]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
jbd2: refine waiting for shadow buffers
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  * 
319  *
320  * Return value:
321  *  <0: Error
322  * >=0: Finished OK
323  *
324  * On success:
325  * Bit 0 set == escape performed on the data
326  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
327  */
328
329 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
330                                   struct journal_head  *jh_in,
331                                   struct buffer_head **bh_out,
332                                   sector_t blocknr)
333 {
334         int need_copy_out = 0;
335         int done_copy_out = 0;
336         int do_escape = 0;
337         char *mapped_data;
338         struct buffer_head *new_bh;
339         struct page *new_page;
340         unsigned int new_offset;
341         struct buffer_head *bh_in = jh2bh(jh_in);
342         journal_t *journal = transaction->t_journal;
343
344         /*
345          * The buffer really shouldn't be locked: only the current committing
346          * transaction is allowed to write it, so nobody else is allowed
347          * to do any IO.
348          *
349          * akpm: except if we're journalling data, and write() output is
350          * also part of a shared mapping, and another thread has
351          * decided to launch a writepage() against this buffer.
352          */
353         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
354
355 retry_alloc:
356         new_bh = alloc_buffer_head(GFP_NOFS);
357         if (!new_bh) {
358                 /*
359                  * Failure is not an option, but __GFP_NOFAIL is going
360                  * away; so we retry ourselves here.
361                  */
362                 congestion_wait(BLK_RW_ASYNC, HZ/50);
363                 goto retry_alloc;
364         }
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         jbd_lock_bh_state(bh_in);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 jbd_unlock_bh_state(bh_in);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 jbd_lock_bh_state(bh_in);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         new_bh->b_private = bh_in;
455         set_buffer_mapped(new_bh);
456         set_buffer_dirty(new_bh);
457
458         *bh_out = new_bh;
459
460         /*
461          * The to-be-written buffer needs to get moved to the io queue,
462          * and the original buffer whose contents we are shadowing or
463          * copying is moved to the transaction's shadow queue.
464          */
465         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466         spin_lock(&journal->j_list_lock);
467         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468         spin_unlock(&journal->j_list_lock);
469         set_buffer_shadow(bh_in);
470         jbd_unlock_bh_state(bh_in);
471
472         return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479
480 /*
481  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
482  *
483  * Called with the journal already locked.
484  *
485  * Called under j_state_lock
486  */
487
488 int __jbd2_log_space_left(journal_t *journal)
489 {
490         int left = journal->j_free;
491
492         /* assert_spin_locked(&journal->j_state_lock); */
493
494         /*
495          * Be pessimistic here about the number of those free blocks which
496          * might be required for log descriptor control blocks.
497          */
498
499 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
500
501         left -= MIN_LOG_RESERVED_BLOCKS;
502
503         if (left <= 0)
504                 return 0;
505         left -= (left >> 3);
506         return left;
507 }
508
509 /*
510  * Called with j_state_lock locked for writing.
511  * Returns true if a transaction commit was started.
512  */
513 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
514 {
515         /* Return if the txn has already requested to be committed */
516         if (journal->j_commit_request == target)
517                 return 0;
518
519         /*
520          * The only transaction we can possibly wait upon is the
521          * currently running transaction (if it exists).  Otherwise,
522          * the target tid must be an old one.
523          */
524         if (journal->j_running_transaction &&
525             journal->j_running_transaction->t_tid == target) {
526                 /*
527                  * We want a new commit: OK, mark the request and wakeup the
528                  * commit thread.  We do _not_ do the commit ourselves.
529                  */
530
531                 journal->j_commit_request = target;
532                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
533                           journal->j_commit_request,
534                           journal->j_commit_sequence);
535                 journal->j_running_transaction->t_requested = jiffies;
536                 wake_up(&journal->j_wait_commit);
537                 return 1;
538         } else if (!tid_geq(journal->j_commit_request, target))
539                 /* This should never happen, but if it does, preserve
540                    the evidence before kjournald goes into a loop and
541                    increments j_commit_sequence beyond all recognition. */
542                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
543                           journal->j_commit_request,
544                           journal->j_commit_sequence,
545                           target, journal->j_running_transaction ? 
546                           journal->j_running_transaction->t_tid : 0);
547         return 0;
548 }
549
550 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
551 {
552         int ret;
553
554         write_lock(&journal->j_state_lock);
555         ret = __jbd2_log_start_commit(journal, tid);
556         write_unlock(&journal->j_state_lock);
557         return ret;
558 }
559
560 /*
561  * Force and wait upon a commit if the calling process is not within
562  * transaction.  This is used for forcing out undo-protected data which contains
563  * bitmaps, when the fs is running out of space.
564  *
565  * We can only force the running transaction if we don't have an active handle;
566  * otherwise, we will deadlock.
567  *
568  * Returns true if a transaction was started.
569  */
570 int jbd2_journal_force_commit_nested(journal_t *journal)
571 {
572         transaction_t *transaction = NULL;
573         tid_t tid;
574         int need_to_start = 0;
575
576         read_lock(&journal->j_state_lock);
577         if (journal->j_running_transaction && !current->journal_info) {
578                 transaction = journal->j_running_transaction;
579                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
580                         need_to_start = 1;
581         } else if (journal->j_committing_transaction)
582                 transaction = journal->j_committing_transaction;
583
584         if (!transaction) {
585                 read_unlock(&journal->j_state_lock);
586                 return 0;       /* Nothing to retry */
587         }
588
589         tid = transaction->t_tid;
590         read_unlock(&journal->j_state_lock);
591         if (need_to_start)
592                 jbd2_log_start_commit(journal, tid);
593         jbd2_log_wait_commit(journal, tid);
594         return 1;
595 }
596
597 /*
598  * Start a commit of the current running transaction (if any).  Returns true
599  * if a transaction is going to be committed (or is currently already
600  * committing), and fills its tid in at *ptid
601  */
602 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
603 {
604         int ret = 0;
605
606         write_lock(&journal->j_state_lock);
607         if (journal->j_running_transaction) {
608                 tid_t tid = journal->j_running_transaction->t_tid;
609
610                 __jbd2_log_start_commit(journal, tid);
611                 /* There's a running transaction and we've just made sure
612                  * it's commit has been scheduled. */
613                 if (ptid)
614                         *ptid = tid;
615                 ret = 1;
616         } else if (journal->j_committing_transaction) {
617                 /*
618                  * If commit has been started, then we have to wait for
619                  * completion of that transaction.
620                  */
621                 if (ptid)
622                         *ptid = journal->j_committing_transaction->t_tid;
623                 ret = 1;
624         }
625         write_unlock(&journal->j_state_lock);
626         return ret;
627 }
628
629 /*
630  * Return 1 if a given transaction has not yet sent barrier request
631  * connected with a transaction commit. If 0 is returned, transaction
632  * may or may not have sent the barrier. Used to avoid sending barrier
633  * twice in common cases.
634  */
635 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
636 {
637         int ret = 0;
638         transaction_t *commit_trans;
639
640         if (!(journal->j_flags & JBD2_BARRIER))
641                 return 0;
642         read_lock(&journal->j_state_lock);
643         /* Transaction already committed? */
644         if (tid_geq(journal->j_commit_sequence, tid))
645                 goto out;
646         commit_trans = journal->j_committing_transaction;
647         if (!commit_trans || commit_trans->t_tid != tid) {
648                 ret = 1;
649                 goto out;
650         }
651         /*
652          * Transaction is being committed and we already proceeded to
653          * submitting a flush to fs partition?
654          */
655         if (journal->j_fs_dev != journal->j_dev) {
656                 if (!commit_trans->t_need_data_flush ||
657                     commit_trans->t_state >= T_COMMIT_DFLUSH)
658                         goto out;
659         } else {
660                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
661                         goto out;
662         }
663         ret = 1;
664 out:
665         read_unlock(&journal->j_state_lock);
666         return ret;
667 }
668 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
669
670 /*
671  * Wait for a specified commit to complete.
672  * The caller may not hold the journal lock.
673  */
674 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
675 {
676         int err = 0;
677
678         read_lock(&journal->j_state_lock);
679 #ifdef CONFIG_JBD2_DEBUG
680         if (!tid_geq(journal->j_commit_request, tid)) {
681                 printk(KERN_EMERG
682                        "%s: error: j_commit_request=%d, tid=%d\n",
683                        __func__, journal->j_commit_request, tid);
684         }
685 #endif
686         while (tid_gt(tid, journal->j_commit_sequence)) {
687                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
688                                   tid, journal->j_commit_sequence);
689                 wake_up(&journal->j_wait_commit);
690                 read_unlock(&journal->j_state_lock);
691                 wait_event(journal->j_wait_done_commit,
692                                 !tid_gt(tid, journal->j_commit_sequence));
693                 read_lock(&journal->j_state_lock);
694         }
695         read_unlock(&journal->j_state_lock);
696
697         if (unlikely(is_journal_aborted(journal))) {
698                 printk(KERN_EMERG "journal commit I/O error\n");
699                 err = -EIO;
700         }
701         return err;
702 }
703
704 /*
705  * When this function returns the transaction corresponding to tid
706  * will be completed.  If the transaction has currently running, start
707  * committing that transaction before waiting for it to complete.  If
708  * the transaction id is stale, it is by definition already completed,
709  * so just return SUCCESS.
710  */
711 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
712 {
713         int     need_to_wait = 1;
714
715         read_lock(&journal->j_state_lock);
716         if (journal->j_running_transaction &&
717             journal->j_running_transaction->t_tid == tid) {
718                 if (journal->j_commit_request != tid) {
719                         /* transaction not yet started, so request it */
720                         read_unlock(&journal->j_state_lock);
721                         jbd2_log_start_commit(journal, tid);
722                         goto wait_commit;
723                 }
724         } else if (!(journal->j_committing_transaction &&
725                      journal->j_committing_transaction->t_tid == tid))
726                 need_to_wait = 0;
727         read_unlock(&journal->j_state_lock);
728         if (!need_to_wait)
729                 return 0;
730 wait_commit:
731         return jbd2_log_wait_commit(journal, tid);
732 }
733 EXPORT_SYMBOL(jbd2_complete_transaction);
734
735 /*
736  * Log buffer allocation routines:
737  */
738
739 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
740 {
741         unsigned long blocknr;
742
743         write_lock(&journal->j_state_lock);
744         J_ASSERT(journal->j_free > 1);
745
746         blocknr = journal->j_head;
747         journal->j_head++;
748         journal->j_free--;
749         if (journal->j_head == journal->j_last)
750                 journal->j_head = journal->j_first;
751         write_unlock(&journal->j_state_lock);
752         return jbd2_journal_bmap(journal, blocknr, retp);
753 }
754
755 /*
756  * Conversion of logical to physical block numbers for the journal
757  *
758  * On external journals the journal blocks are identity-mapped, so
759  * this is a no-op.  If needed, we can use j_blk_offset - everything is
760  * ready.
761  */
762 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
763                  unsigned long long *retp)
764 {
765         int err = 0;
766         unsigned long long ret;
767
768         if (journal->j_inode) {
769                 ret = bmap(journal->j_inode, blocknr);
770                 if (ret)
771                         *retp = ret;
772                 else {
773                         printk(KERN_ALERT "%s: journal block not found "
774                                         "at offset %lu on %s\n",
775                                __func__, blocknr, journal->j_devname);
776                         err = -EIO;
777                         __journal_abort_soft(journal, err);
778                 }
779         } else {
780                 *retp = blocknr; /* +journal->j_blk_offset */
781         }
782         return err;
783 }
784
785 /*
786  * We play buffer_head aliasing tricks to write data/metadata blocks to
787  * the journal without copying their contents, but for journal
788  * descriptor blocks we do need to generate bona fide buffers.
789  *
790  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
791  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
792  * But we don't bother doing that, so there will be coherency problems with
793  * mmaps of blockdevs which hold live JBD-controlled filesystems.
794  */
795 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
796 {
797         struct buffer_head *bh;
798         unsigned long long blocknr;
799         int err;
800
801         err = jbd2_journal_next_log_block(journal, &blocknr);
802
803         if (err)
804                 return NULL;
805
806         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
807         if (!bh)
808                 return NULL;
809         lock_buffer(bh);
810         memset(bh->b_data, 0, journal->j_blocksize);
811         set_buffer_uptodate(bh);
812         unlock_buffer(bh);
813         BUFFER_TRACE(bh, "return this buffer");
814         return bh;
815 }
816
817 /*
818  * Return tid of the oldest transaction in the journal and block in the journal
819  * where the transaction starts.
820  *
821  * If the journal is now empty, return which will be the next transaction ID
822  * we will write and where will that transaction start.
823  *
824  * The return value is 0 if journal tail cannot be pushed any further, 1 if
825  * it can.
826  */
827 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
828                               unsigned long *block)
829 {
830         transaction_t *transaction;
831         int ret;
832
833         read_lock(&journal->j_state_lock);
834         spin_lock(&journal->j_list_lock);
835         transaction = journal->j_checkpoint_transactions;
836         if (transaction) {
837                 *tid = transaction->t_tid;
838                 *block = transaction->t_log_start;
839         } else if ((transaction = journal->j_committing_transaction) != NULL) {
840                 *tid = transaction->t_tid;
841                 *block = transaction->t_log_start;
842         } else if ((transaction = journal->j_running_transaction) != NULL) {
843                 *tid = transaction->t_tid;
844                 *block = journal->j_head;
845         } else {
846                 *tid = journal->j_transaction_sequence;
847                 *block = journal->j_head;
848         }
849         ret = tid_gt(*tid, journal->j_tail_sequence);
850         spin_unlock(&journal->j_list_lock);
851         read_unlock(&journal->j_state_lock);
852
853         return ret;
854 }
855
856 /*
857  * Update information in journal structure and in on disk journal superblock
858  * about log tail. This function does not check whether information passed in
859  * really pushes log tail further. It's responsibility of the caller to make
860  * sure provided log tail information is valid (e.g. by holding
861  * j_checkpoint_mutex all the time between computing log tail and calling this
862  * function as is the case with jbd2_cleanup_journal_tail()).
863  *
864  * Requires j_checkpoint_mutex
865  */
866 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
867 {
868         unsigned long freed;
869
870         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
871
872         /*
873          * We cannot afford for write to remain in drive's caches since as
874          * soon as we update j_tail, next transaction can start reusing journal
875          * space and if we lose sb update during power failure we'd replay
876          * old transaction with possibly newly overwritten data.
877          */
878         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
879         write_lock(&journal->j_state_lock);
880         freed = block - journal->j_tail;
881         if (block < journal->j_tail)
882                 freed += journal->j_last - journal->j_first;
883
884         trace_jbd2_update_log_tail(journal, tid, block, freed);
885         jbd_debug(1,
886                   "Cleaning journal tail from %d to %d (offset %lu), "
887                   "freeing %lu\n",
888                   journal->j_tail_sequence, tid, block, freed);
889
890         journal->j_free += freed;
891         journal->j_tail_sequence = tid;
892         journal->j_tail = block;
893         write_unlock(&journal->j_state_lock);
894 }
895
896 /*
897  * This is a variaon of __jbd2_update_log_tail which checks for validity of
898  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
899  * with other threads updating log tail.
900  */
901 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
902 {
903         mutex_lock(&journal->j_checkpoint_mutex);
904         if (tid_gt(tid, journal->j_tail_sequence))
905                 __jbd2_update_log_tail(journal, tid, block);
906         mutex_unlock(&journal->j_checkpoint_mutex);
907 }
908
909 struct jbd2_stats_proc_session {
910         journal_t *journal;
911         struct transaction_stats_s *stats;
912         int start;
913         int max;
914 };
915
916 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
917 {
918         return *pos ? NULL : SEQ_START_TOKEN;
919 }
920
921 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
922 {
923         return NULL;
924 }
925
926 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
927 {
928         struct jbd2_stats_proc_session *s = seq->private;
929
930         if (v != SEQ_START_TOKEN)
931                 return 0;
932         seq_printf(seq, "%lu transactions (%lu requested), "
933                    "each up to %u blocks\n",
934                    s->stats->ts_tid, s->stats->ts_requested,
935                    s->journal->j_max_transaction_buffers);
936         if (s->stats->ts_tid == 0)
937                 return 0;
938         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
939             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
940         seq_printf(seq, "  %ums request delay\n",
941             (s->stats->ts_requested == 0) ? 0 :
942             jiffies_to_msecs(s->stats->run.rs_request_delay /
943                              s->stats->ts_requested));
944         seq_printf(seq, "  %ums running transaction\n",
945             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
946         seq_printf(seq, "  %ums transaction was being locked\n",
947             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
948         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
949             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
950         seq_printf(seq, "  %ums logging transaction\n",
951             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
952         seq_printf(seq, "  %lluus average transaction commit time\n",
953                    div_u64(s->journal->j_average_commit_time, 1000));
954         seq_printf(seq, "  %lu handles per transaction\n",
955             s->stats->run.rs_handle_count / s->stats->ts_tid);
956         seq_printf(seq, "  %lu blocks per transaction\n",
957             s->stats->run.rs_blocks / s->stats->ts_tid);
958         seq_printf(seq, "  %lu logged blocks per transaction\n",
959             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
960         return 0;
961 }
962
963 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
964 {
965 }
966
967 static const struct seq_operations jbd2_seq_info_ops = {
968         .start  = jbd2_seq_info_start,
969         .next   = jbd2_seq_info_next,
970         .stop   = jbd2_seq_info_stop,
971         .show   = jbd2_seq_info_show,
972 };
973
974 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
975 {
976         journal_t *journal = PDE_DATA(inode);
977         struct jbd2_stats_proc_session *s;
978         int rc, size;
979
980         s = kmalloc(sizeof(*s), GFP_KERNEL);
981         if (s == NULL)
982                 return -ENOMEM;
983         size = sizeof(struct transaction_stats_s);
984         s->stats = kmalloc(size, GFP_KERNEL);
985         if (s->stats == NULL) {
986                 kfree(s);
987                 return -ENOMEM;
988         }
989         spin_lock(&journal->j_history_lock);
990         memcpy(s->stats, &journal->j_stats, size);
991         s->journal = journal;
992         spin_unlock(&journal->j_history_lock);
993
994         rc = seq_open(file, &jbd2_seq_info_ops);
995         if (rc == 0) {
996                 struct seq_file *m = file->private_data;
997                 m->private = s;
998         } else {
999                 kfree(s->stats);
1000                 kfree(s);
1001         }
1002         return rc;
1003
1004 }
1005
1006 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1007 {
1008         struct seq_file *seq = file->private_data;
1009         struct jbd2_stats_proc_session *s = seq->private;
1010         kfree(s->stats);
1011         kfree(s);
1012         return seq_release(inode, file);
1013 }
1014
1015 static const struct file_operations jbd2_seq_info_fops = {
1016         .owner          = THIS_MODULE,
1017         .open           = jbd2_seq_info_open,
1018         .read           = seq_read,
1019         .llseek         = seq_lseek,
1020         .release        = jbd2_seq_info_release,
1021 };
1022
1023 static struct proc_dir_entry *proc_jbd2_stats;
1024
1025 static void jbd2_stats_proc_init(journal_t *journal)
1026 {
1027         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1028         if (journal->j_proc_entry) {
1029                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1030                                  &jbd2_seq_info_fops, journal);
1031         }
1032 }
1033
1034 static void jbd2_stats_proc_exit(journal_t *journal)
1035 {
1036         remove_proc_entry("info", journal->j_proc_entry);
1037         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1038 }
1039
1040 /*
1041  * Management for journal control blocks: functions to create and
1042  * destroy journal_t structures, and to initialise and read existing
1043  * journal blocks from disk.  */
1044
1045 /* First: create and setup a journal_t object in memory.  We initialise
1046  * very few fields yet: that has to wait until we have created the
1047  * journal structures from from scratch, or loaded them from disk. */
1048
1049 static journal_t * journal_init_common (void)
1050 {
1051         journal_t *journal;
1052         int err;
1053
1054         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1055         if (!journal)
1056                 return NULL;
1057
1058         init_waitqueue_head(&journal->j_wait_transaction_locked);
1059         init_waitqueue_head(&journal->j_wait_logspace);
1060         init_waitqueue_head(&journal->j_wait_done_commit);
1061         init_waitqueue_head(&journal->j_wait_checkpoint);
1062         init_waitqueue_head(&journal->j_wait_commit);
1063         init_waitqueue_head(&journal->j_wait_updates);
1064         mutex_init(&journal->j_barrier);
1065         mutex_init(&journal->j_checkpoint_mutex);
1066         spin_lock_init(&journal->j_revoke_lock);
1067         spin_lock_init(&journal->j_list_lock);
1068         rwlock_init(&journal->j_state_lock);
1069
1070         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1071         journal->j_min_batch_time = 0;
1072         journal->j_max_batch_time = 15000; /* 15ms */
1073
1074         /* The journal is marked for error until we succeed with recovery! */
1075         journal->j_flags = JBD2_ABORT;
1076
1077         /* Set up a default-sized revoke table for the new mount. */
1078         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1079         if (err) {
1080                 kfree(journal);
1081                 return NULL;
1082         }
1083
1084         spin_lock_init(&journal->j_history_lock);
1085
1086         return journal;
1087 }
1088
1089 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1090  *
1091  * Create a journal structure assigned some fixed set of disk blocks to
1092  * the journal.  We don't actually touch those disk blocks yet, but we
1093  * need to set up all of the mapping information to tell the journaling
1094  * system where the journal blocks are.
1095  *
1096  */
1097
1098 /**
1099  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1100  *  @bdev: Block device on which to create the journal
1101  *  @fs_dev: Device which hold journalled filesystem for this journal.
1102  *  @start: Block nr Start of journal.
1103  *  @len:  Length of the journal in blocks.
1104  *  @blocksize: blocksize of journalling device
1105  *
1106  *  Returns: a newly created journal_t *
1107  *
1108  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1109  *  range of blocks on an arbitrary block device.
1110  *
1111  */
1112 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1113                         struct block_device *fs_dev,
1114                         unsigned long long start, int len, int blocksize)
1115 {
1116         journal_t *journal = journal_init_common();
1117         struct buffer_head *bh;
1118         char *p;
1119         int n;
1120
1121         if (!journal)
1122                 return NULL;
1123
1124         /* journal descriptor can store up to n blocks -bzzz */
1125         journal->j_blocksize = blocksize;
1126         journal->j_dev = bdev;
1127         journal->j_fs_dev = fs_dev;
1128         journal->j_blk_offset = start;
1129         journal->j_maxlen = len;
1130         bdevname(journal->j_dev, journal->j_devname);
1131         p = journal->j_devname;
1132         while ((p = strchr(p, '/')))
1133                 *p = '!';
1134         jbd2_stats_proc_init(journal);
1135         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1136         journal->j_wbufsize = n;
1137         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1138         if (!journal->j_wbuf) {
1139                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1140                         __func__);
1141                 goto out_err;
1142         }
1143
1144         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1145         if (!bh) {
1146                 printk(KERN_ERR
1147                        "%s: Cannot get buffer for journal superblock\n",
1148                        __func__);
1149                 goto out_err;
1150         }
1151         journal->j_sb_buffer = bh;
1152         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1153
1154         return journal;
1155 out_err:
1156         kfree(journal->j_wbuf);
1157         jbd2_stats_proc_exit(journal);
1158         kfree(journal);
1159         return NULL;
1160 }
1161
1162 /**
1163  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1164  *  @inode: An inode to create the journal in
1165  *
1166  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1167  * the journal.  The inode must exist already, must support bmap() and
1168  * must have all data blocks preallocated.
1169  */
1170 journal_t * jbd2_journal_init_inode (struct inode *inode)
1171 {
1172         struct buffer_head *bh;
1173         journal_t *journal = journal_init_common();
1174         char *p;
1175         int err;
1176         int n;
1177         unsigned long long blocknr;
1178
1179         if (!journal)
1180                 return NULL;
1181
1182         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1183         journal->j_inode = inode;
1184         bdevname(journal->j_dev, journal->j_devname);
1185         p = journal->j_devname;
1186         while ((p = strchr(p, '/')))
1187                 *p = '!';
1188         p = journal->j_devname + strlen(journal->j_devname);
1189         sprintf(p, "-%lu", journal->j_inode->i_ino);
1190         jbd_debug(1,
1191                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1192                   journal, inode->i_sb->s_id, inode->i_ino,
1193                   (long long) inode->i_size,
1194                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1195
1196         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1197         journal->j_blocksize = inode->i_sb->s_blocksize;
1198         jbd2_stats_proc_init(journal);
1199
1200         /* journal descriptor can store up to n blocks -bzzz */
1201         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1202         journal->j_wbufsize = n;
1203         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1204         if (!journal->j_wbuf) {
1205                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1206                         __func__);
1207                 goto out_err;
1208         }
1209
1210         err = jbd2_journal_bmap(journal, 0, &blocknr);
1211         /* If that failed, give up */
1212         if (err) {
1213                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1214                        __func__);
1215                 goto out_err;
1216         }
1217
1218         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1219         if (!bh) {
1220                 printk(KERN_ERR
1221                        "%s: Cannot get buffer for journal superblock\n",
1222                        __func__);
1223                 goto out_err;
1224         }
1225         journal->j_sb_buffer = bh;
1226         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1227
1228         return journal;
1229 out_err:
1230         kfree(journal->j_wbuf);
1231         jbd2_stats_proc_exit(journal);
1232         kfree(journal);
1233         return NULL;
1234 }
1235
1236 /*
1237  * If the journal init or create aborts, we need to mark the journal
1238  * superblock as being NULL to prevent the journal destroy from writing
1239  * back a bogus superblock.
1240  */
1241 static void journal_fail_superblock (journal_t *journal)
1242 {
1243         struct buffer_head *bh = journal->j_sb_buffer;
1244         brelse(bh);
1245         journal->j_sb_buffer = NULL;
1246 }
1247
1248 /*
1249  * Given a journal_t structure, initialise the various fields for
1250  * startup of a new journaling session.  We use this both when creating
1251  * a journal, and after recovering an old journal to reset it for
1252  * subsequent use.
1253  */
1254
1255 static int journal_reset(journal_t *journal)
1256 {
1257         journal_superblock_t *sb = journal->j_superblock;
1258         unsigned long long first, last;
1259
1260         first = be32_to_cpu(sb->s_first);
1261         last = be32_to_cpu(sb->s_maxlen);
1262         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1263                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1264                        first, last);
1265                 journal_fail_superblock(journal);
1266                 return -EINVAL;
1267         }
1268
1269         journal->j_first = first;
1270         journal->j_last = last;
1271
1272         journal->j_head = first;
1273         journal->j_tail = first;
1274         journal->j_free = last - first;
1275
1276         journal->j_tail_sequence = journal->j_transaction_sequence;
1277         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1278         journal->j_commit_request = journal->j_commit_sequence;
1279
1280         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1281
1282         /*
1283          * As a special case, if the on-disk copy is already marked as needing
1284          * no recovery (s_start == 0), then we can safely defer the superblock
1285          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1286          * attempting a write to a potential-readonly device.
1287          */
1288         if (sb->s_start == 0) {
1289                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1290                         "(start %ld, seq %d, errno %d)\n",
1291                         journal->j_tail, journal->j_tail_sequence,
1292                         journal->j_errno);
1293                 journal->j_flags |= JBD2_FLUSHED;
1294         } else {
1295                 /* Lock here to make assertions happy... */
1296                 mutex_lock(&journal->j_checkpoint_mutex);
1297                 /*
1298                  * Update log tail information. We use WRITE_FUA since new
1299                  * transaction will start reusing journal space and so we
1300                  * must make sure information about current log tail is on
1301                  * disk before that.
1302                  */
1303                 jbd2_journal_update_sb_log_tail(journal,
1304                                                 journal->j_tail_sequence,
1305                                                 journal->j_tail,
1306                                                 WRITE_FUA);
1307                 mutex_unlock(&journal->j_checkpoint_mutex);
1308         }
1309         return jbd2_journal_start_thread(journal);
1310 }
1311
1312 static void jbd2_write_superblock(journal_t *journal, int write_op)
1313 {
1314         struct buffer_head *bh = journal->j_sb_buffer;
1315         int ret;
1316
1317         trace_jbd2_write_superblock(journal, write_op);
1318         if (!(journal->j_flags & JBD2_BARRIER))
1319                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1320         lock_buffer(bh);
1321         if (buffer_write_io_error(bh)) {
1322                 /*
1323                  * Oh, dear.  A previous attempt to write the journal
1324                  * superblock failed.  This could happen because the
1325                  * USB device was yanked out.  Or it could happen to
1326                  * be a transient write error and maybe the block will
1327                  * be remapped.  Nothing we can do but to retry the
1328                  * write and hope for the best.
1329                  */
1330                 printk(KERN_ERR "JBD2: previous I/O error detected "
1331                        "for journal superblock update for %s.\n",
1332                        journal->j_devname);
1333                 clear_buffer_write_io_error(bh);
1334                 set_buffer_uptodate(bh);
1335         }
1336         get_bh(bh);
1337         bh->b_end_io = end_buffer_write_sync;
1338         ret = submit_bh(write_op, bh);
1339         wait_on_buffer(bh);
1340         if (buffer_write_io_error(bh)) {
1341                 clear_buffer_write_io_error(bh);
1342                 set_buffer_uptodate(bh);
1343                 ret = -EIO;
1344         }
1345         if (ret) {
1346                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1347                        "journal superblock for %s.\n", ret,
1348                        journal->j_devname);
1349         }
1350 }
1351
1352 /**
1353  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1354  * @journal: The journal to update.
1355  * @tail_tid: TID of the new transaction at the tail of the log
1356  * @tail_block: The first block of the transaction at the tail of the log
1357  * @write_op: With which operation should we write the journal sb
1358  *
1359  * Update a journal's superblock information about log tail and write it to
1360  * disk, waiting for the IO to complete.
1361  */
1362 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1363                                      unsigned long tail_block, int write_op)
1364 {
1365         journal_superblock_t *sb = journal->j_superblock;
1366
1367         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1368         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1369                   tail_block, tail_tid);
1370
1371         sb->s_sequence = cpu_to_be32(tail_tid);
1372         sb->s_start    = cpu_to_be32(tail_block);
1373
1374         jbd2_write_superblock(journal, write_op);
1375
1376         /* Log is no longer empty */
1377         write_lock(&journal->j_state_lock);
1378         WARN_ON(!sb->s_sequence);
1379         journal->j_flags &= ~JBD2_FLUSHED;
1380         write_unlock(&journal->j_state_lock);
1381 }
1382
1383 /**
1384  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1385  * @journal: The journal to update.
1386  *
1387  * Update a journal's dynamic superblock fields to show that journal is empty.
1388  * Write updated superblock to disk waiting for IO to complete.
1389  */
1390 static void jbd2_mark_journal_empty(journal_t *journal)
1391 {
1392         journal_superblock_t *sb = journal->j_superblock;
1393
1394         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1395         read_lock(&journal->j_state_lock);
1396         /* Is it already empty? */
1397         if (sb->s_start == 0) {
1398                 read_unlock(&journal->j_state_lock);
1399                 return;
1400         }
1401         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1402                   journal->j_tail_sequence);
1403
1404         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1405         sb->s_start    = cpu_to_be32(0);
1406         read_unlock(&journal->j_state_lock);
1407
1408         jbd2_write_superblock(journal, WRITE_FUA);
1409
1410         /* Log is no longer empty */
1411         write_lock(&journal->j_state_lock);
1412         journal->j_flags |= JBD2_FLUSHED;
1413         write_unlock(&journal->j_state_lock);
1414 }
1415
1416
1417 /**
1418  * jbd2_journal_update_sb_errno() - Update error in the journal.
1419  * @journal: The journal to update.
1420  *
1421  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1422  * to complete.
1423  */
1424 void jbd2_journal_update_sb_errno(journal_t *journal)
1425 {
1426         journal_superblock_t *sb = journal->j_superblock;
1427
1428         read_lock(&journal->j_state_lock);
1429         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1430                   journal->j_errno);
1431         sb->s_errno    = cpu_to_be32(journal->j_errno);
1432         jbd2_superblock_csum_set(journal, sb);
1433         read_unlock(&journal->j_state_lock);
1434
1435         jbd2_write_superblock(journal, WRITE_SYNC);
1436 }
1437 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1438
1439 /*
1440  * Read the superblock for a given journal, performing initial
1441  * validation of the format.
1442  */
1443 static int journal_get_superblock(journal_t *journal)
1444 {
1445         struct buffer_head *bh;
1446         journal_superblock_t *sb;
1447         int err = -EIO;
1448
1449         bh = journal->j_sb_buffer;
1450
1451         J_ASSERT(bh != NULL);
1452         if (!buffer_uptodate(bh)) {
1453                 ll_rw_block(READ, 1, &bh);
1454                 wait_on_buffer(bh);
1455                 if (!buffer_uptodate(bh)) {
1456                         printk(KERN_ERR
1457                                 "JBD2: IO error reading journal superblock\n");
1458                         goto out;
1459                 }
1460         }
1461
1462         if (buffer_verified(bh))
1463                 return 0;
1464
1465         sb = journal->j_superblock;
1466
1467         err = -EINVAL;
1468
1469         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1470             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1471                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1472                 goto out;
1473         }
1474
1475         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1476         case JBD2_SUPERBLOCK_V1:
1477                 journal->j_format_version = 1;
1478                 break;
1479         case JBD2_SUPERBLOCK_V2:
1480                 journal->j_format_version = 2;
1481                 break;
1482         default:
1483                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1484                 goto out;
1485         }
1486
1487         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1488                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1489         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1490                 printk(KERN_WARNING "JBD2: journal file too short\n");
1491                 goto out;
1492         }
1493
1494         if (be32_to_cpu(sb->s_first) == 0 ||
1495             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1496                 printk(KERN_WARNING
1497                         "JBD2: Invalid start block of journal: %u\n",
1498                         be32_to_cpu(sb->s_first));
1499                 goto out;
1500         }
1501
1502         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1503             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1504                 /* Can't have checksum v1 and v2 on at the same time! */
1505                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1506                        "at the same time!\n");
1507                 goto out;
1508         }
1509
1510         if (!jbd2_verify_csum_type(journal, sb)) {
1511                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1512                 goto out;
1513         }
1514
1515         /* Load the checksum driver */
1516         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1517                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1518                 if (IS_ERR(journal->j_chksum_driver)) {
1519                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1520                         err = PTR_ERR(journal->j_chksum_driver);
1521                         journal->j_chksum_driver = NULL;
1522                         goto out;
1523                 }
1524         }
1525
1526         /* Check superblock checksum */
1527         if (!jbd2_superblock_csum_verify(journal, sb)) {
1528                 printk(KERN_ERR "JBD: journal checksum error\n");
1529                 goto out;
1530         }
1531
1532         /* Precompute checksum seed for all metadata */
1533         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1534                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1535                                                    sizeof(sb->s_uuid));
1536
1537         set_buffer_verified(bh);
1538
1539         return 0;
1540
1541 out:
1542         journal_fail_superblock(journal);
1543         return err;
1544 }
1545
1546 /*
1547  * Load the on-disk journal superblock and read the key fields into the
1548  * journal_t.
1549  */
1550
1551 static int load_superblock(journal_t *journal)
1552 {
1553         int err;
1554         journal_superblock_t *sb;
1555
1556         err = journal_get_superblock(journal);
1557         if (err)
1558                 return err;
1559
1560         sb = journal->j_superblock;
1561
1562         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1563         journal->j_tail = be32_to_cpu(sb->s_start);
1564         journal->j_first = be32_to_cpu(sb->s_first);
1565         journal->j_last = be32_to_cpu(sb->s_maxlen);
1566         journal->j_errno = be32_to_cpu(sb->s_errno);
1567
1568         return 0;
1569 }
1570
1571
1572 /**
1573  * int jbd2_journal_load() - Read journal from disk.
1574  * @journal: Journal to act on.
1575  *
1576  * Given a journal_t structure which tells us which disk blocks contain
1577  * a journal, read the journal from disk to initialise the in-memory
1578  * structures.
1579  */
1580 int jbd2_journal_load(journal_t *journal)
1581 {
1582         int err;
1583         journal_superblock_t *sb;
1584
1585         err = load_superblock(journal);
1586         if (err)
1587                 return err;
1588
1589         sb = journal->j_superblock;
1590         /* If this is a V2 superblock, then we have to check the
1591          * features flags on it. */
1592
1593         if (journal->j_format_version >= 2) {
1594                 if ((sb->s_feature_ro_compat &
1595                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1596                     (sb->s_feature_incompat &
1597                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1598                         printk(KERN_WARNING
1599                                 "JBD2: Unrecognised features on journal\n");
1600                         return -EINVAL;
1601                 }
1602         }
1603
1604         /*
1605          * Create a slab for this blocksize
1606          */
1607         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1608         if (err)
1609                 return err;
1610
1611         /* Let the recovery code check whether it needs to recover any
1612          * data from the journal. */
1613         if (jbd2_journal_recover(journal))
1614                 goto recovery_error;
1615
1616         if (journal->j_failed_commit) {
1617                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1618                        "is corrupt.\n", journal->j_failed_commit,
1619                        journal->j_devname);
1620                 return -EIO;
1621         }
1622
1623         /* OK, we've finished with the dynamic journal bits:
1624          * reinitialise the dynamic contents of the superblock in memory
1625          * and reset them on disk. */
1626         if (journal_reset(journal))
1627                 goto recovery_error;
1628
1629         journal->j_flags &= ~JBD2_ABORT;
1630         journal->j_flags |= JBD2_LOADED;
1631         return 0;
1632
1633 recovery_error:
1634         printk(KERN_WARNING "JBD2: recovery failed\n");
1635         return -EIO;
1636 }
1637
1638 /**
1639  * void jbd2_journal_destroy() - Release a journal_t structure.
1640  * @journal: Journal to act on.
1641  *
1642  * Release a journal_t structure once it is no longer in use by the
1643  * journaled object.
1644  * Return <0 if we couldn't clean up the journal.
1645  */
1646 int jbd2_journal_destroy(journal_t *journal)
1647 {
1648         int err = 0;
1649
1650         /* Wait for the commit thread to wake up and die. */
1651         journal_kill_thread(journal);
1652
1653         /* Force a final log commit */
1654         if (journal->j_running_transaction)
1655                 jbd2_journal_commit_transaction(journal);
1656
1657         /* Force any old transactions to disk */
1658
1659         /* Totally anal locking here... */
1660         spin_lock(&journal->j_list_lock);
1661         while (journal->j_checkpoint_transactions != NULL) {
1662                 spin_unlock(&journal->j_list_lock);
1663                 mutex_lock(&journal->j_checkpoint_mutex);
1664                 jbd2_log_do_checkpoint(journal);
1665                 mutex_unlock(&journal->j_checkpoint_mutex);
1666                 spin_lock(&journal->j_list_lock);
1667         }
1668
1669         J_ASSERT(journal->j_running_transaction == NULL);
1670         J_ASSERT(journal->j_committing_transaction == NULL);
1671         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1672         spin_unlock(&journal->j_list_lock);
1673
1674         if (journal->j_sb_buffer) {
1675                 if (!is_journal_aborted(journal)) {
1676                         mutex_lock(&journal->j_checkpoint_mutex);
1677                         jbd2_mark_journal_empty(journal);
1678                         mutex_unlock(&journal->j_checkpoint_mutex);
1679                 } else
1680                         err = -EIO;
1681                 brelse(journal->j_sb_buffer);
1682         }
1683
1684         if (journal->j_proc_entry)
1685                 jbd2_stats_proc_exit(journal);
1686         if (journal->j_inode)
1687                 iput(journal->j_inode);
1688         if (journal->j_revoke)
1689                 jbd2_journal_destroy_revoke(journal);
1690         if (journal->j_chksum_driver)
1691                 crypto_free_shash(journal->j_chksum_driver);
1692         kfree(journal->j_wbuf);
1693         kfree(journal);
1694
1695         return err;
1696 }
1697
1698
1699 /**
1700  *int jbd2_journal_check_used_features () - Check if features specified are used.
1701  * @journal: Journal to check.
1702  * @compat: bitmask of compatible features
1703  * @ro: bitmask of features that force read-only mount
1704  * @incompat: bitmask of incompatible features
1705  *
1706  * Check whether the journal uses all of a given set of
1707  * features.  Return true (non-zero) if it does.
1708  **/
1709
1710 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1711                                  unsigned long ro, unsigned long incompat)
1712 {
1713         journal_superblock_t *sb;
1714
1715         if (!compat && !ro && !incompat)
1716                 return 1;
1717         /* Load journal superblock if it is not loaded yet. */
1718         if (journal->j_format_version == 0 &&
1719             journal_get_superblock(journal) != 0)
1720                 return 0;
1721         if (journal->j_format_version == 1)
1722                 return 0;
1723
1724         sb = journal->j_superblock;
1725
1726         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1727             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1728             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1729                 return 1;
1730
1731         return 0;
1732 }
1733
1734 /**
1735  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1736  * @journal: Journal to check.
1737  * @compat: bitmask of compatible features
1738  * @ro: bitmask of features that force read-only mount
1739  * @incompat: bitmask of incompatible features
1740  *
1741  * Check whether the journaling code supports the use of
1742  * all of a given set of features on this journal.  Return true
1743  * (non-zero) if it can. */
1744
1745 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1746                                       unsigned long ro, unsigned long incompat)
1747 {
1748         if (!compat && !ro && !incompat)
1749                 return 1;
1750
1751         /* We can support any known requested features iff the
1752          * superblock is in version 2.  Otherwise we fail to support any
1753          * extended sb features. */
1754
1755         if (journal->j_format_version != 2)
1756                 return 0;
1757
1758         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1759             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1760             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1761                 return 1;
1762
1763         return 0;
1764 }
1765
1766 /**
1767  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1768  * @journal: Journal to act on.
1769  * @compat: bitmask of compatible features
1770  * @ro: bitmask of features that force read-only mount
1771  * @incompat: bitmask of incompatible features
1772  *
1773  * Mark a given journal feature as present on the
1774  * superblock.  Returns true if the requested features could be set.
1775  *
1776  */
1777
1778 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1779                           unsigned long ro, unsigned long incompat)
1780 {
1781 #define INCOMPAT_FEATURE_ON(f) \
1782                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1783 #define COMPAT_FEATURE_ON(f) \
1784                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1785         journal_superblock_t *sb;
1786
1787         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1788                 return 1;
1789
1790         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1791                 return 0;
1792
1793         /* Asking for checksumming v2 and v1?  Only give them v2. */
1794         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1795             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1796                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1797
1798         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1799                   compat, ro, incompat);
1800
1801         sb = journal->j_superblock;
1802
1803         /* If enabling v2 checksums, update superblock */
1804         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1805                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1806                 sb->s_feature_compat &=
1807                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1808
1809                 /* Load the checksum driver */
1810                 if (journal->j_chksum_driver == NULL) {
1811                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1812                                                                       0, 0);
1813                         if (IS_ERR(journal->j_chksum_driver)) {
1814                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1815                                        "driver.\n");
1816                                 journal->j_chksum_driver = NULL;
1817                                 return 0;
1818                         }
1819                 }
1820
1821                 /* Precompute checksum seed for all metadata */
1822                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1823                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1824                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1825                                                            sb->s_uuid,
1826                                                            sizeof(sb->s_uuid));
1827         }
1828
1829         /* If enabling v1 checksums, downgrade superblock */
1830         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1831                 sb->s_feature_incompat &=
1832                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1833
1834         sb->s_feature_compat    |= cpu_to_be32(compat);
1835         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1836         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1837
1838         return 1;
1839 #undef COMPAT_FEATURE_ON
1840 #undef INCOMPAT_FEATURE_ON
1841 }
1842
1843 /*
1844  * jbd2_journal_clear_features () - Clear a given journal feature in the
1845  *                                  superblock
1846  * @journal: Journal to act on.
1847  * @compat: bitmask of compatible features
1848  * @ro: bitmask of features that force read-only mount
1849  * @incompat: bitmask of incompatible features
1850  *
1851  * Clear a given journal feature as present on the
1852  * superblock.
1853  */
1854 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1855                                 unsigned long ro, unsigned long incompat)
1856 {
1857         journal_superblock_t *sb;
1858
1859         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1860                   compat, ro, incompat);
1861
1862         sb = journal->j_superblock;
1863
1864         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1865         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1866         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1867 }
1868 EXPORT_SYMBOL(jbd2_journal_clear_features);
1869
1870 /**
1871  * int jbd2_journal_flush () - Flush journal
1872  * @journal: Journal to act on.
1873  *
1874  * Flush all data for a given journal to disk and empty the journal.
1875  * Filesystems can use this when remounting readonly to ensure that
1876  * recovery does not need to happen on remount.
1877  */
1878
1879 int jbd2_journal_flush(journal_t *journal)
1880 {
1881         int err = 0;
1882         transaction_t *transaction = NULL;
1883
1884         write_lock(&journal->j_state_lock);
1885
1886         /* Force everything buffered to the log... */
1887         if (journal->j_running_transaction) {
1888                 transaction = journal->j_running_transaction;
1889                 __jbd2_log_start_commit(journal, transaction->t_tid);
1890         } else if (journal->j_committing_transaction)
1891                 transaction = journal->j_committing_transaction;
1892
1893         /* Wait for the log commit to complete... */
1894         if (transaction) {
1895                 tid_t tid = transaction->t_tid;
1896
1897                 write_unlock(&journal->j_state_lock);
1898                 jbd2_log_wait_commit(journal, tid);
1899         } else {
1900                 write_unlock(&journal->j_state_lock);
1901         }
1902
1903         /* ...and flush everything in the log out to disk. */
1904         spin_lock(&journal->j_list_lock);
1905         while (!err && journal->j_checkpoint_transactions != NULL) {
1906                 spin_unlock(&journal->j_list_lock);
1907                 mutex_lock(&journal->j_checkpoint_mutex);
1908                 err = jbd2_log_do_checkpoint(journal);
1909                 mutex_unlock(&journal->j_checkpoint_mutex);
1910                 spin_lock(&journal->j_list_lock);
1911         }
1912         spin_unlock(&journal->j_list_lock);
1913
1914         if (is_journal_aborted(journal))
1915                 return -EIO;
1916
1917         mutex_lock(&journal->j_checkpoint_mutex);
1918         jbd2_cleanup_journal_tail(journal);
1919
1920         /* Finally, mark the journal as really needing no recovery.
1921          * This sets s_start==0 in the underlying superblock, which is
1922          * the magic code for a fully-recovered superblock.  Any future
1923          * commits of data to the journal will restore the current
1924          * s_start value. */
1925         jbd2_mark_journal_empty(journal);
1926         mutex_unlock(&journal->j_checkpoint_mutex);
1927         write_lock(&journal->j_state_lock);
1928         J_ASSERT(!journal->j_running_transaction);
1929         J_ASSERT(!journal->j_committing_transaction);
1930         J_ASSERT(!journal->j_checkpoint_transactions);
1931         J_ASSERT(journal->j_head == journal->j_tail);
1932         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1933         write_unlock(&journal->j_state_lock);
1934         return 0;
1935 }
1936
1937 /**
1938  * int jbd2_journal_wipe() - Wipe journal contents
1939  * @journal: Journal to act on.
1940  * @write: flag (see below)
1941  *
1942  * Wipe out all of the contents of a journal, safely.  This will produce
1943  * a warning if the journal contains any valid recovery information.
1944  * Must be called between journal_init_*() and jbd2_journal_load().
1945  *
1946  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1947  * we merely suppress recovery.
1948  */
1949
1950 int jbd2_journal_wipe(journal_t *journal, int write)
1951 {
1952         int err = 0;
1953
1954         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1955
1956         err = load_superblock(journal);
1957         if (err)
1958                 return err;
1959
1960         if (!journal->j_tail)
1961                 goto no_recovery;
1962
1963         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1964                 write ? "Clearing" : "Ignoring");
1965
1966         err = jbd2_journal_skip_recovery(journal);
1967         if (write) {
1968                 /* Lock to make assertions happy... */
1969                 mutex_lock(&journal->j_checkpoint_mutex);
1970                 jbd2_mark_journal_empty(journal);
1971                 mutex_unlock(&journal->j_checkpoint_mutex);
1972         }
1973
1974  no_recovery:
1975         return err;
1976 }
1977
1978 /*
1979  * Journal abort has very specific semantics, which we describe
1980  * for journal abort.
1981  *
1982  * Two internal functions, which provide abort to the jbd layer
1983  * itself are here.
1984  */
1985
1986 /*
1987  * Quick version for internal journal use (doesn't lock the journal).
1988  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1989  * and don't attempt to make any other journal updates.
1990  */
1991 void __jbd2_journal_abort_hard(journal_t *journal)
1992 {
1993         transaction_t *transaction;
1994
1995         if (journal->j_flags & JBD2_ABORT)
1996                 return;
1997
1998         printk(KERN_ERR "Aborting journal on device %s.\n",
1999                journal->j_devname);
2000
2001         write_lock(&journal->j_state_lock);
2002         journal->j_flags |= JBD2_ABORT;
2003         transaction = journal->j_running_transaction;
2004         if (transaction)
2005                 __jbd2_log_start_commit(journal, transaction->t_tid);
2006         write_unlock(&journal->j_state_lock);
2007 }
2008
2009 /* Soft abort: record the abort error status in the journal superblock,
2010  * but don't do any other IO. */
2011 static void __journal_abort_soft (journal_t *journal, int errno)
2012 {
2013         if (journal->j_flags & JBD2_ABORT)
2014                 return;
2015
2016         if (!journal->j_errno)
2017                 journal->j_errno = errno;
2018
2019         __jbd2_journal_abort_hard(journal);
2020
2021         if (errno)
2022                 jbd2_journal_update_sb_errno(journal);
2023 }
2024
2025 /**
2026  * void jbd2_journal_abort () - Shutdown the journal immediately.
2027  * @journal: the journal to shutdown.
2028  * @errno:   an error number to record in the journal indicating
2029  *           the reason for the shutdown.
2030  *
2031  * Perform a complete, immediate shutdown of the ENTIRE
2032  * journal (not of a single transaction).  This operation cannot be
2033  * undone without closing and reopening the journal.
2034  *
2035  * The jbd2_journal_abort function is intended to support higher level error
2036  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2037  * mode.
2038  *
2039  * Journal abort has very specific semantics.  Any existing dirty,
2040  * unjournaled buffers in the main filesystem will still be written to
2041  * disk by bdflush, but the journaling mechanism will be suspended
2042  * immediately and no further transaction commits will be honoured.
2043  *
2044  * Any dirty, journaled buffers will be written back to disk without
2045  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2046  * filesystem, but we _do_ attempt to leave as much data as possible
2047  * behind for fsck to use for cleanup.
2048  *
2049  * Any attempt to get a new transaction handle on a journal which is in
2050  * ABORT state will just result in an -EROFS error return.  A
2051  * jbd2_journal_stop on an existing handle will return -EIO if we have
2052  * entered abort state during the update.
2053  *
2054  * Recursive transactions are not disturbed by journal abort until the
2055  * final jbd2_journal_stop, which will receive the -EIO error.
2056  *
2057  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2058  * which will be recorded (if possible) in the journal superblock.  This
2059  * allows a client to record failure conditions in the middle of a
2060  * transaction without having to complete the transaction to record the
2061  * failure to disk.  ext3_error, for example, now uses this
2062  * functionality.
2063  *
2064  * Errors which originate from within the journaling layer will NOT
2065  * supply an errno; a null errno implies that absolutely no further
2066  * writes are done to the journal (unless there are any already in
2067  * progress).
2068  *
2069  */
2070
2071 void jbd2_journal_abort(journal_t *journal, int errno)
2072 {
2073         __journal_abort_soft(journal, errno);
2074 }
2075
2076 /**
2077  * int jbd2_journal_errno () - returns the journal's error state.
2078  * @journal: journal to examine.
2079  *
2080  * This is the errno number set with jbd2_journal_abort(), the last
2081  * time the journal was mounted - if the journal was stopped
2082  * without calling abort this will be 0.
2083  *
2084  * If the journal has been aborted on this mount time -EROFS will
2085  * be returned.
2086  */
2087 int jbd2_journal_errno(journal_t *journal)
2088 {
2089         int err;
2090
2091         read_lock(&journal->j_state_lock);
2092         if (journal->j_flags & JBD2_ABORT)
2093                 err = -EROFS;
2094         else
2095                 err = journal->j_errno;
2096         read_unlock(&journal->j_state_lock);
2097         return err;
2098 }
2099
2100 /**
2101  * int jbd2_journal_clear_err () - clears the journal's error state
2102  * @journal: journal to act on.
2103  *
2104  * An error must be cleared or acked to take a FS out of readonly
2105  * mode.
2106  */
2107 int jbd2_journal_clear_err(journal_t *journal)
2108 {
2109         int err = 0;
2110
2111         write_lock(&journal->j_state_lock);
2112         if (journal->j_flags & JBD2_ABORT)
2113                 err = -EROFS;
2114         else
2115                 journal->j_errno = 0;
2116         write_unlock(&journal->j_state_lock);
2117         return err;
2118 }
2119
2120 /**
2121  * void jbd2_journal_ack_err() - Ack journal err.
2122  * @journal: journal to act on.
2123  *
2124  * An error must be cleared or acked to take a FS out of readonly
2125  * mode.
2126  */
2127 void jbd2_journal_ack_err(journal_t *journal)
2128 {
2129         write_lock(&journal->j_state_lock);
2130         if (journal->j_errno)
2131                 journal->j_flags |= JBD2_ACK_ERR;
2132         write_unlock(&journal->j_state_lock);
2133 }
2134
2135 int jbd2_journal_blocks_per_page(struct inode *inode)
2136 {
2137         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2138 }
2139
2140 /*
2141  * helper functions to deal with 32 or 64bit block numbers.
2142  */
2143 size_t journal_tag_bytes(journal_t *journal)
2144 {
2145         journal_block_tag_t tag;
2146         size_t x = 0;
2147
2148         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2149                 x += sizeof(tag.t_checksum);
2150
2151         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2152                 return x + JBD2_TAG_SIZE64;
2153         else
2154                 return x + JBD2_TAG_SIZE32;
2155 }
2156
2157 /*
2158  * JBD memory management
2159  *
2160  * These functions are used to allocate block-sized chunks of memory
2161  * used for making copies of buffer_head data.  Very often it will be
2162  * page-sized chunks of data, but sometimes it will be in
2163  * sub-page-size chunks.  (For example, 16k pages on Power systems
2164  * with a 4k block file system.)  For blocks smaller than a page, we
2165  * use a SLAB allocator.  There are slab caches for each block size,
2166  * which are allocated at mount time, if necessary, and we only free
2167  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2168  * this reason we don't need to a mutex to protect access to
2169  * jbd2_slab[] allocating or releasing memory; only in
2170  * jbd2_journal_create_slab().
2171  */
2172 #define JBD2_MAX_SLABS 8
2173 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2174
2175 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2176         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2177         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2178 };
2179
2180
2181 static void jbd2_journal_destroy_slabs(void)
2182 {
2183         int i;
2184
2185         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2186                 if (jbd2_slab[i])
2187                         kmem_cache_destroy(jbd2_slab[i]);
2188                 jbd2_slab[i] = NULL;
2189         }
2190 }
2191
2192 static int jbd2_journal_create_slab(size_t size)
2193 {
2194         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2195         int i = order_base_2(size) - 10;
2196         size_t slab_size;
2197
2198         if (size == PAGE_SIZE)
2199                 return 0;
2200
2201         if (i >= JBD2_MAX_SLABS)
2202                 return -EINVAL;
2203
2204         if (unlikely(i < 0))
2205                 i = 0;
2206         mutex_lock(&jbd2_slab_create_mutex);
2207         if (jbd2_slab[i]) {
2208                 mutex_unlock(&jbd2_slab_create_mutex);
2209                 return 0;       /* Already created */
2210         }
2211
2212         slab_size = 1 << (i+10);
2213         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2214                                          slab_size, 0, NULL);
2215         mutex_unlock(&jbd2_slab_create_mutex);
2216         if (!jbd2_slab[i]) {
2217                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2218                 return -ENOMEM;
2219         }
2220         return 0;
2221 }
2222
2223 static struct kmem_cache *get_slab(size_t size)
2224 {
2225         int i = order_base_2(size) - 10;
2226
2227         BUG_ON(i >= JBD2_MAX_SLABS);
2228         if (unlikely(i < 0))
2229                 i = 0;
2230         BUG_ON(jbd2_slab[i] == NULL);
2231         return jbd2_slab[i];
2232 }
2233
2234 void *jbd2_alloc(size_t size, gfp_t flags)
2235 {
2236         void *ptr;
2237
2238         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2239
2240         flags |= __GFP_REPEAT;
2241         if (size == PAGE_SIZE)
2242                 ptr = (void *)__get_free_pages(flags, 0);
2243         else if (size > PAGE_SIZE) {
2244                 int order = get_order(size);
2245
2246                 if (order < 3)
2247                         ptr = (void *)__get_free_pages(flags, order);
2248                 else
2249                         ptr = vmalloc(size);
2250         } else
2251                 ptr = kmem_cache_alloc(get_slab(size), flags);
2252
2253         /* Check alignment; SLUB has gotten this wrong in the past,
2254          * and this can lead to user data corruption! */
2255         BUG_ON(((unsigned long) ptr) & (size-1));
2256
2257         return ptr;
2258 }
2259
2260 void jbd2_free(void *ptr, size_t size)
2261 {
2262         if (size == PAGE_SIZE) {
2263                 free_pages((unsigned long)ptr, 0);
2264                 return;
2265         }
2266         if (size > PAGE_SIZE) {
2267                 int order = get_order(size);
2268
2269                 if (order < 3)
2270                         free_pages((unsigned long)ptr, order);
2271                 else
2272                         vfree(ptr);
2273                 return;
2274         }
2275         kmem_cache_free(get_slab(size), ptr);
2276 };
2277
2278 /*
2279  * Journal_head storage management
2280  */
2281 static struct kmem_cache *jbd2_journal_head_cache;
2282 #ifdef CONFIG_JBD2_DEBUG
2283 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2284 #endif
2285
2286 static int jbd2_journal_init_journal_head_cache(void)
2287 {
2288         int retval;
2289
2290         J_ASSERT(jbd2_journal_head_cache == NULL);
2291         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2292                                 sizeof(struct journal_head),
2293                                 0,              /* offset */
2294                                 SLAB_TEMPORARY, /* flags */
2295                                 NULL);          /* ctor */
2296         retval = 0;
2297         if (!jbd2_journal_head_cache) {
2298                 retval = -ENOMEM;
2299                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2300         }
2301         return retval;
2302 }
2303
2304 static void jbd2_journal_destroy_journal_head_cache(void)
2305 {
2306         if (jbd2_journal_head_cache) {
2307                 kmem_cache_destroy(jbd2_journal_head_cache);
2308                 jbd2_journal_head_cache = NULL;
2309         }
2310 }
2311
2312 /*
2313  * journal_head splicing and dicing
2314  */
2315 static struct journal_head *journal_alloc_journal_head(void)
2316 {
2317         struct journal_head *ret;
2318
2319 #ifdef CONFIG_JBD2_DEBUG
2320         atomic_inc(&nr_journal_heads);
2321 #endif
2322         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2323         if (!ret) {
2324                 jbd_debug(1, "out of memory for journal_head\n");
2325                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2326                 while (!ret) {
2327                         yield();
2328                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2329                 }
2330         }
2331         return ret;
2332 }
2333
2334 static void journal_free_journal_head(struct journal_head *jh)
2335 {
2336 #ifdef CONFIG_JBD2_DEBUG
2337         atomic_dec(&nr_journal_heads);
2338         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2339 #endif
2340         kmem_cache_free(jbd2_journal_head_cache, jh);
2341 }
2342
2343 /*
2344  * A journal_head is attached to a buffer_head whenever JBD has an
2345  * interest in the buffer.
2346  *
2347  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2348  * is set.  This bit is tested in core kernel code where we need to take
2349  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2350  * there.
2351  *
2352  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2353  *
2354  * When a buffer has its BH_JBD bit set it is immune from being released by
2355  * core kernel code, mainly via ->b_count.
2356  *
2357  * A journal_head is detached from its buffer_head when the journal_head's
2358  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2359  * transaction (b_cp_transaction) hold their references to b_jcount.
2360  *
2361  * Various places in the kernel want to attach a journal_head to a buffer_head
2362  * _before_ attaching the journal_head to a transaction.  To protect the
2363  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2364  * journal_head's b_jcount refcount by one.  The caller must call
2365  * jbd2_journal_put_journal_head() to undo this.
2366  *
2367  * So the typical usage would be:
2368  *
2369  *      (Attach a journal_head if needed.  Increments b_jcount)
2370  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2371  *      ...
2372  *      (Get another reference for transaction)
2373  *      jbd2_journal_grab_journal_head(bh);
2374  *      jh->b_transaction = xxx;
2375  *      (Put original reference)
2376  *      jbd2_journal_put_journal_head(jh);
2377  */
2378
2379 /*
2380  * Give a buffer_head a journal_head.
2381  *
2382  * May sleep.
2383  */
2384 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2385 {
2386         struct journal_head *jh;
2387         struct journal_head *new_jh = NULL;
2388
2389 repeat:
2390         if (!buffer_jbd(bh))
2391                 new_jh = journal_alloc_journal_head();
2392
2393         jbd_lock_bh_journal_head(bh);
2394         if (buffer_jbd(bh)) {
2395                 jh = bh2jh(bh);
2396         } else {
2397                 J_ASSERT_BH(bh,
2398                         (atomic_read(&bh->b_count) > 0) ||
2399                         (bh->b_page && bh->b_page->mapping));
2400
2401                 if (!new_jh) {
2402                         jbd_unlock_bh_journal_head(bh);
2403                         goto repeat;
2404                 }
2405
2406                 jh = new_jh;
2407                 new_jh = NULL;          /* We consumed it */
2408                 set_buffer_jbd(bh);
2409                 bh->b_private = jh;
2410                 jh->b_bh = bh;
2411                 get_bh(bh);
2412                 BUFFER_TRACE(bh, "added journal_head");
2413         }
2414         jh->b_jcount++;
2415         jbd_unlock_bh_journal_head(bh);
2416         if (new_jh)
2417                 journal_free_journal_head(new_jh);
2418         return bh->b_private;
2419 }
2420
2421 /*
2422  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2423  * having a journal_head, return NULL
2424  */
2425 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2426 {
2427         struct journal_head *jh = NULL;
2428
2429         jbd_lock_bh_journal_head(bh);
2430         if (buffer_jbd(bh)) {
2431                 jh = bh2jh(bh);
2432                 jh->b_jcount++;
2433         }
2434         jbd_unlock_bh_journal_head(bh);
2435         return jh;
2436 }
2437
2438 static void __journal_remove_journal_head(struct buffer_head *bh)
2439 {
2440         struct journal_head *jh = bh2jh(bh);
2441
2442         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2443         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2444         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2445         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2446         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2447         J_ASSERT_BH(bh, buffer_jbd(bh));
2448         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2449         BUFFER_TRACE(bh, "remove journal_head");
2450         if (jh->b_frozen_data) {
2451                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2452                 jbd2_free(jh->b_frozen_data, bh->b_size);
2453         }
2454         if (jh->b_committed_data) {
2455                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2456                 jbd2_free(jh->b_committed_data, bh->b_size);
2457         }
2458         bh->b_private = NULL;
2459         jh->b_bh = NULL;        /* debug, really */
2460         clear_buffer_jbd(bh);
2461         journal_free_journal_head(jh);
2462 }
2463
2464 /*
2465  * Drop a reference on the passed journal_head.  If it fell to zero then
2466  * release the journal_head from the buffer_head.
2467  */
2468 void jbd2_journal_put_journal_head(struct journal_head *jh)
2469 {
2470         struct buffer_head *bh = jh2bh(jh);
2471
2472         jbd_lock_bh_journal_head(bh);
2473         J_ASSERT_JH(jh, jh->b_jcount > 0);
2474         --jh->b_jcount;
2475         if (!jh->b_jcount) {
2476                 __journal_remove_journal_head(bh);
2477                 jbd_unlock_bh_journal_head(bh);
2478                 __brelse(bh);
2479         } else
2480                 jbd_unlock_bh_journal_head(bh);
2481 }
2482
2483 /*
2484  * Initialize jbd inode head
2485  */
2486 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2487 {
2488         jinode->i_transaction = NULL;
2489         jinode->i_next_transaction = NULL;
2490         jinode->i_vfs_inode = inode;
2491         jinode->i_flags = 0;
2492         INIT_LIST_HEAD(&jinode->i_list);
2493 }
2494
2495 /*
2496  * Function to be called before we start removing inode from memory (i.e.,
2497  * clear_inode() is a fine place to be called from). It removes inode from
2498  * transaction's lists.
2499  */
2500 void jbd2_journal_release_jbd_inode(journal_t *journal,
2501                                     struct jbd2_inode *jinode)
2502 {
2503         if (!journal)
2504                 return;
2505 restart:
2506         spin_lock(&journal->j_list_lock);
2507         /* Is commit writing out inode - we have to wait */
2508         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2509                 wait_queue_head_t *wq;
2510                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2511                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2512                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2513                 spin_unlock(&journal->j_list_lock);
2514                 schedule();
2515                 finish_wait(wq, &wait.wait);
2516                 goto restart;
2517         }
2518
2519         if (jinode->i_transaction) {
2520                 list_del(&jinode->i_list);
2521                 jinode->i_transaction = NULL;
2522         }
2523         spin_unlock(&journal->j_list_lock);
2524 }
2525
2526
2527 #ifdef CONFIG_PROC_FS
2528
2529 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2530
2531 static void __init jbd2_create_jbd_stats_proc_entry(void)
2532 {
2533         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2534 }
2535
2536 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2537 {
2538         if (proc_jbd2_stats)
2539                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2540 }
2541
2542 #else
2543
2544 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2545 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2546
2547 #endif
2548
2549 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2550
2551 static int __init jbd2_journal_init_handle_cache(void)
2552 {
2553         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2554         if (jbd2_handle_cache == NULL) {
2555                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2556                 return -ENOMEM;
2557         }
2558         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2559         if (jbd2_inode_cache == NULL) {
2560                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2561                 kmem_cache_destroy(jbd2_handle_cache);
2562                 return -ENOMEM;
2563         }
2564         return 0;
2565 }
2566
2567 static void jbd2_journal_destroy_handle_cache(void)
2568 {
2569         if (jbd2_handle_cache)
2570                 kmem_cache_destroy(jbd2_handle_cache);
2571         if (jbd2_inode_cache)
2572                 kmem_cache_destroy(jbd2_inode_cache);
2573
2574 }
2575
2576 /*
2577  * Module startup and shutdown
2578  */
2579
2580 static int __init journal_init_caches(void)
2581 {
2582         int ret;
2583
2584         ret = jbd2_journal_init_revoke_caches();
2585         if (ret == 0)
2586                 ret = jbd2_journal_init_journal_head_cache();
2587         if (ret == 0)
2588                 ret = jbd2_journal_init_handle_cache();
2589         if (ret == 0)
2590                 ret = jbd2_journal_init_transaction_cache();
2591         return ret;
2592 }
2593
2594 static void jbd2_journal_destroy_caches(void)
2595 {
2596         jbd2_journal_destroy_revoke_caches();
2597         jbd2_journal_destroy_journal_head_cache();
2598         jbd2_journal_destroy_handle_cache();
2599         jbd2_journal_destroy_transaction_cache();
2600         jbd2_journal_destroy_slabs();
2601 }
2602
2603 static int __init journal_init(void)
2604 {
2605         int ret;
2606
2607         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2608
2609         ret = journal_init_caches();
2610         if (ret == 0) {
2611                 jbd2_create_jbd_stats_proc_entry();
2612         } else {
2613                 jbd2_journal_destroy_caches();
2614         }
2615         return ret;
2616 }
2617
2618 static void __exit journal_exit(void)
2619 {
2620 #ifdef CONFIG_JBD2_DEBUG
2621         int n = atomic_read(&nr_journal_heads);
2622         if (n)
2623                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2624 #endif
2625         jbd2_remove_jbd_stats_proc_entry();
2626         jbd2_journal_destroy_caches();
2627 }
2628
2629 MODULE_LICENSE("GPL");
2630 module_init(journal_init);
2631 module_exit(journal_exit);
2632