXPORT_SYMBOL(inode_init_once);
379 static void init_once(void *foo)
381 struct inode *inode = (struct inode *) foo;
383 inode_init_once(inode);
387 * inode->i_lock must be held
389 void __iget(struct inode *inode)
391 atomic_inc(&inode->i_count);
395 * get additional reference to inode; caller must already hold one.
397 void ihold(struct inode *inode)
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
401 EXPORT_SYMBOL(ihold);
403 static void inode_lru_list_add(struct inode *inode)
405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 this_cpu_inc(nr_unused);
410 * Add inode to LRU if needed (inode is unused and clean).
412 * Needs inode->i_lock held.
414 void inode_add_lru(struct inode *inode)
416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 inode_lru_list_add(inode);
422 static void inode_lru_list_del(struct inode *inode)
425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 this_cpu_dec(nr_unused);
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
433 void inode_sb_list_add(struct inode *inode)
435 spin_lock(&inode_sb_list_lock);
436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 spin_unlock(&inode_sb_list_lock);
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
441 static inline void inode_sb_list_del(struct inode *inode)
443 if (!list_empty(&inode->i_sb_list)) {
444 spin_lock(&inode_sb_list_lock);
445 list_del_init(&inode->i_sb_list);
446 spin_unlock(&inode_sb_list_lock);
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 return tmp & i_hash_mask;
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
466 * Add an inode to the inode hash for this superblock.
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
472 spin_lock(&inode_hash_lock);
473 spin_lock(&inode->i_lock);
474 hlist_add_head(&inode->i_hash, b);
475 spin_unlock(&inode->i_lock);
476 spin_unlock(&inode_hash_lock);
478 EXPORT_SYMBOL(__insert_inode_hash);
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
484 * Remove an inode from the superblock.
486 void __remove_inode_hash(struct inode *inode)
488 spin_lock(&inode_hash_lock);
489 spin_lock(&inode->i_lock);
490 hlist_del_init(&inode->i_hash);
491 spin_unlock(&inode->i_lock);
492 spin_unlock(&inode_hash_lock);
494 EXPORT_SYMBOL(__remove_inode_hash);
496 void clear_inode(struct inode *inode)
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
504 spin_lock_irq(&inode->i_data.tree_lock);
505 BUG_ON(inode->i_data.nrpages);
506 BUG_ON(inode->i_data.nrshadows);
507 spin_unlock_irq(&inode->i_data.tree_lock);
508 BUG_ON(!list_empty(&inode->i_data.private_list));
509 BUG_ON(!(inode->i_state & I_FREEING));
510 BUG_ON(inode->i_state & I_CLEAR);
511 /* don't need i_lock here, no concurrent mods to i_state */
512 inode->i_state = I_FREEING | I_CLEAR;
514 EXPORT_SYMBOL(clear_inode);
517 * Free the inode passed in, removing it from the lists it is still connected
518 * to. We remove any pages still attached to the inode and wait for any IO that
519 * is still in progress before finally destroying the inode.
521 * An inode must already be marked I_FREEING so that we avoid the inode being
522 * moved back onto lists if we race with other code that manipulates the lists
523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
525 * An inode must already be removed from the LRU list before being evicted from
526 * the cache. This should occur atomically with setting the I_FREEING state
527 * flag, so no inodes here should ever be on the LRU when being evicted.
529 static void evict(struct inode *inode)
531 const struct super_operations *op = inode->i_sb->s_op;
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(!list_empty(&inode->i_lru));
536 if (!list_empty(&inode->i_wb_list))
537 inode_wb_list_del(inode);
539 inode_sb_list_del(inode);
542 * Wait for flusher thread to be done with the inode so that filesystem
543 * does not start destroying it while writeback is still running. Since
544 * the inode has I_FREEING set, flusher thread won't start new work on
545 * the inode. We just have to wait for running writeback to finish.
547 inode_wait_for_writeback(inode);
549 if (op->evict_inode) {
550 op->evict_inode(inode);
552 truncate_inode_pages_final(&inode->i_data);
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
560 remove_inode_hash(inode);
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
567 destroy_inode(inode);
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
577 static void dispose_list(struct list_head *head)
579 while (!list_empty(head)) {
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
598 void evict_inodes(struct super_block *sb)
600 struct inode *inode, *next;
603 spin_lock(&inode_sb_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
619 spin_unlock(&inode_sb_list_lock);
621 dispose_list(&dispose);
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
627 * @kill_dirty: flag to guide handling of dirty inodes
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
634 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
637 struct inode *inode, *next;
640 spin_lock(&inode_sb_list_lock);
641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
647 if (inode->i_state & I_DIRTY && !kill_dirty) {
648 spin_unlock(&inode->i_lock);
652 if (atomic_read(&inode->i_count)) {
653 spin_unlock(&inode->i_lock);
658 inode->i_state |= I_FREEING;
659 inode_lru_list_del(inode);
660 spin_unlock(&inode->i_lock);
661 list_add(&inode->i_lru, &dispose);
663 spin_unlock(&inode_sb_list_lock);
665 dispose_list(&dispose);
671 * Isolate the inode from the LRU in preparation for freeing it.
673 * Any inodes which are pinned purely because of attached pagecache have their
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
685 static enum lru_status
686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
688 struct list_head *freeable = arg;
689 struct inode *inode = container_of(item, struct inode, i_lru);
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
695 if (!spin_trylock(&inode->i_lock))
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
702 if (atomic_read(&inode->i_count) ||
703 (inode->i_state & ~I_REFERENCED)) {
704 list_del_init(&inode->i_lru);
705 spin_unlock(&inode->i_lock);
706 this_cpu_dec(nr_unused);
710 /* recently referenced inodes get one more pass */
711 if (inode->i_state & I_REFERENCED) {
712 inode->i_state &= ~I_REFERENCED;
713 spin_unlock(&inode->i_lock);
717 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
719 spin_unlock(&inode->i_lock);
720 spin_unlock(lru_lock);
721 if (remove_inode_buffers(inode)) {
723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
727 __count_vm_events(PGINODESTEAL, reap);
728 if (current->reclaim_state)
729 current->reclaim_state->reclaimed_slab += reap;
736 WARN_ON(inode->i_state & I_NEW);
737 inode->i_state |= I_FREEING;
738 list_move(&inode->i_lru, freeable);
739 spin_unlock(&inode->i_lock);
741 this_cpu_dec(nr_unused);
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
757 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
758 &freeable, &nr_to_scan);
759 dispose_list(&freeable);
763 static void __wait_on_freeing_inode(struct inode *inode);
765 * Called with the inode lock held.
767 static struct inode *find_inode(struct super_block *sb,
768 struct hlist_head *head,
769 int (*test)(struct inode *, void *),
772 struct inode *inode = NULL;
775 hlist_for_each_entry(inode, head, i_hash) {
776 if (inode->i_sb != sb)
778 if (!test(inode, data))
780 spin_lock(&inode->i_lock);
781 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
782 __wait_on_freeing_inode(inode);
786 spin_unlock(&inode->i_lock);
793 * find_inode_fast is the fast path version of find_inode, see the comment at
794 * iget_locked for details.
796 static struct inode *find_inode_fast(struct super_block *sb,
797 struct hlist_head *head, unsigned long ino)
799 struct inode *inode = NULL;
802 hlist_for_each_entry(inode, head, i_hash) {
803 if (inode->i_ino != ino)
805 if (inode->i_sb != sb)
807 spin_lock(&inode->i_lock);
808 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
809 __wait_on_freeing_inode(inode);
813 spin_unlock(&inode->i_lock);
820 * Each cpu owns a range of LAST_INO_BATCH numbers.
821 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
822 * to renew the exhausted range.
824 * This does not significantly increase overflow rate because every CPU can
825 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
826 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
827 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
828 * overflow rate by 2x, which does not seem too significant.
830 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
831 * error if st_ino won't fit in target struct field. Use 32bit counter
832 * here to attempt to avoid that.
834 #define LAST_INO_BATCH 1024
835 static DEFINE_PER_CPU(unsigned int, last_ino);
837 unsigned int get_next_ino(void)
839 unsigned int *p = &get_cpu_var(last_ino);
840 unsigned int res = *p;
843 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
844 static atomic_t shared_last_ino;
845 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
847 res = next - LAST_INO_BATCH;
852 put_cpu_var(last_ino);
855 EXPORT_SYMBOL(get_next_ino);
858 * new_inode_pseudo - obtain an inode
861 * Allocates a new inode for given superblock.
862 * Inode wont be chained in superblock s_inodes list
864 * - fs can't be unmount
865 * - quotas, fsnotify, writeback can't work
867 struct inode *new_inode_pseudo(struct super_block *sb)
869 struct inode *inode = alloc_inode(sb);
872 spin_lock(&inode->i_lock);
874 spin_unlock(&inode->i_lock);
875 INIT_LIST_HEAD(&inode->i_sb_list);
881 * new_inode - obtain an inode
884 * Allocates a new inode for given superblock. The default gfp_mask
885 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
886 * If HIGHMEM pages are unsuitable or it is known that pages allocated
887 * for the page cache are not reclaimable or migratable,
888 * mapping_set_gfp_mask() must be called with suitable flags on the
889 * newly created inode's mapping
892 struct inode *new_inode(struct super_block *sb)
896 spin_lock_prefetch(&inode_sb_list_lock);
898 inode = new_inode_pseudo(sb);
900 inode_sb_list_add(inode);
903 EXPORT_SYMBOL(new_inode);
905 #ifdef CONFIG_DEBUG_LOCK_ALLOC
906 void lockdep_annotate_inode_mutex_key(struct inode *inode)
908 if (S_ISDIR(inode->i_mode)) {
909 struct file_system_type *type = inode->i_sb->s_type;
911 /* Set new key only if filesystem hasn't already changed it */
912 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
914 * ensure nobody is actually holding i_mutex
916 mutex_destroy(&inode->i_mutex);
917 mutex_init(&inode->i_mutex);
918 lockdep_set_class(&inode->i_mutex,
919 &type->i_mutex_dir_key);
923 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
927 * unlock_new_inode - clear the I_NEW state and wake up any waiters
928 * @inode: new inode to unlock
930 * Called when the inode is fully initialised to clear the new state of the
931 * inode and wake up anyone waiting for the inode to finish initialisation.
933 void unlock_new_inode(struct inode *inode)
935 lockdep_annotate_inode_mutex_key(inode);
936 spin_lock(&inode->i_lock);
937 WARN_ON(!(inode->i_state & I_NEW));
938 inode->i_state &= ~I_NEW;
940 wake_up_bit(&inode->i_state, __I_NEW);
941 spin_unlock(&inode->i_lock);
943 EXPORT_SYMBOL(unlock_new_inode);
946 * lock_two_nondirectories - take two i_mutexes on non-directory objects
948 * Lock any non-NULL argument that is not a directory.
949 * Zero, one or two objects may be locked by this function.
951 * @inode1: first inode to lock
952 * @inode2: second inode to lock
954 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
957 swap(inode1, inode2);
959 if (inode1 && !S_ISDIR(inode1->i_mode))
960 mutex_lock(&inode1->i_mutex);
961 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
962 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
964 EXPORT_SYMBOL(lock_two_nondirectories);
967 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
968 * @inode1: first inode to unlock
969 * @inode2: second inode to unlock
971 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
973 if (inode1 && !S_ISDIR(inode1->i_mode))
974 mutex_unlock(&inode1->i_mutex);
975 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
976 mutex_unlock(&inode2->i_mutex);
978 EXPORT_SYMBOL(unlock_two_nondirectories);
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
988 * Search for the inode specified by @hashval and @data in the inode cache,
989 * and if present it is return it with an increased reference count. This is
990 * a generalized version of iget_locked() for file systems where the inode
991 * number is not sufficient for unique identification of an inode.
993 * If the inode is not in cache, allocate a new inode and return it locked,
994 * hashed, and with the I_NEW flag set. The file system gets to fill it in
995 * before unlocking it via unlock_new_inode().
997 * Note both @test and @set are called with the inode_hash_lock held, so can't
1000 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 int (*test)(struct inode *, void *),
1002 int (*set)(struct inode *, void *), void *data)
1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 struct inode *inode;
1007 spin_lock(&inode_hash_lock);
1008 inode = find_inode(sb, head, test, data);
1009 spin_unlock(&inode_hash_lock);
1012 wait_on_inode(inode);
1016 inode = alloc_inode(sb);
1020 spin_lock(&inode_hash_lock);
1021 /* We released the lock, so.. */
1022 old = find_inode(sb, head, test, data);
1024 if (set(inode, data))
1027 spin_lock(&inode->i_lock);
1028 inode->i_state = I_NEW;
1029 hlist_add_head(&inode->i_hash, head);
1030 spin_unlock(&inode->i_lock);
1031 inode_sb_list_add(inode);
1032 spin_unlock(&inode_hash_lock);
1034 /* Return the locked inode with I_NEW set, the
1035 * caller is responsible for filling in the contents
1041 * Uhhuh, somebody else created the same inode under
1042 * us. Use the old inode instead of the one we just
1045 spin_unlock(&inode_hash_lock);
1046 destroy_inode(inode);
1048 wait_on_inode(inode);
1053 spin_unlock(&inode_hash_lock);
1054 destroy_inode(inode);
1057 EXPORT_SYMBOL(iget5_locked);
1060 * iget_locked - obtain an inode from a mounted file system
1061 * @sb: super block of file system
1062 * @ino: inode number to get
1064 * Search for the inode specified by @ino in the inode cache and if present
1065 * return it with an increased reference count. This is for file systems
1066 * where the inode number is sufficient for unique identification of an inode.
1068 * If the inode is not in cache, allocate a new inode and return it locked,
1069 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1070 * before unlocking it via unlock_new_inode().
1072 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1074 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1075 struct inode *inode;
1077 spin_lock(&inode_hash_lock);
1078 inode = find_inode_fast(sb, head, ino);
1079 spin_unlock(&inode_hash_lock);
1081 wait_on_inode(inode);
1085 inode = alloc_inode(sb);
1089 spin_lock(&inode_hash_lock);
1090 /* We released the lock, so.. */
1091 old = find_inode_fast(sb, head, ino);
1094 spin_lock(&inode->i_lock);
1095 inode->i_state = I_NEW;
1096 hlist_add_head(&inode->i_hash, head);
1097 spin_unlock(&inode->i_lock);
1098 inode_sb_list_add(inode);
1099 spin_unlock(&inode_hash_lock);
1101 /* Return the locked inode with I_NEW set, the
1102 * caller is responsible for filling in the contents
1108 * Uhhuh, somebody else created the same inode under
1109 * us. Use the old inode instead of the one we just
1112 spin_unlock(&inode_hash_lock);
1113 destroy_inode(inode);
1115 wait_on_inode(inode);
1119 EXPORT_SYMBOL(iget_locked);
1122 * search the inode cache for a matching inode number.
1123 * If we find one, then the inode number we are trying to
1124 * allocate is not unique and so we should not use it.
1126 * Returns 1 if the inode number is unique, 0 if it is not.
1128 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1130 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1131 struct inode *inode;
1133 spin_lock(&inode_hash_lock);
1134 hlist_for_each_entry(inode, b, i_hash) {
1135 if (inode->i_ino == ino && inode->i_sb == sb) {
1136 spin_unlock(&inode_hash_lock);
1140 spin_unlock(&inode_hash_lock);
1146 * iunique - get a unique inode number
1148 * @max_reserved: highest reserved inode number
1150 * Obtain an inode number that is unique on the system for a given
1151 * superblock. This is used by file systems that have no natural
1152 * permanent inode numbering system. An inode number is returned that
1153 * is higher than the reserved limit but unique.
1156 * With a large number of inodes live on the file system this function
1157 * currently becomes quite slow.
1159 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1162 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1163 * error if st_ino won't fit in target struct field. Use 32bit counter
1164 * here to attempt to avoid that.
1166 static DEFINE_SPINLOCK(iunique_lock);
1167 static unsigned int counter;
1170 spin_lock(&iunique_lock);
1172 if (counter <= max_reserved)
1173 counter = max_reserved + 1;
1175 } while (!test_inode_iunique(sb, res));
1176 spin_unlock(&iunique_lock);
1180 EXPORT_SYMBOL(iunique);
1182 struct inode *igrab(struct inode *inode)
1184 spin_lock(&inode->i_lock);
1185 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1187 spin_unlock(&inode->i_lock);
1189 spin_unlock(&inode->i_lock);
1191 * Handle the case where s_op->clear_inode is not been
1192 * called yet, and somebody is calling igrab
1193 * while the inode is getting freed.
1199 EXPORT_SYMBOL(igrab);
1202 * ilookup5_nowait - search for an inode in the inode cache
1203 * @sb: super block of file system to search
1204 * @hashval: hash value (usually inode number) to search for
1205 * @test: callback used for comparisons between inodes
1206 * @data: opaque data pointer to pass to @test
1208 * Search for the inode specified by @hashval and @data in the inode cache.
1209 * If the inode is in the cache, the inode is returned with an incremented
1212 * Note: I_NEW is not waited upon so you have to be very careful what you do
1213 * with the returned inode. You probably should be using ilookup5() instead.
1215 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1217 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1218 int (*test)(struct inode *, void *), void *data)
1220 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1221 struct inode *inode;
1223 spin_lock(&inode_hash_lock);
1224 inode = find_inode(sb, head, test, data);
1225 spin_unlock(&inode_hash_lock);
1229 EXPORT_SYMBOL(ilookup5_nowait);
1232 * ilookup5 - search for an inode in the inode cache
1233 * @sb: super block of file system to search
1234 * @hashval: hash value (usually inode number) to search for
1235 * @test: callback used for comparisons between inodes
1236 * @data: opaque data pointer to pass to @test
1238 * Search for the inode specified by @hashval and @data in the inode cache,
1239 * and if the inode is in the cache, return the inode with an incremented
1240 * reference count. Waits on I_NEW before returning the inode.
1241 * returned with an incremented reference count.
1243 * This is a generalized version of ilookup() for file systems where the
1244 * inode number is not sufficient for unique identification of an inode.
1246 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1248 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1249 int (*test)(struct inode *, void *), void *data)
1251 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1254 wait_on_inode(inode);
1257 EXPORT_SYMBOL(ilookup5);
1260 * ilookup - search for an inode in the inode cache
1261 * @sb: super block of file system to search
1262 * @ino: inode number to search for
1264 * Search for the inode @ino in the inode cache, and if the inode is in the
1265 * cache, the inode is returned with an incremented reference count.
1267 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1277 wait_on_inode(inode);
1280 EXPORT_SYMBOL(ilookup);
1282 int insert_inode_locked(struct inode *inode)
1284 struct super_block *sb = inode->i_sb;
1285 ino_t ino = inode->i_ino;
1286 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1289 struct inode *old = NULL;
1290 spin_lock(&inode_hash_lock);
1291 hlist_for_each_entry(old, head, i_hash) {
1292 if (old->i_ino != ino)
1294 if (old->i_sb != sb)
1296 spin_lock(&old->i_lock);
1297 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1298 spin_unlock(&old->i_lock);
1304 spin_lock(&inode->i_lock);
1305 inode->i_state |= I_NEW;
1306 hlist_add_head(&inode->i_hash, head);
1307 spin_unlock(&inode->i_lock);
1308 spin_unlock(&inode_hash_lock);
1312 spin_unlock(&old->i_lock);
1313 spin_unlock(&inode_hash_lock);
1315 if (unlikely(!inode_unhashed(old))) {
1322 EXPORT_SYMBOL(insert_inode_locked);
1324 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1325 int (*test)(struct inode *, void *), void *data)
1327 struct super_block *sb = inode->i_sb;
1328 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1331 struct inode *old = NULL;
1333 spin_lock(&inode_hash_lock);
1334 hlist_for_each_entry(old, head, i_hash) {
1335 if (old->i_sb != sb)
1337 if (!test(old, data))
1339 spin_lock(&old->i_lock);
1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 spin_unlock(&old->i_lock);
1347 spin_lock(&inode->i_lock);
1348 inode->i_state |= I_NEW;
1349 hlist_add_head(&inode->i_hash, head);
1350 spin_unlock(&inode->i_lock);
1351 spin_unlock(&inode_hash_lock);
1355 spin_unlock(&old->i_lock);
1356 spin_unlock(&inode_hash_lock);
1358 if (unlikely(!inode_unhashed(old))) {
1365 EXPORT_SYMBOL(insert_inode_locked4);
1368 int generic_delete_inode(struct inode *inode)
1372 EXPORT_SYMBOL(generic_delete_inode);
1375 * Called when we're dropping the last reference
1378 * Call the FS "drop_inode()" function, defaulting to
1379 * the legacy UNIX filesystem behaviour. If it tells
1380 * us to evict inode, do so. Otherwise, retain inode
1381 * in cache if fs is alive, sync and evict if fs is
1384 static void iput_final(struct inode *inode)
1386 struct super_block *sb = inode->i_sb;
1387 const struct super_operations *op = inode->i_sb->s_op;
1390 WARN_ON(inode->i_state & I_NEW);
1393 drop = op->drop_inode(inode);
1395 drop = generic_drop_inode(inode);
1397 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1398 inode->i_state |= I_REFERENCED;
1399 inode_add_lru(inode);
1400 spin_unlock(&inode->i_lock);
1405 inode->i_state |= I_WILL_FREE;
1406 spin_unlock(&inode->i_lock);
1407 write_inode_now(inode, 1);
1408 spin_lock(&inode->i_lock);
1409 WARN_ON(inode->i_state & I_NEW);
1410 inode->i_state &= ~I_WILL_FREE;
1413 inode->i_state |= I_FREEING;
1414 if (!list_empty(&inode->i_lru))
1415 inode_lru_list_del(inode);
1416 spin_unlock(&inode->i_lock);
1422 * iput - put an inode
1423 * @inode: inode to put
1425 * Puts an inode, dropping its usage count. If the inode use count hits
1426 * zero, the inode is then freed and may also be destroyed.
1428 * Consequently, iput() can sleep.
1430 void iput(struct inode *inode)
1433 BUG_ON(inode->i_state & I_CLEAR);
1435 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1439 EXPORT_SYMBOL(iput);
1442 * bmap - find a block number in a file
1443 * @inode: inode of file
1444 * @block: block to find
1446 * Returns the block number on the device holding the inode that
1447 * is the disk block number for the block of the file requested.
1448 * That is, asked for block 4 of inode 1 the function will return the
1449 * disk block relative to the disk start that holds that block of the
1452 sector_t bmap(struct inode *inode, sector_t block)
1455 if (inode->i_mapping->a_ops->bmap)
1456 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1459 EXPORT_SYMBOL(bmap);
1462 * With relative atime, only update atime if the previous atime is
1463 * earlier than either the ctime or mtime or if at least a day has
1464 * passed since the last atime update.
1466 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1467 struct timespec now)
1470 if (!(mnt->mnt_flags & MNT_RELATIME))
1473 * Is mtime younger than atime? If yes, update atime:
1475 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1478 * Is ctime younger than atime? If yes, update atime:
1480 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484 * Is the previous atime value older than a day? If yes,
1487 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1490 * Good, we can skip the atime update:
1496 * This does the actual work of updating an inodes time or version. Must have
1497 * had called mnt_want_write() before calling this.
1499 static int update_time(struct inode *inode, struct timespec *time, int flags)
1501 if (inode->i_op->update_time)
1502 return inode->i_op->update_time(inode, time, flags);
1504 if (flags & S_ATIME)
1505 inode->i_atime = *time;
1506 if (flags & S_VERSION)
1507 inode_inc_iversion(inode);
1508 if (flags & S_CTIME)
1509 inode->i_ctime = *time;
1510 if (flags & S_MTIME)
1511 inode->i_mtime = *time;
1512 mark_inode_dirty_sync(inode);
1517 * touch_atime - update the access time
1518 * @path: the &struct path to update
1520 * Update the accessed time on an inode and mark it for writeback.
1521 * This function automatically handles read only file systems and media,
1522 * as well as the "noatime" flag and inode specific "noatime" markers.
1524 void touch_atime(const struct path *path)
1526 struct vfsmount *mnt = path->mnt;
1527 struct inode *inode = path->dentry->d_inode;
1528 struct timespec now;
1530 if (inode->i_flags & S_NOATIME)
1532 if (IS_NOATIME(inode))
1534 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1537 if (mnt->mnt_flags & MNT_NOATIME)
1539 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1542 now = current_fs_time(inode->i_sb);
1544 if (!relatime_need_update(mnt, inode, now))
1547 if (timespec_equal(&inode->i_atime, &now))
1550 if (!sb_start_write_trylock(inode->i_sb))
1553 if (__mnt_want_write(mnt))
1556 * File systems can error out when updating inodes if they need to
1557 * allocate new space to modify an inode (such is the case for
1558 * Btrfs), but since we touch atime while walking down the path we
1559 * really don't care if we failed to update the atime of the file,
1560 * so just ignore the return value.
1561 * We may also fail on filesystems that have the ability to make parts
1562 * of the fs read only, e.g. subvolumes in Btrfs.
1564 update_time(inode, &now, S_ATIME);
1565 __mnt_drop_write(mnt);
1567 sb_end_write(inode->i_sb);
1569 EXPORT_SYMBOL(touch_atime);
1572 * The logic we want is
1574 * if suid or (sgid and xgrp)
1577 int should_remove_suid(struct dentry *dentry)
1579 umode_t mode = dentry->d_inode->i_mode;
1582 /* suid always must be killed */
1583 if (unlikely(mode & S_ISUID))
1584 kill = ATTR_KILL_SUID;
1587 * sgid without any exec bits is just a mandatory locking mark; leave
1588 * it alone. If some exec bits are set, it's a real sgid; kill it.
1590 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1591 kill |= ATTR_KILL_SGID;
1593 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1598 EXPORT_SYMBOL(should_remove_suid);
1600 static int __remove_suid(struct dentry *dentry, int kill)
1602 struct iattr newattrs;
1604 newattrs.ia_valid = ATTR_FORCE | kill;
1606 * Note we call this on write, so notify_change will not
1607 * encounter any conflicting delegations:
1609 return notify_change(dentry, &newattrs, NULL);
1612 int file_remove_suid(struct file *file)
1614 struct dentry *dentry = file->f_path.dentry;
1615 struct inode *inode = dentry->d_inode;
1620 /* Fast path for nothing security related */
1621 if (IS_NOSEC(inode))
1624 killsuid = should_remove_suid(dentry);
1625 killpriv = security_inode_need_killpriv(dentry);
1630 error = security_inode_killpriv(dentry);
1631 if (!error && killsuid)
1632 error = __remove_suid(dentry, killsuid);
1633 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1634 inode->i_flags |= S_NOSEC;
1638 EXPORT_SYMBOL(file_remove_suid);
1641 * file_update_time - update mtime and ctime time
1642 * @file: file accessed
1644 * Update the mtime and ctime members of an inode and mark the inode
1645 * for writeback. Note that this function is meant exclusively for
1646 * usage in the file write path of filesystems, and filesystems may
1647 * choose to explicitly ignore update via this function with the
1648 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1649 * timestamps are handled by the server. This can return an error for
1650 * file systems who need to allocate space in order to update an inode.
1653 int file_update_time(struct file *file)
1655 struct inode *inode = file_inode(file);
1656 struct timespec now;
1660 /* First try to exhaust all avenues to not sync */
1661 if (IS_NOCMTIME(inode))
1664 now = current_fs_time(inode->i_sb);
1665 if (!timespec_equal(&inode->i_mtime, &now))
1668 if (!timespec_equal(&inode->i_ctime, &now))
1671 if (IS_I_VERSION(inode))
1672 sync_it |= S_VERSION;
1677 /* Finally allowed to write? Takes lock. */
1678 if (__mnt_want_write_file(file))
1681 ret = update_time(inode, &now, sync_it);
1682 __mnt_drop_write_file(file);
1686 EXPORT_SYMBOL(file_update_time);
1688 int inode_needs_sync(struct inode *inode)
1692 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1696 EXPORT_SYMBOL(inode_needs_sync);
1698 int inode_wait(void *word)
1703 EXPORT_SYMBOL(inode_wait);
1706 * If we try to find an inode in the inode hash while it is being
1707 * deleted, we have to wait until the filesystem completes its
1708 * deletion before reporting that it isn't found. This function waits
1709 * until the deletion _might_ have completed. Callers are responsible
1710 * to recheck inode state.
1712 * It doesn't matter if I_NEW is not set initially, a call to
1713 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1716 static void __wait_on_freeing_inode(struct inode *inode)
1718 wait_queue_head_t *wq;
1719 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1720 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1721 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1722 spin_unlock(&inode->i_lock);
1723 spin_unlock(&inode_hash_lock);
1725 finish_wait(wq, &wait.wait);
1726 spin_lock(&inode_hash_lock);
1729 static __initdata unsigned long ihash_entries;
1730 static int __init set_ihash_entries(char *str)
1734 ihash_entries = simple_strtoul(str, &str, 0);
1737 __setup("ihash_entries=", set_ihash_entries);
1740 * Initialize the waitqueues and inode hash table.
1742 void __init inode_init_early(void)
1746 /* If hashes are distributed across NUMA nodes, defer
1747 * hash allocation until vmalloc space is available.
1753 alloc_large_system_hash("Inode-cache",
1754 sizeof(struct hlist_head),
1763 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1767 void __init inode_init(void)
1771 /* inode slab cache */
1772 inode_cachep = kmem_cache_create("inode_cache",
1773 sizeof(struct inode),
1775 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1779 /* Hash may have been set up in inode_init_early */
1784 alloc_large_system_hash("Inode-cache",
1785 sizeof(struct hlist_head),
1794 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1795 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1798 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1800 inode->i_mode = mode;
1801 if (S_ISCHR(mode)) {
1802 inode->i_fop = &def_chr_fops;
1803 inode->i_rdev = rdev;
1804 } else if (S_ISBLK(mode)) {
1805 inode->i_fop = &def_blk_fops;
1806 inode->i_rdev = rdev;
1807 } else if (S_ISFIFO(mode))
1808 inode->i_fop = &pipefifo_fops;
1809 else if (S_ISSOCK(mode))
1810 inode->i_fop = &bad_sock_fops;
1812 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1813 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1816 EXPORT_SYMBOL(init_special_inode);
1819 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1821 * @dir: Directory inode
1822 * @mode: mode of the new inode
1824 void inode_init_owner(struct inode *inode, const struct inode *dir,
1827 inode->i_uid = current_fsuid();
1828 if (dir && dir->i_mode & S_ISGID) {
1829 inode->i_gid = dir->i_gid;
1833 inode->i_gid = current_fsgid();
1834 inode->i_mode = mode;
1836 EXPORT_SYMBOL(inode_init_owner);
1839 * inode_owner_or_capable - check current task permissions to inode
1840 * @inode: inode being checked
1842 * Return true if current either has CAP_FOWNER to the inode, or
1845 bool inode_owner_or_capable(const struct inode *inode)
1847 if (uid_eq(current_fsuid(), inode->i_uid))
1849 if (inode_capable(inode, CAP_FOWNER))
1853 EXPORT_SYMBOL(inode_owner_or_capable);
1856 * Direct i/o helper functions
1858 static void __inode_dio_wait(struct inode *inode)
1860 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1864 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865 if (atomic_read(&inode->i_dio_count))
1867 } while (atomic_read(&inode->i_dio_count));
1868 finish_wait(wq, &q.wait);
1872 * inode_dio_wait - wait for outstanding DIO requests to finish
1873 * @inode: inode to wait for
1875 * Waits for all pending direct I/O requests to finish so that we can
1876 * proceed with a truncate or equivalent operation.
1878 * Must be called under a lock that serializes taking new references
1879 * to i_dio_count, usually by inode->i_mutex.
1881 void inode_dio_wait(struct inode *inode)
1883 if (atomic_read(&inode->i_dio_count))
1884 __inode_dio_wait(inode);
1886 EXPORT_SYMBOL(inode_dio_wait);
1889 * inode_dio_done - signal finish of a direct I/O requests
1890 * @inode: inode the direct I/O happens on
1892 * This is called once we've finished processing a direct I/O request,
1893 * and is used to wake up callers waiting for direct I/O to be quiesced.
1895 void inode_dio_done(struct inode *inode)
1897 if (atomic_dec_and_test(&inode->i_dio_count))
1898 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1900 EXPORT_SYMBOL(inode_dio_done);
1903 * inode_set_flags - atomically set some inode flags
1905 * Note: the caller should be holding i_mutex, or else be sure that
1906 * they have exclusive access to the inode structure (i.e., while the
1907 * inode is being instantiated). The reason for the cmpxchg() loop
1908 * --- which wouldn't be necessary if all code paths which modify
1909 * i_flags actually followed this rule, is that there is at least one
1910 * code path which doesn't today --- for example,
1911 * __generic_file_aio_write() calls file_remove_suid() without holding
1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1914 * In the long run, i_mutex is overkill, and we should probably look
1915 * at using the i_lock spinlock to protect i_flags, and then make sure
1916 * it is so documented in include/linux/fs.h and that all code follows
1917 * the locking convention!!
1919 void inode_set_flags(struct inode *inode, unsigned int flags,
1922 unsigned int old_flags, new_flags;
1924 WARN_ON_ONCE(flags & ~mask);
1926 old_flags = ACCESS_ONCE(inode->i_flags);
1927 new_flags = (old_flags & ~mask) | flags;
1928 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1929 new_flags) != old_flags));
1931 EXPORT_SYMBOL(inode_set_flags);