]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/jbd/transaction.c
jbd: improve fsync batching
[mv-sheeva.git] / fs / jbd / transaction.c
1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29
30 static void __journal_temp_unlink_buffer(struct journal_head *jh);
31
32 /*
33  * get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *      The journal MUST be locked.  We don't perform atomic mallocs on the
42  *      new transaction and we can't block without protecting against other
43  *      processes trying to touch the journal while it is in transition.
44  *
45  * Called under j_state_lock
46  */
47
48 static transaction_t *
49 get_transaction(journal_t *journal, transaction_t *transaction)
50 {
51         transaction->t_journal = journal;
52         transaction->t_state = T_RUNNING;
53         transaction->t_start_time = ktime_get();
54         transaction->t_tid = journal->j_transaction_sequence++;
55         transaction->t_expires = jiffies + journal->j_commit_interval;
56         spin_lock_init(&transaction->t_handle_lock);
57
58         /* Set up the commit timer for the new transaction. */
59         journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
60         add_timer(&journal->j_commit_timer);
61
62         J_ASSERT(journal->j_running_transaction == NULL);
63         journal->j_running_transaction = transaction;
64
65         return transaction;
66 }
67
68 /*
69  * Handle management.
70  *
71  * A handle_t is an object which represents a single atomic update to a
72  * filesystem, and which tracks all of the modifications which form part
73  * of that one update.
74  */
75
76 /*
77  * start_this_handle: Given a handle, deal with any locking or stalling
78  * needed to make sure that there is enough journal space for the handle
79  * to begin.  Attach the handle to a transaction and set up the
80  * transaction's buffer credits.
81  */
82
83 static int start_this_handle(journal_t *journal, handle_t *handle)
84 {
85         transaction_t *transaction;
86         int needed;
87         int nblocks = handle->h_buffer_credits;
88         transaction_t *new_transaction = NULL;
89         int ret = 0;
90
91         if (nblocks > journal->j_max_transaction_buffers) {
92                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
93                        current->comm, nblocks,
94                        journal->j_max_transaction_buffers);
95                 ret = -ENOSPC;
96                 goto out;
97         }
98
99 alloc_transaction:
100         if (!journal->j_running_transaction) {
101                 new_transaction = kzalloc(sizeof(*new_transaction),
102                                                 GFP_NOFS|__GFP_NOFAIL);
103                 if (!new_transaction) {
104                         ret = -ENOMEM;
105                         goto out;
106                 }
107         }
108
109         jbd_debug(3, "New handle %p going live.\n", handle);
110
111 repeat:
112
113         /*
114          * We need to hold j_state_lock until t_updates has been incremented,
115          * for proper journal barrier handling
116          */
117         spin_lock(&journal->j_state_lock);
118 repeat_locked:
119         if (is_journal_aborted(journal) ||
120             (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
121                 spin_unlock(&journal->j_state_lock);
122                 ret = -EROFS;
123                 goto out;
124         }
125
126         /* Wait on the journal's transaction barrier if necessary */
127         if (journal->j_barrier_count) {
128                 spin_unlock(&journal->j_state_lock);
129                 wait_event(journal->j_wait_transaction_locked,
130                                 journal->j_barrier_count == 0);
131                 goto repeat;
132         }
133
134         if (!journal->j_running_transaction) {
135                 if (!new_transaction) {
136                         spin_unlock(&journal->j_state_lock);
137                         goto alloc_transaction;
138                 }
139                 get_transaction(journal, new_transaction);
140                 new_transaction = NULL;
141         }
142
143         transaction = journal->j_running_transaction;
144
145         /*
146          * If the current transaction is locked down for commit, wait for the
147          * lock to be released.
148          */
149         if (transaction->t_state == T_LOCKED) {
150                 DEFINE_WAIT(wait);
151
152                 prepare_to_wait(&journal->j_wait_transaction_locked,
153                                         &wait, TASK_UNINTERRUPTIBLE);
154                 spin_unlock(&journal->j_state_lock);
155                 schedule();
156                 finish_wait(&journal->j_wait_transaction_locked, &wait);
157                 goto repeat;
158         }
159
160         /*
161          * If there is not enough space left in the log to write all potential
162          * buffers requested by this operation, we need to stall pending a log
163          * checkpoint to free some more log space.
164          */
165         spin_lock(&transaction->t_handle_lock);
166         needed = transaction->t_outstanding_credits + nblocks;
167
168         if (needed > journal->j_max_transaction_buffers) {
169                 /*
170                  * If the current transaction is already too large, then start
171                  * to commit it: we can then go back and attach this handle to
172                  * a new transaction.
173                  */
174                 DEFINE_WAIT(wait);
175
176                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
177                 spin_unlock(&transaction->t_handle_lock);
178                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
179                                 TASK_UNINTERRUPTIBLE);
180                 __log_start_commit(journal, transaction->t_tid);
181                 spin_unlock(&journal->j_state_lock);
182                 schedule();
183                 finish_wait(&journal->j_wait_transaction_locked, &wait);
184                 goto repeat;
185         }
186
187         /*
188          * The commit code assumes that it can get enough log space
189          * without forcing a checkpoint.  This is *critical* for
190          * correctness: a checkpoint of a buffer which is also
191          * associated with a committing transaction creates a deadlock,
192          * so commit simply cannot force through checkpoints.
193          *
194          * We must therefore ensure the necessary space in the journal
195          * *before* starting to dirty potentially checkpointed buffers
196          * in the new transaction.
197          *
198          * The worst part is, any transaction currently committing can
199          * reduce the free space arbitrarily.  Be careful to account for
200          * those buffers when checkpointing.
201          */
202
203         /*
204          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
205          * a _lot_ of headroom: 1/4 of the journal plus the size of
206          * the committing transaction.  Really, we only need to give it
207          * committing_transaction->t_outstanding_credits plus "enough" for
208          * the log control blocks.
209          * Also, this test is inconsitent with the matching one in
210          * journal_extend().
211          */
212         if (__log_space_left(journal) < jbd_space_needed(journal)) {
213                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
214                 spin_unlock(&transaction->t_handle_lock);
215                 __log_wait_for_space(journal);
216                 goto repeat_locked;
217         }
218
219         /* OK, account for the buffers that this operation expects to
220          * use and add the handle to the running transaction. */
221
222         handle->h_transaction = transaction;
223         transaction->t_outstanding_credits += nblocks;
224         transaction->t_updates++;
225         transaction->t_handle_count++;
226         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
227                   handle, nblocks, transaction->t_outstanding_credits,
228                   __log_space_left(journal));
229         spin_unlock(&transaction->t_handle_lock);
230         spin_unlock(&journal->j_state_lock);
231 out:
232         if (unlikely(new_transaction))          /* It's usually NULL */
233                 kfree(new_transaction);
234         return ret;
235 }
236
237 static struct lock_class_key jbd_handle_key;
238
239 /* Allocate a new handle.  This should probably be in a slab... */
240 static handle_t *new_handle(int nblocks)
241 {
242         handle_t *handle = jbd_alloc_handle(GFP_NOFS);
243         if (!handle)
244                 return NULL;
245         memset(handle, 0, sizeof(*handle));
246         handle->h_buffer_credits = nblocks;
247         handle->h_ref = 1;
248
249         lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
250
251         return handle;
252 }
253
254 /**
255  * handle_t *journal_start() - Obtain a new handle.
256  * @journal: Journal to start transaction on.
257  * @nblocks: number of block buffer we might modify
258  *
259  * We make sure that the transaction can guarantee at least nblocks of
260  * modified buffers in the log.  We block until the log can guarantee
261  * that much space.
262  *
263  * This function is visible to journal users (like ext3fs), so is not
264  * called with the journal already locked.
265  *
266  * Return a pointer to a newly allocated handle, or NULL on failure
267  */
268 handle_t *journal_start(journal_t *journal, int nblocks)
269 {
270         handle_t *handle = journal_current_handle();
271         int err;
272
273         if (!journal)
274                 return ERR_PTR(-EROFS);
275
276         if (handle) {
277                 J_ASSERT(handle->h_transaction->t_journal == journal);
278                 handle->h_ref++;
279                 return handle;
280         }
281
282         handle = new_handle(nblocks);
283         if (!handle)
284                 return ERR_PTR(-ENOMEM);
285
286         current->journal_info = handle;
287
288         err = start_this_handle(journal, handle);
289         if (err < 0) {
290                 jbd_free_handle(handle);
291                 current->journal_info = NULL;
292                 handle = ERR_PTR(err);
293                 goto out;
294         }
295
296         lock_map_acquire(&handle->h_lockdep_map);
297
298 out:
299         return handle;
300 }
301
302 /**
303  * int journal_extend() - extend buffer credits.
304  * @handle:  handle to 'extend'
305  * @nblocks: nr blocks to try to extend by.
306  *
307  * Some transactions, such as large extends and truncates, can be done
308  * atomically all at once or in several stages.  The operation requests
309  * a credit for a number of buffer modications in advance, but can
310  * extend its credit if it needs more.
311  *
312  * journal_extend tries to give the running handle more buffer credits.
313  * It does not guarantee that allocation - this is a best-effort only.
314  * The calling process MUST be able to deal cleanly with a failure to
315  * extend here.
316  *
317  * Return 0 on success, non-zero on failure.
318  *
319  * return code < 0 implies an error
320  * return code > 0 implies normal transaction-full status.
321  */
322 int journal_extend(handle_t *handle, int nblocks)
323 {
324         transaction_t *transaction = handle->h_transaction;
325         journal_t *journal = transaction->t_journal;
326         int result;
327         int wanted;
328
329         result = -EIO;
330         if (is_handle_aborted(handle))
331                 goto out;
332
333         result = 1;
334
335         spin_lock(&journal->j_state_lock);
336
337         /* Don't extend a locked-down transaction! */
338         if (handle->h_transaction->t_state != T_RUNNING) {
339                 jbd_debug(3, "denied handle %p %d blocks: "
340                           "transaction not running\n", handle, nblocks);
341                 goto error_out;
342         }
343
344         spin_lock(&transaction->t_handle_lock);
345         wanted = transaction->t_outstanding_credits + nblocks;
346
347         if (wanted > journal->j_max_transaction_buffers) {
348                 jbd_debug(3, "denied handle %p %d blocks: "
349                           "transaction too large\n", handle, nblocks);
350                 goto unlock;
351         }
352
353         if (wanted > __log_space_left(journal)) {
354                 jbd_debug(3, "denied handle %p %d blocks: "
355                           "insufficient log space\n", handle, nblocks);
356                 goto unlock;
357         }
358
359         handle->h_buffer_credits += nblocks;
360         transaction->t_outstanding_credits += nblocks;
361         result = 0;
362
363         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
364 unlock:
365         spin_unlock(&transaction->t_handle_lock);
366 error_out:
367         spin_unlock(&journal->j_state_lock);
368 out:
369         return result;
370 }
371
372
373 /**
374  * int journal_restart() - restart a handle.
375  * @handle:  handle to restart
376  * @nblocks: nr credits requested
377  *
378  * Restart a handle for a multi-transaction filesystem
379  * operation.
380  *
381  * If the journal_extend() call above fails to grant new buffer credits
382  * to a running handle, a call to journal_restart will commit the
383  * handle's transaction so far and reattach the handle to a new
384  * transaction capabable of guaranteeing the requested number of
385  * credits.
386  */
387
388 int journal_restart(handle_t *handle, int nblocks)
389 {
390         transaction_t *transaction = handle->h_transaction;
391         journal_t *journal = transaction->t_journal;
392         int ret;
393
394         /* If we've had an abort of any type, don't even think about
395          * actually doing the restart! */
396         if (is_handle_aborted(handle))
397                 return 0;
398
399         /*
400          * First unlink the handle from its current transaction, and start the
401          * commit on that.
402          */
403         J_ASSERT(transaction->t_updates > 0);
404         J_ASSERT(journal_current_handle() == handle);
405
406         spin_lock(&journal->j_state_lock);
407         spin_lock(&transaction->t_handle_lock);
408         transaction->t_outstanding_credits -= handle->h_buffer_credits;
409         transaction->t_updates--;
410
411         if (!transaction->t_updates)
412                 wake_up(&journal->j_wait_updates);
413         spin_unlock(&transaction->t_handle_lock);
414
415         jbd_debug(2, "restarting handle %p\n", handle);
416         __log_start_commit(journal, transaction->t_tid);
417         spin_unlock(&journal->j_state_lock);
418
419         handle->h_buffer_credits = nblocks;
420         ret = start_this_handle(journal, handle);
421         return ret;
422 }
423
424
425 /**
426  * void journal_lock_updates () - establish a transaction barrier.
427  * @journal:  Journal to establish a barrier on.
428  *
429  * This locks out any further updates from being started, and blocks
430  * until all existing updates have completed, returning only once the
431  * journal is in a quiescent state with no updates running.
432  *
433  * The journal lock should not be held on entry.
434  */
435 void journal_lock_updates(journal_t *journal)
436 {
437         DEFINE_WAIT(wait);
438
439         spin_lock(&journal->j_state_lock);
440         ++journal->j_barrier_count;
441
442         /* Wait until there are no running updates */
443         while (1) {
444                 transaction_t *transaction = journal->j_running_transaction;
445
446                 if (!transaction)
447                         break;
448
449                 spin_lock(&transaction->t_handle_lock);
450                 if (!transaction->t_updates) {
451                         spin_unlock(&transaction->t_handle_lock);
452                         break;
453                 }
454                 prepare_to_wait(&journal->j_wait_updates, &wait,
455                                 TASK_UNINTERRUPTIBLE);
456                 spin_unlock(&transaction->t_handle_lock);
457                 spin_unlock(&journal->j_state_lock);
458                 schedule();
459                 finish_wait(&journal->j_wait_updates, &wait);
460                 spin_lock(&journal->j_state_lock);
461         }
462         spin_unlock(&journal->j_state_lock);
463
464         /*
465          * We have now established a barrier against other normal updates, but
466          * we also need to barrier against other journal_lock_updates() calls
467          * to make sure that we serialise special journal-locked operations
468          * too.
469          */
470         mutex_lock(&journal->j_barrier);
471 }
472
473 /**
474  * void journal_unlock_updates (journal_t* journal) - release barrier
475  * @journal:  Journal to release the barrier on.
476  *
477  * Release a transaction barrier obtained with journal_lock_updates().
478  *
479  * Should be called without the journal lock held.
480  */
481 void journal_unlock_updates (journal_t *journal)
482 {
483         J_ASSERT(journal->j_barrier_count != 0);
484
485         mutex_unlock(&journal->j_barrier);
486         spin_lock(&journal->j_state_lock);
487         --journal->j_barrier_count;
488         spin_unlock(&journal->j_state_lock);
489         wake_up(&journal->j_wait_transaction_locked);
490 }
491
492 /*
493  * Report any unexpected dirty buffers which turn up.  Normally those
494  * indicate an error, but they can occur if the user is running (say)
495  * tune2fs to modify the live filesystem, so we need the option of
496  * continuing as gracefully as possible.  #
497  *
498  * The caller should already hold the journal lock and
499  * j_list_lock spinlock: most callers will need those anyway
500  * in order to probe the buffer's journaling state safely.
501  */
502 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
503 {
504         int jlist;
505
506         /* If this buffer is one which might reasonably be dirty
507          * --- ie. data, or not part of this journal --- then
508          * we're OK to leave it alone, but otherwise we need to
509          * move the dirty bit to the journal's own internal
510          * JBDDirty bit. */
511         jlist = jh->b_jlist;
512
513         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
514             jlist == BJ_Shadow || jlist == BJ_Forget) {
515                 struct buffer_head *bh = jh2bh(jh);
516
517                 if (test_clear_buffer_dirty(bh))
518                         set_buffer_jbddirty(bh);
519         }
520 }
521
522 /*
523  * If the buffer is already part of the current transaction, then there
524  * is nothing we need to do.  If it is already part of a prior
525  * transaction which we are still committing to disk, then we need to
526  * make sure that we do not overwrite the old copy: we do copy-out to
527  * preserve the copy going to disk.  We also account the buffer against
528  * the handle's metadata buffer credits (unless the buffer is already
529  * part of the transaction, that is).
530  *
531  */
532 static int
533 do_get_write_access(handle_t *handle, struct journal_head *jh,
534                         int force_copy)
535 {
536         struct buffer_head *bh;
537         transaction_t *transaction;
538         journal_t *journal;
539         int error;
540         char *frozen_buffer = NULL;
541         int need_copy = 0;
542
543         if (is_handle_aborted(handle))
544                 return -EROFS;
545
546         transaction = handle->h_transaction;
547         journal = transaction->t_journal;
548
549         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
550
551         JBUFFER_TRACE(jh, "entry");
552 repeat:
553         bh = jh2bh(jh);
554
555         /* @@@ Need to check for errors here at some point. */
556
557         lock_buffer(bh);
558         jbd_lock_bh_state(bh);
559
560         /* We now hold the buffer lock so it is safe to query the buffer
561          * state.  Is the buffer dirty?
562          *
563          * If so, there are two possibilities.  The buffer may be
564          * non-journaled, and undergoing a quite legitimate writeback.
565          * Otherwise, it is journaled, and we don't expect dirty buffers
566          * in that state (the buffers should be marked JBD_Dirty
567          * instead.)  So either the IO is being done under our own
568          * control and this is a bug, or it's a third party IO such as
569          * dump(8) (which may leave the buffer scheduled for read ---
570          * ie. locked but not dirty) or tune2fs (which may actually have
571          * the buffer dirtied, ugh.)  */
572
573         if (buffer_dirty(bh)) {
574                 /*
575                  * First question: is this buffer already part of the current
576                  * transaction or the existing committing transaction?
577                  */
578                 if (jh->b_transaction) {
579                         J_ASSERT_JH(jh,
580                                 jh->b_transaction == transaction ||
581                                 jh->b_transaction ==
582                                         journal->j_committing_transaction);
583                         if (jh->b_next_transaction)
584                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
585                                                         transaction);
586                 }
587                 /*
588                  * In any case we need to clean the dirty flag and we must
589                  * do it under the buffer lock to be sure we don't race
590                  * with running write-out.
591                  */
592                 JBUFFER_TRACE(jh, "Unexpected dirty buffer");
593                 jbd_unexpected_dirty_buffer(jh);
594         }
595
596         unlock_buffer(bh);
597
598         error = -EROFS;
599         if (is_handle_aborted(handle)) {
600                 jbd_unlock_bh_state(bh);
601                 goto out;
602         }
603         error = 0;
604
605         /*
606          * The buffer is already part of this transaction if b_transaction or
607          * b_next_transaction points to it
608          */
609         if (jh->b_transaction == transaction ||
610             jh->b_next_transaction == transaction)
611                 goto done;
612
613         /*
614          * this is the first time this transaction is touching this buffer,
615          * reset the modified flag
616          */
617         jh->b_modified = 0;
618
619         /*
620          * If there is already a copy-out version of this buffer, then we don't
621          * need to make another one
622          */
623         if (jh->b_frozen_data) {
624                 JBUFFER_TRACE(jh, "has frozen data");
625                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
626                 jh->b_next_transaction = transaction;
627                 goto done;
628         }
629
630         /* Is there data here we need to preserve? */
631
632         if (jh->b_transaction && jh->b_transaction != transaction) {
633                 JBUFFER_TRACE(jh, "owned by older transaction");
634                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
635                 J_ASSERT_JH(jh, jh->b_transaction ==
636                                         journal->j_committing_transaction);
637
638                 /* There is one case we have to be very careful about.
639                  * If the committing transaction is currently writing
640                  * this buffer out to disk and has NOT made a copy-out,
641                  * then we cannot modify the buffer contents at all
642                  * right now.  The essence of copy-out is that it is the
643                  * extra copy, not the primary copy, which gets
644                  * journaled.  If the primary copy is already going to
645                  * disk then we cannot do copy-out here. */
646
647                 if (jh->b_jlist == BJ_Shadow) {
648                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
649                         wait_queue_head_t *wqh;
650
651                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
652
653                         JBUFFER_TRACE(jh, "on shadow: sleep");
654                         jbd_unlock_bh_state(bh);
655                         /* commit wakes up all shadow buffers after IO */
656                         for ( ; ; ) {
657                                 prepare_to_wait(wqh, &wait.wait,
658                                                 TASK_UNINTERRUPTIBLE);
659                                 if (jh->b_jlist != BJ_Shadow)
660                                         break;
661                                 schedule();
662                         }
663                         finish_wait(wqh, &wait.wait);
664                         goto repeat;
665                 }
666
667                 /* Only do the copy if the currently-owning transaction
668                  * still needs it.  If it is on the Forget list, the
669                  * committing transaction is past that stage.  The
670                  * buffer had better remain locked during the kmalloc,
671                  * but that should be true --- we hold the journal lock
672                  * still and the buffer is already on the BUF_JOURNAL
673                  * list so won't be flushed.
674                  *
675                  * Subtle point, though: if this is a get_undo_access,
676                  * then we will be relying on the frozen_data to contain
677                  * the new value of the committed_data record after the
678                  * transaction, so we HAVE to force the frozen_data copy
679                  * in that case. */
680
681                 if (jh->b_jlist != BJ_Forget || force_copy) {
682                         JBUFFER_TRACE(jh, "generate frozen data");
683                         if (!frozen_buffer) {
684                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
685                                 jbd_unlock_bh_state(bh);
686                                 frozen_buffer =
687                                         jbd_alloc(jh2bh(jh)->b_size,
688                                                          GFP_NOFS);
689                                 if (!frozen_buffer) {
690                                         printk(KERN_EMERG
691                                                "%s: OOM for frozen_buffer\n",
692                                                __func__);
693                                         JBUFFER_TRACE(jh, "oom!");
694                                         error = -ENOMEM;
695                                         jbd_lock_bh_state(bh);
696                                         goto done;
697                                 }
698                                 goto repeat;
699                         }
700                         jh->b_frozen_data = frozen_buffer;
701                         frozen_buffer = NULL;
702                         need_copy = 1;
703                 }
704                 jh->b_next_transaction = transaction;
705         }
706
707
708         /*
709          * Finally, if the buffer is not journaled right now, we need to make
710          * sure it doesn't get written to disk before the caller actually
711          * commits the new data
712          */
713         if (!jh->b_transaction) {
714                 JBUFFER_TRACE(jh, "no transaction");
715                 J_ASSERT_JH(jh, !jh->b_next_transaction);
716                 jh->b_transaction = transaction;
717                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
718                 spin_lock(&journal->j_list_lock);
719                 __journal_file_buffer(jh, transaction, BJ_Reserved);
720                 spin_unlock(&journal->j_list_lock);
721         }
722
723 done:
724         if (need_copy) {
725                 struct page *page;
726                 int offset;
727                 char *source;
728
729                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
730                             "Possible IO failure.\n");
731                 page = jh2bh(jh)->b_page;
732                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
733                 source = kmap_atomic(page, KM_USER0);
734                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
735                 kunmap_atomic(source, KM_USER0);
736         }
737         jbd_unlock_bh_state(bh);
738
739         /*
740          * If we are about to journal a buffer, then any revoke pending on it is
741          * no longer valid
742          */
743         journal_cancel_revoke(handle, jh);
744
745 out:
746         if (unlikely(frozen_buffer))    /* It's usually NULL */
747                 jbd_free(frozen_buffer, bh->b_size);
748
749         JBUFFER_TRACE(jh, "exit");
750         return error;
751 }
752
753 /**
754  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
755  * @handle: transaction to add buffer modifications to
756  * @bh:     bh to be used for metadata writes
757  * @credits: variable that will receive credits for the buffer
758  *
759  * Returns an error code or 0 on success.
760  *
761  * In full data journalling mode the buffer may be of type BJ_AsyncData,
762  * because we're write()ing a buffer which is also part of a shared mapping.
763  */
764
765 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
766 {
767         struct journal_head *jh = journal_add_journal_head(bh);
768         int rc;
769
770         /* We do not want to get caught playing with fields which the
771          * log thread also manipulates.  Make sure that the buffer
772          * completes any outstanding IO before proceeding. */
773         rc = do_get_write_access(handle, jh, 0);
774         journal_put_journal_head(jh);
775         return rc;
776 }
777
778
779 /*
780  * When the user wants to journal a newly created buffer_head
781  * (ie. getblk() returned a new buffer and we are going to populate it
782  * manually rather than reading off disk), then we need to keep the
783  * buffer_head locked until it has been completely filled with new
784  * data.  In this case, we should be able to make the assertion that
785  * the bh is not already part of an existing transaction.
786  *
787  * The buffer should already be locked by the caller by this point.
788  * There is no lock ranking violation: it was a newly created,
789  * unlocked buffer beforehand. */
790
791 /**
792  * int journal_get_create_access () - notify intent to use newly created bh
793  * @handle: transaction to new buffer to
794  * @bh: new buffer.
795  *
796  * Call this if you create a new bh.
797  */
798 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
799 {
800         transaction_t *transaction = handle->h_transaction;
801         journal_t *journal = transaction->t_journal;
802         struct journal_head *jh = journal_add_journal_head(bh);
803         int err;
804
805         jbd_debug(5, "journal_head %p\n", jh);
806         err = -EROFS;
807         if (is_handle_aborted(handle))
808                 goto out;
809         err = 0;
810
811         JBUFFER_TRACE(jh, "entry");
812         /*
813          * The buffer may already belong to this transaction due to pre-zeroing
814          * in the filesystem's new_block code.  It may also be on the previous,
815          * committing transaction's lists, but it HAS to be in Forget state in
816          * that case: the transaction must have deleted the buffer for it to be
817          * reused here.
818          */
819         jbd_lock_bh_state(bh);
820         spin_lock(&journal->j_list_lock);
821         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
822                 jh->b_transaction == NULL ||
823                 (jh->b_transaction == journal->j_committing_transaction &&
824                           jh->b_jlist == BJ_Forget)));
825
826         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
827         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
828
829         if (jh->b_transaction == NULL) {
830                 jh->b_transaction = transaction;
831
832                 /* first access by this transaction */
833                 jh->b_modified = 0;
834
835                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
836                 __journal_file_buffer(jh, transaction, BJ_Reserved);
837         } else if (jh->b_transaction == journal->j_committing_transaction) {
838                 /* first access by this transaction */
839                 jh->b_modified = 0;
840
841                 JBUFFER_TRACE(jh, "set next transaction");
842                 jh->b_next_transaction = transaction;
843         }
844         spin_unlock(&journal->j_list_lock);
845         jbd_unlock_bh_state(bh);
846
847         /*
848          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
849          * blocks which contain freed but then revoked metadata.  We need
850          * to cancel the revoke in case we end up freeing it yet again
851          * and the reallocating as data - this would cause a second revoke,
852          * which hits an assertion error.
853          */
854         JBUFFER_TRACE(jh, "cancelling revoke");
855         journal_cancel_revoke(handle, jh);
856         journal_put_journal_head(jh);
857 out:
858         return err;
859 }
860
861 /**
862  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
863  * @handle: transaction
864  * @bh: buffer to undo
865  *
866  * Sometimes there is a need to distinguish between metadata which has
867  * been committed to disk and that which has not.  The ext3fs code uses
868  * this for freeing and allocating space, we have to make sure that we
869  * do not reuse freed space until the deallocation has been committed,
870  * since if we overwrote that space we would make the delete
871  * un-rewindable in case of a crash.
872  *
873  * To deal with that, journal_get_undo_access requests write access to a
874  * buffer for parts of non-rewindable operations such as delete
875  * operations on the bitmaps.  The journaling code must keep a copy of
876  * the buffer's contents prior to the undo_access call until such time
877  * as we know that the buffer has definitely been committed to disk.
878  *
879  * We never need to know which transaction the committed data is part
880  * of, buffers touched here are guaranteed to be dirtied later and so
881  * will be committed to a new transaction in due course, at which point
882  * we can discard the old committed data pointer.
883  *
884  * Returns error number or 0 on success.
885  */
886 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
887 {
888         int err;
889         struct journal_head *jh = journal_add_journal_head(bh);
890         char *committed_data = NULL;
891
892         JBUFFER_TRACE(jh, "entry");
893
894         /*
895          * Do this first --- it can drop the journal lock, so we want to
896          * make sure that obtaining the committed_data is done
897          * atomically wrt. completion of any outstanding commits.
898          */
899         err = do_get_write_access(handle, jh, 1);
900         if (err)
901                 goto out;
902
903 repeat:
904         if (!jh->b_committed_data) {
905                 committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
906                 if (!committed_data) {
907                         printk(KERN_EMERG "%s: No memory for committed data\n",
908                                 __func__);
909                         err = -ENOMEM;
910                         goto out;
911                 }
912         }
913
914         jbd_lock_bh_state(bh);
915         if (!jh->b_committed_data) {
916                 /* Copy out the current buffer contents into the
917                  * preserved, committed copy. */
918                 JBUFFER_TRACE(jh, "generate b_committed data");
919                 if (!committed_data) {
920                         jbd_unlock_bh_state(bh);
921                         goto repeat;
922                 }
923
924                 jh->b_committed_data = committed_data;
925                 committed_data = NULL;
926                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
927         }
928         jbd_unlock_bh_state(bh);
929 out:
930         journal_put_journal_head(jh);
931         if (unlikely(committed_data))
932                 jbd_free(committed_data, bh->b_size);
933         return err;
934 }
935
936 /**
937  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
938  * @handle: transaction
939  * @bh: bufferhead to mark
940  *
941  * Description:
942  * Mark a buffer as containing dirty data which needs to be flushed before
943  * we can commit the current transaction.
944  *
945  * The buffer is placed on the transaction's data list and is marked as
946  * belonging to the transaction.
947  *
948  * Returns error number or 0 on success.
949  *
950  * journal_dirty_data() can be called via page_launder->ext3_writepage
951  * by kswapd.
952  */
953 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
954 {
955         journal_t *journal = handle->h_transaction->t_journal;
956         int need_brelse = 0;
957         struct journal_head *jh;
958         int ret = 0;
959
960         if (is_handle_aborted(handle))
961                 return ret;
962
963         jh = journal_add_journal_head(bh);
964         JBUFFER_TRACE(jh, "entry");
965
966         /*
967          * The buffer could *already* be dirty.  Writeout can start
968          * at any time.
969          */
970         jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
971
972         /*
973          * What if the buffer is already part of a running transaction?
974          *
975          * There are two cases:
976          * 1) It is part of the current running transaction.  Refile it,
977          *    just in case we have allocated it as metadata, deallocated
978          *    it, then reallocated it as data.
979          * 2) It is part of the previous, still-committing transaction.
980          *    If all we want to do is to guarantee that the buffer will be
981          *    written to disk before this new transaction commits, then
982          *    being sure that the *previous* transaction has this same
983          *    property is sufficient for us!  Just leave it on its old
984          *    transaction.
985          *
986          * In case (2), the buffer must not already exist as metadata
987          * --- that would violate write ordering (a transaction is free
988          * to write its data at any point, even before the previous
989          * committing transaction has committed).  The caller must
990          * never, ever allow this to happen: there's nothing we can do
991          * about it in this layer.
992          */
993         jbd_lock_bh_state(bh);
994         spin_lock(&journal->j_list_lock);
995
996         /* Now that we have bh_state locked, are we really still mapped? */
997         if (!buffer_mapped(bh)) {
998                 JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
999                 goto no_journal;
1000         }
1001
1002         if (jh->b_transaction) {
1003                 JBUFFER_TRACE(jh, "has transaction");
1004                 if (jh->b_transaction != handle->h_transaction) {
1005                         JBUFFER_TRACE(jh, "belongs to older transaction");
1006                         J_ASSERT_JH(jh, jh->b_transaction ==
1007                                         journal->j_committing_transaction);
1008
1009                         /* @@@ IS THIS TRUE  ? */
1010                         /*
1011                          * Not any more.  Scenario: someone does a write()
1012                          * in data=journal mode.  The buffer's transaction has
1013                          * moved into commit.  Then someone does another
1014                          * write() to the file.  We do the frozen data copyout
1015                          * and set b_next_transaction to point to j_running_t.
1016                          * And while we're in that state, someone does a
1017                          * writepage() in an attempt to pageout the same area
1018                          * of the file via a shared mapping.  At present that
1019                          * calls journal_dirty_data(), and we get right here.
1020                          * It may be too late to journal the data.  Simply
1021                          * falling through to the next test will suffice: the
1022                          * data will be dirty and wil be checkpointed.  The
1023                          * ordering comments in the next comment block still
1024                          * apply.
1025                          */
1026                         //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1027
1028                         /*
1029                          * If we're journalling data, and this buffer was
1030                          * subject to a write(), it could be metadata, forget
1031                          * or shadow against the committing transaction.  Now,
1032                          * someone has dirtied the same darn page via a mapping
1033                          * and it is being writepage()'d.
1034                          * We *could* just steal the page from commit, with some
1035                          * fancy locking there.  Instead, we just skip it -
1036                          * don't tie the page's buffers to the new transaction
1037                          * at all.
1038                          * Implication: if we crash before the writepage() data
1039                          * is written into the filesystem, recovery will replay
1040                          * the write() data.
1041                          */
1042                         if (jh->b_jlist != BJ_None &&
1043                                         jh->b_jlist != BJ_SyncData &&
1044                                         jh->b_jlist != BJ_Locked) {
1045                                 JBUFFER_TRACE(jh, "Not stealing");
1046                                 goto no_journal;
1047                         }
1048
1049                         /*
1050                          * This buffer may be undergoing writeout in commit.  We
1051                          * can't return from here and let the caller dirty it
1052                          * again because that can cause the write-out loop in
1053                          * commit to never terminate.
1054                          */
1055                         if (buffer_dirty(bh)) {
1056                                 get_bh(bh);
1057                                 spin_unlock(&journal->j_list_lock);
1058                                 jbd_unlock_bh_state(bh);
1059                                 need_brelse = 1;
1060                                 sync_dirty_buffer(bh);
1061                                 jbd_lock_bh_state(bh);
1062                                 spin_lock(&journal->j_list_lock);
1063                                 /* Since we dropped the lock... */
1064                                 if (!buffer_mapped(bh)) {
1065                                         JBUFFER_TRACE(jh, "buffer got unmapped");
1066                                         goto no_journal;
1067                                 }
1068                                 /* The buffer may become locked again at any
1069                                    time if it is redirtied */
1070                         }
1071
1072                         /*
1073                          * We cannot remove the buffer with io error from the
1074                          * committing transaction, because otherwise it would
1075                          * miss the error and the commit would not abort.
1076                          */
1077                         if (unlikely(!buffer_uptodate(bh))) {
1078                                 ret = -EIO;
1079                                 goto no_journal;
1080                         }
1081
1082                         if (jh->b_transaction != NULL) {
1083                                 JBUFFER_TRACE(jh, "unfile from commit");
1084                                 __journal_temp_unlink_buffer(jh);
1085                                 /* It still points to the committing
1086                                  * transaction; move it to this one so
1087                                  * that the refile assert checks are
1088                                  * happy. */
1089                                 jh->b_transaction = handle->h_transaction;
1090                         }
1091                         /* The buffer will be refiled below */
1092
1093                 }
1094                 /*
1095                  * Special case --- the buffer might actually have been
1096                  * allocated and then immediately deallocated in the previous,
1097                  * committing transaction, so might still be left on that
1098                  * transaction's metadata lists.
1099                  */
1100                 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1101                         JBUFFER_TRACE(jh, "not on correct data list: unfile");
1102                         J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1103                         __journal_temp_unlink_buffer(jh);
1104                         jh->b_transaction = handle->h_transaction;
1105                         JBUFFER_TRACE(jh, "file as data");
1106                         __journal_file_buffer(jh, handle->h_transaction,
1107                                                 BJ_SyncData);
1108                 }
1109         } else {
1110                 JBUFFER_TRACE(jh, "not on a transaction");
1111                 __journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1112         }
1113 no_journal:
1114         spin_unlock(&journal->j_list_lock);
1115         jbd_unlock_bh_state(bh);
1116         if (need_brelse) {
1117                 BUFFER_TRACE(bh, "brelse");
1118                 __brelse(bh);
1119         }
1120         JBUFFER_TRACE(jh, "exit");
1121         journal_put_journal_head(jh);
1122         return ret;
1123 }
1124
1125 /**
1126  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1127  * @handle: transaction to add buffer to.
1128  * @bh: buffer to mark
1129  *
1130  * Mark dirty metadata which needs to be journaled as part of the current
1131  * transaction.
1132  *
1133  * The buffer is placed on the transaction's metadata list and is marked
1134  * as belonging to the transaction.
1135  *
1136  * Returns error number or 0 on success.
1137  *
1138  * Special care needs to be taken if the buffer already belongs to the
1139  * current committing transaction (in which case we should have frozen
1140  * data present for that commit).  In that case, we don't relink the
1141  * buffer: that only gets done when the old transaction finally
1142  * completes its commit.
1143  */
1144 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1145 {
1146         transaction_t *transaction = handle->h_transaction;
1147         journal_t *journal = transaction->t_journal;
1148         struct journal_head *jh = bh2jh(bh);
1149
1150         jbd_debug(5, "journal_head %p\n", jh);
1151         JBUFFER_TRACE(jh, "entry");
1152         if (is_handle_aborted(handle))
1153                 goto out;
1154
1155         jbd_lock_bh_state(bh);
1156
1157         if (jh->b_modified == 0) {
1158                 /*
1159                  * This buffer's got modified and becoming part
1160                  * of the transaction. This needs to be done
1161                  * once a transaction -bzzz
1162                  */
1163                 jh->b_modified = 1;
1164                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1165                 handle->h_buffer_credits--;
1166         }
1167
1168         /*
1169          * fastpath, to avoid expensive locking.  If this buffer is already
1170          * on the running transaction's metadata list there is nothing to do.
1171          * Nobody can take it off again because there is a handle open.
1172          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1173          * result in this test being false, so we go in and take the locks.
1174          */
1175         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1176                 JBUFFER_TRACE(jh, "fastpath");
1177                 J_ASSERT_JH(jh, jh->b_transaction ==
1178                                         journal->j_running_transaction);
1179                 goto out_unlock_bh;
1180         }
1181
1182         set_buffer_jbddirty(bh);
1183
1184         /*
1185          * Metadata already on the current transaction list doesn't
1186          * need to be filed.  Metadata on another transaction's list must
1187          * be committing, and will be refiled once the commit completes:
1188          * leave it alone for now.
1189          */
1190         if (jh->b_transaction != transaction) {
1191                 JBUFFER_TRACE(jh, "already on other transaction");
1192                 J_ASSERT_JH(jh, jh->b_transaction ==
1193                                         journal->j_committing_transaction);
1194                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1195                 /* And this case is illegal: we can't reuse another
1196                  * transaction's data buffer, ever. */
1197                 goto out_unlock_bh;
1198         }
1199
1200         /* That test should have eliminated the following case: */
1201         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1202
1203         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1204         spin_lock(&journal->j_list_lock);
1205         __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1206         spin_unlock(&journal->j_list_lock);
1207 out_unlock_bh:
1208         jbd_unlock_bh_state(bh);
1209 out:
1210         JBUFFER_TRACE(jh, "exit");
1211         return 0;
1212 }
1213
1214 /*
1215  * journal_release_buffer: undo a get_write_access without any buffer
1216  * updates, if the update decided in the end that it didn't need access.
1217  *
1218  */
1219 void
1220 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1221 {
1222         BUFFER_TRACE(bh, "entry");
1223 }
1224
1225 /**
1226  * void journal_forget() - bforget() for potentially-journaled buffers.
1227  * @handle: transaction handle
1228  * @bh:     bh to 'forget'
1229  *
1230  * We can only do the bforget if there are no commits pending against the
1231  * buffer.  If the buffer is dirty in the current running transaction we
1232  * can safely unlink it.
1233  *
1234  * bh may not be a journalled buffer at all - it may be a non-JBD
1235  * buffer which came off the hashtable.  Check for this.
1236  *
1237  * Decrements bh->b_count by one.
1238  *
1239  * Allow this call even if the handle has aborted --- it may be part of
1240  * the caller's cleanup after an abort.
1241  */
1242 int journal_forget (handle_t *handle, struct buffer_head *bh)
1243 {
1244         transaction_t *transaction = handle->h_transaction;
1245         journal_t *journal = transaction->t_journal;
1246         struct journal_head *jh;
1247         int drop_reserve = 0;
1248         int err = 0;
1249         int was_modified = 0;
1250
1251         BUFFER_TRACE(bh, "entry");
1252
1253         jbd_lock_bh_state(bh);
1254         spin_lock(&journal->j_list_lock);
1255
1256         if (!buffer_jbd(bh))
1257                 goto not_jbd;
1258         jh = bh2jh(bh);
1259
1260         /* Critical error: attempting to delete a bitmap buffer, maybe?
1261          * Don't do any jbd operations, and return an error. */
1262         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1263                          "inconsistent data on disk")) {
1264                 err = -EIO;
1265                 goto not_jbd;
1266         }
1267
1268         /* keep track of wether or not this transaction modified us */
1269         was_modified = jh->b_modified;
1270
1271         /*
1272          * The buffer's going from the transaction, we must drop
1273          * all references -bzzz
1274          */
1275         jh->b_modified = 0;
1276
1277         if (jh->b_transaction == handle->h_transaction) {
1278                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1279
1280                 /* If we are forgetting a buffer which is already part
1281                  * of this transaction, then we can just drop it from
1282                  * the transaction immediately. */
1283                 clear_buffer_dirty(bh);
1284                 clear_buffer_jbddirty(bh);
1285
1286                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1287
1288                 /*
1289                  * we only want to drop a reference if this transaction
1290                  * modified the buffer
1291                  */
1292                 if (was_modified)
1293                         drop_reserve = 1;
1294
1295                 /*
1296                  * We are no longer going to journal this buffer.
1297                  * However, the commit of this transaction is still
1298                  * important to the buffer: the delete that we are now
1299                  * processing might obsolete an old log entry, so by
1300                  * committing, we can satisfy the buffer's checkpoint.
1301                  *
1302                  * So, if we have a checkpoint on the buffer, we should
1303                  * now refile the buffer on our BJ_Forget list so that
1304                  * we know to remove the checkpoint after we commit.
1305                  */
1306
1307                 if (jh->b_cp_transaction) {
1308                         __journal_temp_unlink_buffer(jh);
1309                         __journal_file_buffer(jh, transaction, BJ_Forget);
1310                 } else {
1311                         __journal_unfile_buffer(jh);
1312                         journal_remove_journal_head(bh);
1313                         __brelse(bh);
1314                         if (!buffer_jbd(bh)) {
1315                                 spin_unlock(&journal->j_list_lock);
1316                                 jbd_unlock_bh_state(bh);
1317                                 __bforget(bh);
1318                                 goto drop;
1319                         }
1320                 }
1321         } else if (jh->b_transaction) {
1322                 J_ASSERT_JH(jh, (jh->b_transaction ==
1323                                  journal->j_committing_transaction));
1324                 /* However, if the buffer is still owned by a prior
1325                  * (committing) transaction, we can't drop it yet... */
1326                 JBUFFER_TRACE(jh, "belongs to older transaction");
1327                 /* ... but we CAN drop it from the new transaction if we
1328                  * have also modified it since the original commit. */
1329
1330                 if (jh->b_next_transaction) {
1331                         J_ASSERT(jh->b_next_transaction == transaction);
1332                         jh->b_next_transaction = NULL;
1333
1334                         /*
1335                          * only drop a reference if this transaction modified
1336                          * the buffer
1337                          */
1338                         if (was_modified)
1339                                 drop_reserve = 1;
1340                 }
1341         }
1342
1343 not_jbd:
1344         spin_unlock(&journal->j_list_lock);
1345         jbd_unlock_bh_state(bh);
1346         __brelse(bh);
1347 drop:
1348         if (drop_reserve) {
1349                 /* no need to reserve log space for this block -bzzz */
1350                 handle->h_buffer_credits++;
1351         }
1352         return err;
1353 }
1354
1355 /**
1356  * int journal_stop() - complete a transaction
1357  * @handle: tranaction to complete.
1358  *
1359  * All done for a particular handle.
1360  *
1361  * There is not much action needed here.  We just return any remaining
1362  * buffer credits to the transaction and remove the handle.  The only
1363  * complication is that we need to start a commit operation if the
1364  * filesystem is marked for synchronous update.
1365  *
1366  * journal_stop itself will not usually return an error, but it may
1367  * do so in unusual circumstances.  In particular, expect it to
1368  * return -EIO if a journal_abort has been executed since the
1369  * transaction began.
1370  */
1371 int journal_stop(handle_t *handle)
1372 {
1373         transaction_t *transaction = handle->h_transaction;
1374         journal_t *journal = transaction->t_journal;
1375         int err;
1376         pid_t pid;
1377
1378         J_ASSERT(journal_current_handle() == handle);
1379
1380         if (is_handle_aborted(handle))
1381                 err = -EIO;
1382         else {
1383                 J_ASSERT(transaction->t_updates > 0);
1384                 err = 0;
1385         }
1386
1387         if (--handle->h_ref > 0) {
1388                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1389                           handle->h_ref);
1390                 return err;
1391         }
1392
1393         jbd_debug(4, "Handle %p going down\n", handle);
1394
1395         /*
1396          * Implement synchronous transaction batching.  If the handle
1397          * was synchronous, don't force a commit immediately.  Let's
1398          * yield and let another thread piggyback onto this transaction.
1399          * Keep doing that while new threads continue to arrive.
1400          * It doesn't cost much - we're about to run a commit and sleep
1401          * on IO anyway.  Speeds up many-threaded, many-dir operations
1402          * by 30x or more...
1403          *
1404          * We try and optimize the sleep time against what the underlying disk
1405          * can do, instead of having a static sleep time.  This is usefull for
1406          * the case where our storage is so fast that it is more optimal to go
1407          * ahead and force a flush and wait for the transaction to be committed
1408          * than it is to wait for an arbitrary amount of time for new writers to
1409          * join the transaction.  We acheive this by measuring how long it takes
1410          * to commit a transaction, and compare it with how long this
1411          * transaction has been running, and if run time < commit time then we
1412          * sleep for the delta and commit.  This greatly helps super fast disks
1413          * that would see slowdowns as more threads started doing fsyncs.
1414          *
1415          * But don't do this if this process was the most recent one to
1416          * perform a synchronous write.  We do this to detect the case where a
1417          * single process is doing a stream of sync writes.  No point in waiting
1418          * for joiners in that case.
1419          */
1420         pid = current->pid;
1421         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1422                 u64 commit_time, trans_time;
1423
1424                 journal->j_last_sync_writer = pid;
1425
1426                 spin_lock(&journal->j_state_lock);
1427                 commit_time = journal->j_average_commit_time;
1428                 spin_unlock(&journal->j_state_lock);
1429
1430                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1431                                                    transaction->t_start_time));
1432
1433                 commit_time = min_t(u64, commit_time,
1434                                     1000*jiffies_to_usecs(1));
1435
1436                 if (trans_time < commit_time) {
1437                         ktime_t expires = ktime_add_ns(ktime_get(),
1438                                                        commit_time);
1439                         set_current_state(TASK_UNINTERRUPTIBLE);
1440                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1441                 }
1442         }
1443
1444         current->journal_info = NULL;
1445         spin_lock(&journal->j_state_lock);
1446         spin_lock(&transaction->t_handle_lock);
1447         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1448         transaction->t_updates--;
1449         if (!transaction->t_updates) {
1450                 wake_up(&journal->j_wait_updates);
1451                 if (journal->j_barrier_count)
1452                         wake_up(&journal->j_wait_transaction_locked);
1453         }
1454
1455         /*
1456          * If the handle is marked SYNC, we need to set another commit
1457          * going!  We also want to force a commit if the current
1458          * transaction is occupying too much of the log, or if the
1459          * transaction is too old now.
1460          */
1461         if (handle->h_sync ||
1462                         transaction->t_outstanding_credits >
1463                                 journal->j_max_transaction_buffers ||
1464                         time_after_eq(jiffies, transaction->t_expires)) {
1465                 /* Do this even for aborted journals: an abort still
1466                  * completes the commit thread, it just doesn't write
1467                  * anything to disk. */
1468                 tid_t tid = transaction->t_tid;
1469
1470                 spin_unlock(&transaction->t_handle_lock);
1471                 jbd_debug(2, "transaction too old, requesting commit for "
1472                                         "handle %p\n", handle);
1473                 /* This is non-blocking */
1474                 __log_start_commit(journal, transaction->t_tid);
1475                 spin_unlock(&journal->j_state_lock);
1476
1477                 /*
1478                  * Special case: JFS_SYNC synchronous updates require us
1479                  * to wait for the commit to complete.
1480                  */
1481                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1482                         err = log_wait_commit(journal, tid);
1483         } else {
1484                 spin_unlock(&transaction->t_handle_lock);
1485                 spin_unlock(&journal->j_state_lock);
1486         }
1487
1488         lock_map_release(&handle->h_lockdep_map);
1489
1490         jbd_free_handle(handle);
1491         return err;
1492 }
1493
1494 /**
1495  * int journal_force_commit() - force any uncommitted transactions
1496  * @journal: journal to force
1497  *
1498  * For synchronous operations: force any uncommitted transactions
1499  * to disk.  May seem kludgy, but it reuses all the handle batching
1500  * code in a very simple manner.
1501  */
1502 int journal_force_commit(journal_t *journal)
1503 {
1504         handle_t *handle;
1505         int ret;
1506
1507         handle = journal_start(journal, 1);
1508         if (IS_ERR(handle)) {
1509                 ret = PTR_ERR(handle);
1510         } else {
1511                 handle->h_sync = 1;
1512                 ret = journal_stop(handle);
1513         }
1514         return ret;
1515 }
1516
1517 /*
1518  *
1519  * List management code snippets: various functions for manipulating the
1520  * transaction buffer lists.
1521  *
1522  */
1523
1524 /*
1525  * Append a buffer to a transaction list, given the transaction's list head
1526  * pointer.
1527  *
1528  * j_list_lock is held.
1529  *
1530  * jbd_lock_bh_state(jh2bh(jh)) is held.
1531  */
1532
1533 static inline void
1534 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1535 {
1536         if (!*list) {
1537                 jh->b_tnext = jh->b_tprev = jh;
1538                 *list = jh;
1539         } else {
1540                 /* Insert at the tail of the list to preserve order */
1541                 struct journal_head *first = *list, *last = first->b_tprev;
1542                 jh->b_tprev = last;
1543                 jh->b_tnext = first;
1544                 last->b_tnext = first->b_tprev = jh;
1545         }
1546 }
1547
1548 /*
1549  * Remove a buffer from a transaction list, given the transaction's list
1550  * head pointer.
1551  *
1552  * Called with j_list_lock held, and the journal may not be locked.
1553  *
1554  * jbd_lock_bh_state(jh2bh(jh)) is held.
1555  */
1556
1557 static inline void
1558 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1559 {
1560         if (*list == jh) {
1561                 *list = jh->b_tnext;
1562                 if (*list == jh)
1563                         *list = NULL;
1564         }
1565         jh->b_tprev->b_tnext = jh->b_tnext;
1566         jh->b_tnext->b_tprev = jh->b_tprev;
1567 }
1568
1569 /*
1570  * Remove a buffer from the appropriate transaction list.
1571  *
1572  * Note that this function can *change* the value of
1573  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1574  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1575  * is holding onto a copy of one of thee pointers, it could go bad.
1576  * Generally the caller needs to re-read the pointer from the transaction_t.
1577  *
1578  * Called under j_list_lock.  The journal may not be locked.
1579  */
1580 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1581 {
1582         struct journal_head **list = NULL;
1583         transaction_t *transaction;
1584         struct buffer_head *bh = jh2bh(jh);
1585
1586         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1587         transaction = jh->b_transaction;
1588         if (transaction)
1589                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1590
1591         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1592         if (jh->b_jlist != BJ_None)
1593                 J_ASSERT_JH(jh, transaction != NULL);
1594
1595         switch (jh->b_jlist) {
1596         case BJ_None:
1597                 return;
1598         case BJ_SyncData:
1599                 list = &transaction->t_sync_datalist;
1600                 break;
1601         case BJ_Metadata:
1602                 transaction->t_nr_buffers--;
1603                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1604                 list = &transaction->t_buffers;
1605                 break;
1606         case BJ_Forget:
1607                 list = &transaction->t_forget;
1608                 break;
1609         case BJ_IO:
1610                 list = &transaction->t_iobuf_list;
1611                 break;
1612         case BJ_Shadow:
1613                 list = &transaction->t_shadow_list;
1614                 break;
1615         case BJ_LogCtl:
1616                 list = &transaction->t_log_list;
1617                 break;
1618         case BJ_Reserved:
1619                 list = &transaction->t_reserved_list;
1620                 break;
1621         case BJ_Locked:
1622                 list = &transaction->t_locked_list;
1623                 break;
1624         }
1625
1626         __blist_del_buffer(list, jh);
1627         jh->b_jlist = BJ_None;
1628         if (test_clear_buffer_jbddirty(bh))
1629                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1630 }
1631
1632 void __journal_unfile_buffer(struct journal_head *jh)
1633 {
1634         __journal_temp_unlink_buffer(jh);
1635         jh->b_transaction = NULL;
1636 }
1637
1638 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1639 {
1640         jbd_lock_bh_state(jh2bh(jh));
1641         spin_lock(&journal->j_list_lock);
1642         __journal_unfile_buffer(jh);
1643         spin_unlock(&journal->j_list_lock);
1644         jbd_unlock_bh_state(jh2bh(jh));
1645 }
1646
1647 /*
1648  * Called from journal_try_to_free_buffers().
1649  *
1650  * Called under jbd_lock_bh_state(bh)
1651  */
1652 static void
1653 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1654 {
1655         struct journal_head *jh;
1656
1657         jh = bh2jh(bh);
1658
1659         if (buffer_locked(bh) || buffer_dirty(bh))
1660                 goto out;
1661
1662         if (jh->b_next_transaction != NULL)
1663                 goto out;
1664
1665         spin_lock(&journal->j_list_lock);
1666         if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1667                 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1668                         /* A written-back ordered data buffer */
1669                         JBUFFER_TRACE(jh, "release data");
1670                         __journal_unfile_buffer(jh);
1671                         journal_remove_journal_head(bh);
1672                         __brelse(bh);
1673                 }
1674         } else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1675                 /* written-back checkpointed metadata buffer */
1676                 if (jh->b_jlist == BJ_None) {
1677                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1678                         __journal_remove_checkpoint(jh);
1679                         journal_remove_journal_head(bh);
1680                         __brelse(bh);
1681                 }
1682         }
1683         spin_unlock(&journal->j_list_lock);
1684 out:
1685         return;
1686 }
1687
1688 /*
1689  * journal_try_to_free_buffers() could race with journal_commit_transaction()
1690  * The latter might still hold the a count on buffers when inspecting
1691  * them on t_syncdata_list or t_locked_list.
1692  *
1693  * journal_try_to_free_buffers() will call this function to
1694  * wait for the current transaction to finish syncing data buffers, before
1695  * tryinf to free that buffer.
1696  *
1697  * Called with journal->j_state_lock held.
1698  */
1699 static void journal_wait_for_transaction_sync_data(journal_t *journal)
1700 {
1701         transaction_t *transaction = NULL;
1702         tid_t tid;
1703
1704         spin_lock(&journal->j_state_lock);
1705         transaction = journal->j_committing_transaction;
1706
1707         if (!transaction) {
1708                 spin_unlock(&journal->j_state_lock);
1709                 return;
1710         }
1711
1712         tid = transaction->t_tid;
1713         spin_unlock(&journal->j_state_lock);
1714         log_wait_commit(journal, tid);
1715 }
1716
1717 /**
1718  * int journal_try_to_free_buffers() - try to free page buffers.
1719  * @journal: journal for operation
1720  * @page: to try and free
1721  * @gfp_mask: we use the mask to detect how hard should we try to release
1722  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1723  * release the buffers.
1724  *
1725  *
1726  * For all the buffers on this page,
1727  * if they are fully written out ordered data, move them onto BUF_CLEAN
1728  * so try_to_free_buffers() can reap them.
1729  *
1730  * This function returns non-zero if we wish try_to_free_buffers()
1731  * to be called. We do this if the page is releasable by try_to_free_buffers().
1732  * We also do it if the page has locked or dirty buffers and the caller wants
1733  * us to perform sync or async writeout.
1734  *
1735  * This complicates JBD locking somewhat.  We aren't protected by the
1736  * BKL here.  We wish to remove the buffer from its committing or
1737  * running transaction's ->t_datalist via __journal_unfile_buffer.
1738  *
1739  * This may *change* the value of transaction_t->t_datalist, so anyone
1740  * who looks at t_datalist needs to lock against this function.
1741  *
1742  * Even worse, someone may be doing a journal_dirty_data on this
1743  * buffer.  So we need to lock against that.  journal_dirty_data()
1744  * will come out of the lock with the buffer dirty, which makes it
1745  * ineligible for release here.
1746  *
1747  * Who else is affected by this?  hmm...  Really the only contender
1748  * is do_get_write_access() - it could be looking at the buffer while
1749  * journal_try_to_free_buffer() is changing its state.  But that
1750  * cannot happen because we never reallocate freed data as metadata
1751  * while the data is part of a transaction.  Yes?
1752  *
1753  * Return 0 on failure, 1 on success
1754  */
1755 int journal_try_to_free_buffers(journal_t *journal,
1756                                 struct page *page, gfp_t gfp_mask)
1757 {
1758         struct buffer_head *head;
1759         struct buffer_head *bh;
1760         int ret = 0;
1761
1762         J_ASSERT(PageLocked(page));
1763
1764         head = page_buffers(page);
1765         bh = head;
1766         do {
1767                 struct journal_head *jh;
1768
1769                 /*
1770                  * We take our own ref against the journal_head here to avoid
1771                  * having to add tons of locking around each instance of
1772                  * journal_remove_journal_head() and journal_put_journal_head().
1773                  */
1774                 jh = journal_grab_journal_head(bh);
1775                 if (!jh)
1776                         continue;
1777
1778                 jbd_lock_bh_state(bh);
1779                 __journal_try_to_free_buffer(journal, bh);
1780                 journal_put_journal_head(jh);
1781                 jbd_unlock_bh_state(bh);
1782                 if (buffer_jbd(bh))
1783                         goto busy;
1784         } while ((bh = bh->b_this_page) != head);
1785
1786         ret = try_to_free_buffers(page);
1787
1788         /*
1789          * There are a number of places where journal_try_to_free_buffers()
1790          * could race with journal_commit_transaction(), the later still
1791          * holds the reference to the buffers to free while processing them.
1792          * try_to_free_buffers() failed to free those buffers. Some of the
1793          * caller of releasepage() request page buffers to be dropped, otherwise
1794          * treat the fail-to-free as errors (such as generic_file_direct_IO())
1795          *
1796          * So, if the caller of try_to_release_page() wants the synchronous
1797          * behaviour(i.e make sure buffers are dropped upon return),
1798          * let's wait for the current transaction to finish flush of
1799          * dirty data buffers, then try to free those buffers again,
1800          * with the journal locked.
1801          */
1802         if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1803                 journal_wait_for_transaction_sync_data(journal);
1804                 ret = try_to_free_buffers(page);
1805         }
1806
1807 busy:
1808         return ret;
1809 }
1810
1811 /*
1812  * This buffer is no longer needed.  If it is on an older transaction's
1813  * checkpoint list we need to record it on this transaction's forget list
1814  * to pin this buffer (and hence its checkpointing transaction) down until
1815  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1816  * release it.
1817  * Returns non-zero if JBD no longer has an interest in the buffer.
1818  *
1819  * Called under j_list_lock.
1820  *
1821  * Called under jbd_lock_bh_state(bh).
1822  */
1823 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1824 {
1825         int may_free = 1;
1826         struct buffer_head *bh = jh2bh(jh);
1827
1828         __journal_unfile_buffer(jh);
1829
1830         if (jh->b_cp_transaction) {
1831                 JBUFFER_TRACE(jh, "on running+cp transaction");
1832                 __journal_file_buffer(jh, transaction, BJ_Forget);
1833                 clear_buffer_jbddirty(bh);
1834                 may_free = 0;
1835         } else {
1836                 JBUFFER_TRACE(jh, "on running transaction");
1837                 journal_remove_journal_head(bh);
1838                 __brelse(bh);
1839         }
1840         return may_free;
1841 }
1842
1843 /*
1844  * journal_invalidatepage
1845  *
1846  * This code is tricky.  It has a number of cases to deal with.
1847  *
1848  * There are two invariants which this code relies on:
1849  *
1850  * i_size must be updated on disk before we start calling invalidatepage on the
1851  * data.
1852  *
1853  *  This is done in ext3 by defining an ext3_setattr method which
1854  *  updates i_size before truncate gets going.  By maintaining this
1855  *  invariant, we can be sure that it is safe to throw away any buffers
1856  *  attached to the current transaction: once the transaction commits,
1857  *  we know that the data will not be needed.
1858  *
1859  *  Note however that we can *not* throw away data belonging to the
1860  *  previous, committing transaction!
1861  *
1862  * Any disk blocks which *are* part of the previous, committing
1863  * transaction (and which therefore cannot be discarded immediately) are
1864  * not going to be reused in the new running transaction
1865  *
1866  *  The bitmap committed_data images guarantee this: any block which is
1867  *  allocated in one transaction and removed in the next will be marked
1868  *  as in-use in the committed_data bitmap, so cannot be reused until
1869  *  the next transaction to delete the block commits.  This means that
1870  *  leaving committing buffers dirty is quite safe: the disk blocks
1871  *  cannot be reallocated to a different file and so buffer aliasing is
1872  *  not possible.
1873  *
1874  *
1875  * The above applies mainly to ordered data mode.  In writeback mode we
1876  * don't make guarantees about the order in which data hits disk --- in
1877  * particular we don't guarantee that new dirty data is flushed before
1878  * transaction commit --- so it is always safe just to discard data
1879  * immediately in that mode.  --sct
1880  */
1881
1882 /*
1883  * The journal_unmap_buffer helper function returns zero if the buffer
1884  * concerned remains pinned as an anonymous buffer belonging to an older
1885  * transaction.
1886  *
1887  * We're outside-transaction here.  Either or both of j_running_transaction
1888  * and j_committing_transaction may be NULL.
1889  */
1890 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1891 {
1892         transaction_t *transaction;
1893         struct journal_head *jh;
1894         int may_free = 1;
1895         int ret;
1896
1897         BUFFER_TRACE(bh, "entry");
1898
1899         /*
1900          * It is safe to proceed here without the j_list_lock because the
1901          * buffers cannot be stolen by try_to_free_buffers as long as we are
1902          * holding the page lock. --sct
1903          */
1904
1905         if (!buffer_jbd(bh))
1906                 goto zap_buffer_unlocked;
1907
1908         spin_lock(&journal->j_state_lock);
1909         jbd_lock_bh_state(bh);
1910         spin_lock(&journal->j_list_lock);
1911
1912         jh = journal_grab_journal_head(bh);
1913         if (!jh)
1914                 goto zap_buffer_no_jh;
1915
1916         transaction = jh->b_transaction;
1917         if (transaction == NULL) {
1918                 /* First case: not on any transaction.  If it
1919                  * has no checkpoint link, then we can zap it:
1920                  * it's a writeback-mode buffer so we don't care
1921                  * if it hits disk safely. */
1922                 if (!jh->b_cp_transaction) {
1923                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1924                         goto zap_buffer;
1925                 }
1926
1927                 if (!buffer_dirty(bh)) {
1928                         /* bdflush has written it.  We can drop it now */
1929                         goto zap_buffer;
1930                 }
1931
1932                 /* OK, it must be in the journal but still not
1933                  * written fully to disk: it's metadata or
1934                  * journaled data... */
1935
1936                 if (journal->j_running_transaction) {
1937                         /* ... and once the current transaction has
1938                          * committed, the buffer won't be needed any
1939                          * longer. */
1940                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1941                         ret = __dispose_buffer(jh,
1942                                         journal->j_running_transaction);
1943                         journal_put_journal_head(jh);
1944                         spin_unlock(&journal->j_list_lock);
1945                         jbd_unlock_bh_state(bh);
1946                         spin_unlock(&journal->j_state_lock);
1947                         return ret;
1948                 } else {
1949                         /* There is no currently-running transaction. So the
1950                          * orphan record which we wrote for this file must have
1951                          * passed into commit.  We must attach this buffer to
1952                          * the committing transaction, if it exists. */
1953                         if (journal->j_committing_transaction) {
1954                                 JBUFFER_TRACE(jh, "give to committing trans");
1955                                 ret = __dispose_buffer(jh,
1956                                         journal->j_committing_transaction);
1957                                 journal_put_journal_head(jh);
1958                                 spin_unlock(&journal->j_list_lock);
1959                                 jbd_unlock_bh_state(bh);
1960                                 spin_unlock(&journal->j_state_lock);
1961                                 return ret;
1962                         } else {
1963                                 /* The orphan record's transaction has
1964                                  * committed.  We can cleanse this buffer */
1965                                 clear_buffer_jbddirty(bh);
1966                                 goto zap_buffer;
1967                         }
1968                 }
1969         } else if (transaction == journal->j_committing_transaction) {
1970                 JBUFFER_TRACE(jh, "on committing transaction");
1971                 if (jh->b_jlist == BJ_Locked) {
1972                         /*
1973                          * The buffer is on the committing transaction's locked
1974                          * list.  We have the buffer locked, so I/O has
1975                          * completed.  So we can nail the buffer now.
1976                          */
1977                         may_free = __dispose_buffer(jh, transaction);
1978                         goto zap_buffer;
1979                 }
1980                 /*
1981                  * If it is committing, we simply cannot touch it.  We
1982                  * can remove it's next_transaction pointer from the
1983                  * running transaction if that is set, but nothing
1984                  * else. */
1985                 set_buffer_freed(bh);
1986                 if (jh->b_next_transaction) {
1987                         J_ASSERT(jh->b_next_transaction ==
1988                                         journal->j_running_transaction);
1989                         jh->b_next_transaction = NULL;
1990                 }
1991                 journal_put_journal_head(jh);
1992                 spin_unlock(&journal->j_list_lock);
1993                 jbd_unlock_bh_state(bh);
1994                 spin_unlock(&journal->j_state_lock);
1995                 return 0;
1996         } else {
1997                 /* Good, the buffer belongs to the running transaction.
1998                  * We are writing our own transaction's data, not any
1999                  * previous one's, so it is safe to throw it away
2000                  * (remember that we expect the filesystem to have set
2001                  * i_size already for this truncate so recovery will not
2002                  * expose the disk blocks we are discarding here.) */
2003                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2004                 JBUFFER_TRACE(jh, "on running transaction");
2005                 may_free = __dispose_buffer(jh, transaction);
2006         }
2007
2008 zap_buffer:
2009         journal_put_journal_head(jh);
2010 zap_buffer_no_jh:
2011         spin_unlock(&journal->j_list_lock);
2012         jbd_unlock_bh_state(bh);
2013         spin_unlock(&journal->j_state_lock);
2014 zap_buffer_unlocked:
2015         clear_buffer_dirty(bh);
2016         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2017         clear_buffer_mapped(bh);
2018         clear_buffer_req(bh);
2019         clear_buffer_new(bh);
2020         bh->b_bdev = NULL;
2021         return may_free;
2022 }
2023
2024 /**
2025  * void journal_invalidatepage() - invalidate a journal page
2026  * @journal: journal to use for flush
2027  * @page:    page to flush
2028  * @offset:  length of page to invalidate.
2029  *
2030  * Reap page buffers containing data after offset in page.
2031  */
2032 void journal_invalidatepage(journal_t *journal,
2033                       struct page *page,
2034                       unsigned long offset)
2035 {
2036         struct buffer_head *head, *bh, *next;
2037         unsigned int curr_off = 0;
2038         int may_free = 1;
2039
2040         if (!PageLocked(page))
2041                 BUG();
2042         if (!page_has_buffers(page))
2043                 return;
2044
2045         /* We will potentially be playing with lists other than just the
2046          * data lists (especially for journaled data mode), so be
2047          * cautious in our locking. */
2048
2049         head = bh = page_buffers(page);
2050         do {
2051                 unsigned int next_off = curr_off + bh->b_size;
2052                 next = bh->b_this_page;
2053
2054                 if (offset <= curr_off) {
2055                         /* This block is wholly outside the truncation point */
2056                         lock_buffer(bh);
2057                         may_free &= journal_unmap_buffer(journal, bh);
2058                         unlock_buffer(bh);
2059                 }
2060                 curr_off = next_off;
2061                 bh = next;
2062
2063         } while (bh != head);
2064
2065         if (!offset) {
2066                 if (may_free && try_to_free_buffers(page))
2067                         J_ASSERT(!page_has_buffers(page));
2068         }
2069 }
2070
2071 /*
2072  * File a buffer on the given transaction list.
2073  */
2074 void __journal_file_buffer(struct journal_head *jh,
2075                         transaction_t *transaction, int jlist)
2076 {
2077         struct journal_head **list = NULL;
2078         int was_dirty = 0;
2079         struct buffer_head *bh = jh2bh(jh);
2080
2081         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2082         assert_spin_locked(&transaction->t_journal->j_list_lock);
2083
2084         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2085         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2086                                 jh->b_transaction == NULL);
2087
2088         if (jh->b_transaction && jh->b_jlist == jlist)
2089                 return;
2090
2091         /* The following list of buffer states needs to be consistent
2092          * with __jbd_unexpected_dirty_buffer()'s handling of dirty
2093          * state. */
2094
2095         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096             jlist == BJ_Shadow || jlist == BJ_Forget) {
2097                 if (test_clear_buffer_dirty(bh) ||
2098                     test_clear_buffer_jbddirty(bh))
2099                         was_dirty = 1;
2100         }
2101
2102         if (jh->b_transaction)
2103                 __journal_temp_unlink_buffer(jh);
2104         jh->b_transaction = transaction;
2105
2106         switch (jlist) {
2107         case BJ_None:
2108                 J_ASSERT_JH(jh, !jh->b_committed_data);
2109                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2110                 return;
2111         case BJ_SyncData:
2112                 list = &transaction->t_sync_datalist;
2113                 break;
2114         case BJ_Metadata:
2115                 transaction->t_nr_buffers++;
2116                 list = &transaction->t_buffers;
2117                 break;
2118         case BJ_Forget:
2119                 list = &transaction->t_forget;
2120                 break;
2121         case BJ_IO:
2122                 list = &transaction->t_iobuf_list;
2123                 break;
2124         case BJ_Shadow:
2125                 list = &transaction->t_shadow_list;
2126                 break;
2127         case BJ_LogCtl:
2128                 list = &transaction->t_log_list;
2129                 break;
2130         case BJ_Reserved:
2131                 list = &transaction->t_reserved_list;
2132                 break;
2133         case BJ_Locked:
2134                 list =  &transaction->t_locked_list;
2135                 break;
2136         }
2137
2138         __blist_add_buffer(list, jh);
2139         jh->b_jlist = jlist;
2140
2141         if (was_dirty)
2142                 set_buffer_jbddirty(bh);
2143 }
2144
2145 void journal_file_buffer(struct journal_head *jh,
2146                                 transaction_t *transaction, int jlist)
2147 {
2148         jbd_lock_bh_state(jh2bh(jh));
2149         spin_lock(&transaction->t_journal->j_list_lock);
2150         __journal_file_buffer(jh, transaction, jlist);
2151         spin_unlock(&transaction->t_journal->j_list_lock);
2152         jbd_unlock_bh_state(jh2bh(jh));
2153 }
2154
2155 /*
2156  * Remove a buffer from its current buffer list in preparation for
2157  * dropping it from its current transaction entirely.  If the buffer has
2158  * already started to be used by a subsequent transaction, refile the
2159  * buffer on that transaction's metadata list.
2160  *
2161  * Called under journal->j_list_lock
2162  *
2163  * Called under jbd_lock_bh_state(jh2bh(jh))
2164  */
2165 void __journal_refile_buffer(struct journal_head *jh)
2166 {
2167         int was_dirty;
2168         struct buffer_head *bh = jh2bh(jh);
2169
2170         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2171         if (jh->b_transaction)
2172                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2173
2174         /* If the buffer is now unused, just drop it. */
2175         if (jh->b_next_transaction == NULL) {
2176                 __journal_unfile_buffer(jh);
2177                 return;
2178         }
2179
2180         /*
2181          * It has been modified by a later transaction: add it to the new
2182          * transaction's metadata list.
2183          */
2184
2185         was_dirty = test_clear_buffer_jbddirty(bh);
2186         __journal_temp_unlink_buffer(jh);
2187         jh->b_transaction = jh->b_next_transaction;
2188         jh->b_next_transaction = NULL;
2189         __journal_file_buffer(jh, jh->b_transaction,
2190                                 jh->b_modified ? BJ_Metadata : BJ_Reserved);
2191         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2192
2193         if (was_dirty)
2194                 set_buffer_jbddirty(bh);
2195 }
2196
2197 /*
2198  * For the unlocked version of this call, also make sure that any
2199  * hanging journal_head is cleaned up if necessary.
2200  *
2201  * __journal_refile_buffer is usually called as part of a single locked
2202  * operation on a buffer_head, in which the caller is probably going to
2203  * be hooking the journal_head onto other lists.  In that case it is up
2204  * to the caller to remove the journal_head if necessary.  For the
2205  * unlocked journal_refile_buffer call, the caller isn't going to be
2206  * doing anything else to the buffer so we need to do the cleanup
2207  * ourselves to avoid a jh leak.
2208  *
2209  * *** The journal_head may be freed by this call! ***
2210  */
2211 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2212 {
2213         struct buffer_head *bh = jh2bh(jh);
2214
2215         jbd_lock_bh_state(bh);
2216         spin_lock(&journal->j_list_lock);
2217
2218         __journal_refile_buffer(jh);
2219         jbd_unlock_bh_state(bh);
2220         journal_remove_journal_head(bh);
2221
2222         spin_unlock(&journal->j_list_lock);
2223         __brelse(bh);
2224 }