]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
jbd2: optimize jbd2_journal_force_commit
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  * 
319  *
320  * Return value:
321  *  <0: Error
322  * >=0: Finished OK
323  *
324  * On success:
325  * Bit 0 set == escape performed on the data
326  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
327  */
328
329 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
330                                   struct journal_head  *jh_in,
331                                   struct buffer_head **bh_out,
332                                   sector_t blocknr)
333 {
334         int need_copy_out = 0;
335         int done_copy_out = 0;
336         int do_escape = 0;
337         char *mapped_data;
338         struct buffer_head *new_bh;
339         struct page *new_page;
340         unsigned int new_offset;
341         struct buffer_head *bh_in = jh2bh(jh_in);
342         journal_t *journal = transaction->t_journal;
343
344         /*
345          * The buffer really shouldn't be locked: only the current committing
346          * transaction is allowed to write it, so nobody else is allowed
347          * to do any IO.
348          *
349          * akpm: except if we're journalling data, and write() output is
350          * also part of a shared mapping, and another thread has
351          * decided to launch a writepage() against this buffer.
352          */
353         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
354
355 retry_alloc:
356         new_bh = alloc_buffer_head(GFP_NOFS);
357         if (!new_bh) {
358                 /*
359                  * Failure is not an option, but __GFP_NOFAIL is going
360                  * away; so we retry ourselves here.
361                  */
362                 congestion_wait(BLK_RW_ASYNC, HZ/50);
363                 goto retry_alloc;
364         }
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         jbd_lock_bh_state(bh_in);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 jbd_unlock_bh_state(bh_in);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 jbd_lock_bh_state(bh_in);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         new_bh->b_private = bh_in;
455         set_buffer_mapped(new_bh);
456         set_buffer_dirty(new_bh);
457
458         *bh_out = new_bh;
459
460         /*
461          * The to-be-written buffer needs to get moved to the io queue,
462          * and the original buffer whose contents we are shadowing or
463          * copying is moved to the transaction's shadow queue.
464          */
465         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466         spin_lock(&journal->j_list_lock);
467         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468         spin_unlock(&journal->j_list_lock);
469         set_buffer_shadow(bh_in);
470         jbd_unlock_bh_state(bh_in);
471
472         return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486         /* Return if the txn has already requested to be committed */
487         if (journal->j_commit_request == target)
488                 return 0;
489
490         /*
491          * The only transaction we can possibly wait upon is the
492          * currently running transaction (if it exists).  Otherwise,
493          * the target tid must be an old one.
494          */
495         if (journal->j_running_transaction &&
496             journal->j_running_transaction->t_tid == target) {
497                 /*
498                  * We want a new commit: OK, mark the request and wakeup the
499                  * commit thread.  We do _not_ do the commit ourselves.
500                  */
501
502                 journal->j_commit_request = target;
503                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence);
506                 journal->j_running_transaction->t_requested = jiffies;
507                 wake_up(&journal->j_wait_commit);
508                 return 1;
509         } else if (!tid_geq(journal->j_commit_request, target))
510                 /* This should never happen, but if it does, preserve
511                    the evidence before kjournald goes into a loop and
512                    increments j_commit_sequence beyond all recognition. */
513                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence,
516                           target, journal->j_running_transaction ? 
517                           journal->j_running_transaction->t_tid : 0);
518         return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523         int ret;
524
525         write_lock(&journal->j_state_lock);
526         ret = __jbd2_log_start_commit(journal, tid);
527         write_unlock(&journal->j_state_lock);
528         return ret;
529 }
530
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540         transaction_t *transaction = NULL;
541         tid_t tid;
542         int need_to_start = 0, ret = 0;
543
544         read_lock(&journal->j_state_lock);
545         if (journal->j_running_transaction && !current->journal_info) {
546                 transaction = journal->j_running_transaction;
547                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548                         need_to_start = 1;
549         } else if (journal->j_committing_transaction)
550                 transaction = journal->j_committing_transaction;
551
552         if (!transaction) {
553                 /* Nothing to commit */
554                 read_unlock(&journal->j_state_lock);
555                 return 0;
556         }
557         tid = transaction->t_tid;
558         read_unlock(&journal->j_state_lock);
559         if (need_to_start)
560                 jbd2_log_start_commit(journal, tid);
561         ret = jbd2_log_wait_commit(journal, tid);
562         if (!ret)
563                 ret = 1;
564
565         return ret;
566 }
567
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578         int ret;
579
580         ret = __jbd2_journal_force_commit(journal);
581         return ret > 0;
582 }
583
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593         int ret;
594
595         J_ASSERT(!current->journal_info);
596         ret = __jbd2_journal_force_commit(journal);
597         if (ret > 0)
598                 ret = 0;
599         return ret;
600 }
601
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609         int ret = 0;
610
611         write_lock(&journal->j_state_lock);
612         if (journal->j_running_transaction) {
613                 tid_t tid = journal->j_running_transaction->t_tid;
614
615                 __jbd2_log_start_commit(journal, tid);
616                 /* There's a running transaction and we've just made sure
617                  * it's commit has been scheduled. */
618                 if (ptid)
619                         *ptid = tid;
620                 ret = 1;
621         } else if (journal->j_committing_transaction) {
622                 /*
623                  * If commit has been started, then we have to wait for
624                  * completion of that transaction.
625                  */
626                 if (ptid)
627                         *ptid = journal->j_committing_transaction->t_tid;
628                 ret = 1;
629         }
630         write_unlock(&journal->j_state_lock);
631         return ret;
632 }
633
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642         int ret = 0;
643         transaction_t *commit_trans;
644
645         if (!(journal->j_flags & JBD2_BARRIER))
646                 return 0;
647         read_lock(&journal->j_state_lock);
648         /* Transaction already committed? */
649         if (tid_geq(journal->j_commit_sequence, tid))
650                 goto out;
651         commit_trans = journal->j_committing_transaction;
652         if (!commit_trans || commit_trans->t_tid != tid) {
653                 ret = 1;
654                 goto out;
655         }
656         /*
657          * Transaction is being committed and we already proceeded to
658          * submitting a flush to fs partition?
659          */
660         if (journal->j_fs_dev != journal->j_dev) {
661                 if (!commit_trans->t_need_data_flush ||
662                     commit_trans->t_state >= T_COMMIT_DFLUSH)
663                         goto out;
664         } else {
665                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666                         goto out;
667         }
668         ret = 1;
669 out:
670         read_unlock(&journal->j_state_lock);
671         return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681         int err = 0;
682
683         read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_JBD2_DEBUG
685         if (!tid_geq(journal->j_commit_request, tid)) {
686                 printk(KERN_EMERG
687                        "%s: error: j_commit_request=%d, tid=%d\n",
688                        __func__, journal->j_commit_request, tid);
689         }
690 #endif
691         while (tid_gt(tid, journal->j_commit_sequence)) {
692                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
693                                   tid, journal->j_commit_sequence);
694                 wake_up(&journal->j_wait_commit);
695                 read_unlock(&journal->j_state_lock);
696                 wait_event(journal->j_wait_done_commit,
697                                 !tid_gt(tid, journal->j_commit_sequence));
698                 read_lock(&journal->j_state_lock);
699         }
700         read_unlock(&journal->j_state_lock);
701
702         if (unlikely(is_journal_aborted(journal))) {
703                 printk(KERN_EMERG "journal commit I/O error\n");
704                 err = -EIO;
705         }
706         return err;
707 }
708
709 /*
710  * When this function returns the transaction corresponding to tid
711  * will be completed.  If the transaction has currently running, start
712  * committing that transaction before waiting for it to complete.  If
713  * the transaction id is stale, it is by definition already completed,
714  * so just return SUCCESS.
715  */
716 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
717 {
718         int     need_to_wait = 1;
719
720         read_lock(&journal->j_state_lock);
721         if (journal->j_running_transaction &&
722             journal->j_running_transaction->t_tid == tid) {
723                 if (journal->j_commit_request != tid) {
724                         /* transaction not yet started, so request it */
725                         read_unlock(&journal->j_state_lock);
726                         jbd2_log_start_commit(journal, tid);
727                         goto wait_commit;
728                 }
729         } else if (!(journal->j_committing_transaction &&
730                      journal->j_committing_transaction->t_tid == tid))
731                 need_to_wait = 0;
732         read_unlock(&journal->j_state_lock);
733         if (!need_to_wait)
734                 return 0;
735 wait_commit:
736         return jbd2_log_wait_commit(journal, tid);
737 }
738 EXPORT_SYMBOL(jbd2_complete_transaction);
739
740 /*
741  * Log buffer allocation routines:
742  */
743
744 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
745 {
746         unsigned long blocknr;
747
748         write_lock(&journal->j_state_lock);
749         J_ASSERT(journal->j_free > 1);
750
751         blocknr = journal->j_head;
752         journal->j_head++;
753         journal->j_free--;
754         if (journal->j_head == journal->j_last)
755                 journal->j_head = journal->j_first;
756         write_unlock(&journal->j_state_lock);
757         return jbd2_journal_bmap(journal, blocknr, retp);
758 }
759
760 /*
761  * Conversion of logical to physical block numbers for the journal
762  *
763  * On external journals the journal blocks are identity-mapped, so
764  * this is a no-op.  If needed, we can use j_blk_offset - everything is
765  * ready.
766  */
767 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
768                  unsigned long long *retp)
769 {
770         int err = 0;
771         unsigned long long ret;
772
773         if (journal->j_inode) {
774                 ret = bmap(journal->j_inode, blocknr);
775                 if (ret)
776                         *retp = ret;
777                 else {
778                         printk(KERN_ALERT "%s: journal block not found "
779                                         "at offset %lu on %s\n",
780                                __func__, blocknr, journal->j_devname);
781                         err = -EIO;
782                         __journal_abort_soft(journal, err);
783                 }
784         } else {
785                 *retp = blocknr; /* +journal->j_blk_offset */
786         }
787         return err;
788 }
789
790 /*
791  * We play buffer_head aliasing tricks to write data/metadata blocks to
792  * the journal without copying their contents, but for journal
793  * descriptor blocks we do need to generate bona fide buffers.
794  *
795  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
796  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
797  * But we don't bother doing that, so there will be coherency problems with
798  * mmaps of blockdevs which hold live JBD-controlled filesystems.
799  */
800 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
801 {
802         struct buffer_head *bh;
803         unsigned long long blocknr;
804         int err;
805
806         err = jbd2_journal_next_log_block(journal, &blocknr);
807
808         if (err)
809                 return NULL;
810
811         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
812         if (!bh)
813                 return NULL;
814         lock_buffer(bh);
815         memset(bh->b_data, 0, journal->j_blocksize);
816         set_buffer_uptodate(bh);
817         unlock_buffer(bh);
818         BUFFER_TRACE(bh, "return this buffer");
819         return bh;
820 }
821
822 /*
823  * Return tid of the oldest transaction in the journal and block in the journal
824  * where the transaction starts.
825  *
826  * If the journal is now empty, return which will be the next transaction ID
827  * we will write and where will that transaction start.
828  *
829  * The return value is 0 if journal tail cannot be pushed any further, 1 if
830  * it can.
831  */
832 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
833                               unsigned long *block)
834 {
835         transaction_t *transaction;
836         int ret;
837
838         read_lock(&journal->j_state_lock);
839         spin_lock(&journal->j_list_lock);
840         transaction = journal->j_checkpoint_transactions;
841         if (transaction) {
842                 *tid = transaction->t_tid;
843                 *block = transaction->t_log_start;
844         } else if ((transaction = journal->j_committing_transaction) != NULL) {
845                 *tid = transaction->t_tid;
846                 *block = transaction->t_log_start;
847         } else if ((transaction = journal->j_running_transaction) != NULL) {
848                 *tid = transaction->t_tid;
849                 *block = journal->j_head;
850         } else {
851                 *tid = journal->j_transaction_sequence;
852                 *block = journal->j_head;
853         }
854         ret = tid_gt(*tid, journal->j_tail_sequence);
855         spin_unlock(&journal->j_list_lock);
856         read_unlock(&journal->j_state_lock);
857
858         return ret;
859 }
860
861 /*
862  * Update information in journal structure and in on disk journal superblock
863  * about log tail. This function does not check whether information passed in
864  * really pushes log tail further. It's responsibility of the caller to make
865  * sure provided log tail information is valid (e.g. by holding
866  * j_checkpoint_mutex all the time between computing log tail and calling this
867  * function as is the case with jbd2_cleanup_journal_tail()).
868  *
869  * Requires j_checkpoint_mutex
870  */
871 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
872 {
873         unsigned long freed;
874
875         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
876
877         /*
878          * We cannot afford for write to remain in drive's caches since as
879          * soon as we update j_tail, next transaction can start reusing journal
880          * space and if we lose sb update during power failure we'd replay
881          * old transaction with possibly newly overwritten data.
882          */
883         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
884         write_lock(&journal->j_state_lock);
885         freed = block - journal->j_tail;
886         if (block < journal->j_tail)
887                 freed += journal->j_last - journal->j_first;
888
889         trace_jbd2_update_log_tail(journal, tid, block, freed);
890         jbd_debug(1,
891                   "Cleaning journal tail from %d to %d (offset %lu), "
892                   "freeing %lu\n",
893                   journal->j_tail_sequence, tid, block, freed);
894
895         journal->j_free += freed;
896         journal->j_tail_sequence = tid;
897         journal->j_tail = block;
898         write_unlock(&journal->j_state_lock);
899 }
900
901 /*
902  * This is a variaon of __jbd2_update_log_tail which checks for validity of
903  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
904  * with other threads updating log tail.
905  */
906 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
907 {
908         mutex_lock(&journal->j_checkpoint_mutex);
909         if (tid_gt(tid, journal->j_tail_sequence))
910                 __jbd2_update_log_tail(journal, tid, block);
911         mutex_unlock(&journal->j_checkpoint_mutex);
912 }
913
914 struct jbd2_stats_proc_session {
915         journal_t *journal;
916         struct transaction_stats_s *stats;
917         int start;
918         int max;
919 };
920
921 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
922 {
923         return *pos ? NULL : SEQ_START_TOKEN;
924 }
925
926 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
927 {
928         return NULL;
929 }
930
931 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
932 {
933         struct jbd2_stats_proc_session *s = seq->private;
934
935         if (v != SEQ_START_TOKEN)
936                 return 0;
937         seq_printf(seq, "%lu transactions (%lu requested), "
938                    "each up to %u blocks\n",
939                    s->stats->ts_tid, s->stats->ts_requested,
940                    s->journal->j_max_transaction_buffers);
941         if (s->stats->ts_tid == 0)
942                 return 0;
943         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
944             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
945         seq_printf(seq, "  %ums request delay\n",
946             (s->stats->ts_requested == 0) ? 0 :
947             jiffies_to_msecs(s->stats->run.rs_request_delay /
948                              s->stats->ts_requested));
949         seq_printf(seq, "  %ums running transaction\n",
950             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
951         seq_printf(seq, "  %ums transaction was being locked\n",
952             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
953         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
954             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
955         seq_printf(seq, "  %ums logging transaction\n",
956             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
957         seq_printf(seq, "  %lluus average transaction commit time\n",
958                    div_u64(s->journal->j_average_commit_time, 1000));
959         seq_printf(seq, "  %lu handles per transaction\n",
960             s->stats->run.rs_handle_count / s->stats->ts_tid);
961         seq_printf(seq, "  %lu blocks per transaction\n",
962             s->stats->run.rs_blocks / s->stats->ts_tid);
963         seq_printf(seq, "  %lu logged blocks per transaction\n",
964             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
965         return 0;
966 }
967
968 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
969 {
970 }
971
972 static const struct seq_operations jbd2_seq_info_ops = {
973         .start  = jbd2_seq_info_start,
974         .next   = jbd2_seq_info_next,
975         .stop   = jbd2_seq_info_stop,
976         .show   = jbd2_seq_info_show,
977 };
978
979 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
980 {
981         journal_t *journal = PDE_DATA(inode);
982         struct jbd2_stats_proc_session *s;
983         int rc, size;
984
985         s = kmalloc(sizeof(*s), GFP_KERNEL);
986         if (s == NULL)
987                 return -ENOMEM;
988         size = sizeof(struct transaction_stats_s);
989         s->stats = kmalloc(size, GFP_KERNEL);
990         if (s->stats == NULL) {
991                 kfree(s);
992                 return -ENOMEM;
993         }
994         spin_lock(&journal->j_history_lock);
995         memcpy(s->stats, &journal->j_stats, size);
996         s->journal = journal;
997         spin_unlock(&journal->j_history_lock);
998
999         rc = seq_open(file, &jbd2_seq_info_ops);
1000         if (rc == 0) {
1001                 struct seq_file *m = file->private_data;
1002                 m->private = s;
1003         } else {
1004                 kfree(s->stats);
1005                 kfree(s);
1006         }
1007         return rc;
1008
1009 }
1010
1011 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1012 {
1013         struct seq_file *seq = file->private_data;
1014         struct jbd2_stats_proc_session *s = seq->private;
1015         kfree(s->stats);
1016         kfree(s);
1017         return seq_release(inode, file);
1018 }
1019
1020 static const struct file_operations jbd2_seq_info_fops = {
1021         .owner          = THIS_MODULE,
1022         .open           = jbd2_seq_info_open,
1023         .read           = seq_read,
1024         .llseek         = seq_lseek,
1025         .release        = jbd2_seq_info_release,
1026 };
1027
1028 static struct proc_dir_entry *proc_jbd2_stats;
1029
1030 static void jbd2_stats_proc_init(journal_t *journal)
1031 {
1032         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1033         if (journal->j_proc_entry) {
1034                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1035                                  &jbd2_seq_info_fops, journal);
1036         }
1037 }
1038
1039 static void jbd2_stats_proc_exit(journal_t *journal)
1040 {
1041         remove_proc_entry("info", journal->j_proc_entry);
1042         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1043 }
1044
1045 /*
1046  * Management for journal control blocks: functions to create and
1047  * destroy journal_t structures, and to initialise and read existing
1048  * journal blocks from disk.  */
1049
1050 /* First: create and setup a journal_t object in memory.  We initialise
1051  * very few fields yet: that has to wait until we have created the
1052  * journal structures from from scratch, or loaded them from disk. */
1053
1054 static journal_t * journal_init_common (void)
1055 {
1056         journal_t *journal;
1057         int err;
1058
1059         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1060         if (!journal)
1061                 return NULL;
1062
1063         init_waitqueue_head(&journal->j_wait_transaction_locked);
1064         init_waitqueue_head(&journal->j_wait_done_commit);
1065         init_waitqueue_head(&journal->j_wait_commit);
1066         init_waitqueue_head(&journal->j_wait_updates);
1067         init_waitqueue_head(&journal->j_wait_reserved);
1068         mutex_init(&journal->j_barrier);
1069         mutex_init(&journal->j_checkpoint_mutex);
1070         spin_lock_init(&journal->j_revoke_lock);
1071         spin_lock_init(&journal->j_list_lock);
1072         rwlock_init(&journal->j_state_lock);
1073
1074         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1075         journal->j_min_batch_time = 0;
1076         journal->j_max_batch_time = 15000; /* 15ms */
1077         atomic_set(&journal->j_reserved_credits, 0);
1078
1079         /* The journal is marked for error until we succeed with recovery! */
1080         journal->j_flags = JBD2_ABORT;
1081
1082         /* Set up a default-sized revoke table for the new mount. */
1083         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1084         if (err) {
1085                 kfree(journal);
1086                 return NULL;
1087         }
1088
1089         spin_lock_init(&journal->j_history_lock);
1090
1091         return journal;
1092 }
1093
1094 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1095  *
1096  * Create a journal structure assigned some fixed set of disk blocks to
1097  * the journal.  We don't actually touch those disk blocks yet, but we
1098  * need to set up all of the mapping information to tell the journaling
1099  * system where the journal blocks are.
1100  *
1101  */
1102
1103 /**
1104  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1105  *  @bdev: Block device on which to create the journal
1106  *  @fs_dev: Device which hold journalled filesystem for this journal.
1107  *  @start: Block nr Start of journal.
1108  *  @len:  Length of the journal in blocks.
1109  *  @blocksize: blocksize of journalling device
1110  *
1111  *  Returns: a newly created journal_t *
1112  *
1113  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1114  *  range of blocks on an arbitrary block device.
1115  *
1116  */
1117 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1118                         struct block_device *fs_dev,
1119                         unsigned long long start, int len, int blocksize)
1120 {
1121         journal_t *journal = journal_init_common();
1122         struct buffer_head *bh;
1123         char *p;
1124         int n;
1125
1126         if (!journal)
1127                 return NULL;
1128
1129         /* journal descriptor can store up to n blocks -bzzz */
1130         journal->j_blocksize = blocksize;
1131         journal->j_dev = bdev;
1132         journal->j_fs_dev = fs_dev;
1133         journal->j_blk_offset = start;
1134         journal->j_maxlen = len;
1135         bdevname(journal->j_dev, journal->j_devname);
1136         p = journal->j_devname;
1137         while ((p = strchr(p, '/')))
1138                 *p = '!';
1139         jbd2_stats_proc_init(journal);
1140         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1141         journal->j_wbufsize = n;
1142         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1143         if (!journal->j_wbuf) {
1144                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1145                         __func__);
1146                 goto out_err;
1147         }
1148
1149         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1150         if (!bh) {
1151                 printk(KERN_ERR
1152                        "%s: Cannot get buffer for journal superblock\n",
1153                        __func__);
1154                 goto out_err;
1155         }
1156         journal->j_sb_buffer = bh;
1157         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1158
1159         return journal;
1160 out_err:
1161         kfree(journal->j_wbuf);
1162         jbd2_stats_proc_exit(journal);
1163         kfree(journal);
1164         return NULL;
1165 }
1166
1167 /**
1168  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1169  *  @inode: An inode to create the journal in
1170  *
1171  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1172  * the journal.  The inode must exist already, must support bmap() and
1173  * must have all data blocks preallocated.
1174  */
1175 journal_t * jbd2_journal_init_inode (struct inode *inode)
1176 {
1177         struct buffer_head *bh;
1178         journal_t *journal = journal_init_common();
1179         char *p;
1180         int err;
1181         int n;
1182         unsigned long long blocknr;
1183
1184         if (!journal)
1185                 return NULL;
1186
1187         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1188         journal->j_inode = inode;
1189         bdevname(journal->j_dev, journal->j_devname);
1190         p = journal->j_devname;
1191         while ((p = strchr(p, '/')))
1192                 *p = '!';
1193         p = journal->j_devname + strlen(journal->j_devname);
1194         sprintf(p, "-%lu", journal->j_inode->i_ino);
1195         jbd_debug(1,
1196                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1197                   journal, inode->i_sb->s_id, inode->i_ino,
1198                   (long long) inode->i_size,
1199                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1200
1201         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1202         journal->j_blocksize = inode->i_sb->s_blocksize;
1203         jbd2_stats_proc_init(journal);
1204
1205         /* journal descriptor can store up to n blocks -bzzz */
1206         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1207         journal->j_wbufsize = n;
1208         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1209         if (!journal->j_wbuf) {
1210                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1211                         __func__);
1212                 goto out_err;
1213         }
1214
1215         err = jbd2_journal_bmap(journal, 0, &blocknr);
1216         /* If that failed, give up */
1217         if (err) {
1218                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1219                        __func__);
1220                 goto out_err;
1221         }
1222
1223         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1224         if (!bh) {
1225                 printk(KERN_ERR
1226                        "%s: Cannot get buffer for journal superblock\n",
1227                        __func__);
1228                 goto out_err;
1229         }
1230         journal->j_sb_buffer = bh;
1231         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1232
1233         return journal;
1234 out_err:
1235         kfree(journal->j_wbuf);
1236         jbd2_stats_proc_exit(journal);
1237         kfree(journal);
1238         return NULL;
1239 }
1240
1241 /*
1242  * If the journal init or create aborts, we need to mark the journal
1243  * superblock as being NULL to prevent the journal destroy from writing
1244  * back a bogus superblock.
1245  */
1246 static void journal_fail_superblock (journal_t *journal)
1247 {
1248         struct buffer_head *bh = journal->j_sb_buffer;
1249         brelse(bh);
1250         journal->j_sb_buffer = NULL;
1251 }
1252
1253 /*
1254  * Given a journal_t structure, initialise the various fields for
1255  * startup of a new journaling session.  We use this both when creating
1256  * a journal, and after recovering an old journal to reset it for
1257  * subsequent use.
1258  */
1259
1260 static int journal_reset(journal_t *journal)
1261 {
1262         journal_superblock_t *sb = journal->j_superblock;
1263         unsigned long long first, last;
1264
1265         first = be32_to_cpu(sb->s_first);
1266         last = be32_to_cpu(sb->s_maxlen);
1267         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1268                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1269                        first, last);
1270                 journal_fail_superblock(journal);
1271                 return -EINVAL;
1272         }
1273
1274         journal->j_first = first;
1275         journal->j_last = last;
1276
1277         journal->j_head = first;
1278         journal->j_tail = first;
1279         journal->j_free = last - first;
1280
1281         journal->j_tail_sequence = journal->j_transaction_sequence;
1282         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1283         journal->j_commit_request = journal->j_commit_sequence;
1284
1285         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1286
1287         /*
1288          * As a special case, if the on-disk copy is already marked as needing
1289          * no recovery (s_start == 0), then we can safely defer the superblock
1290          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1291          * attempting a write to a potential-readonly device.
1292          */
1293         if (sb->s_start == 0) {
1294                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1295                         "(start %ld, seq %d, errno %d)\n",
1296                         journal->j_tail, journal->j_tail_sequence,
1297                         journal->j_errno);
1298                 journal->j_flags |= JBD2_FLUSHED;
1299         } else {
1300                 /* Lock here to make assertions happy... */
1301                 mutex_lock(&journal->j_checkpoint_mutex);
1302                 /*
1303                  * Update log tail information. We use WRITE_FUA since new
1304                  * transaction will start reusing journal space and so we
1305                  * must make sure information about current log tail is on
1306                  * disk before that.
1307                  */
1308                 jbd2_journal_update_sb_log_tail(journal,
1309                                                 journal->j_tail_sequence,
1310                                                 journal->j_tail,
1311                                                 WRITE_FUA);
1312                 mutex_unlock(&journal->j_checkpoint_mutex);
1313         }
1314         return jbd2_journal_start_thread(journal);
1315 }
1316
1317 static void jbd2_write_superblock(journal_t *journal, int write_op)
1318 {
1319         struct buffer_head *bh = journal->j_sb_buffer;
1320         int ret;
1321
1322         trace_jbd2_write_superblock(journal, write_op);
1323         if (!(journal->j_flags & JBD2_BARRIER))
1324                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1325         lock_buffer(bh);
1326         if (buffer_write_io_error(bh)) {
1327                 /*
1328                  * Oh, dear.  A previous attempt to write the journal
1329                  * superblock failed.  This could happen because the
1330                  * USB device was yanked out.  Or it could happen to
1331                  * be a transient write error and maybe the block will
1332                  * be remapped.  Nothing we can do but to retry the
1333                  * write and hope for the best.
1334                  */
1335                 printk(KERN_ERR "JBD2: previous I/O error detected "
1336                        "for journal superblock update for %s.\n",
1337                        journal->j_devname);
1338                 clear_buffer_write_io_error(bh);
1339                 set_buffer_uptodate(bh);
1340         }
1341         get_bh(bh);
1342         bh->b_end_io = end_buffer_write_sync;
1343         ret = submit_bh(write_op, bh);
1344         wait_on_buffer(bh);
1345         if (buffer_write_io_error(bh)) {
1346                 clear_buffer_write_io_error(bh);
1347                 set_buffer_uptodate(bh);
1348                 ret = -EIO;
1349         }
1350         if (ret) {
1351                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1352                        "journal superblock for %s.\n", ret,
1353                        journal->j_devname);
1354         }
1355 }
1356
1357 /**
1358  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1359  * @journal: The journal to update.
1360  * @tail_tid: TID of the new transaction at the tail of the log
1361  * @tail_block: The first block of the transaction at the tail of the log
1362  * @write_op: With which operation should we write the journal sb
1363  *
1364  * Update a journal's superblock information about log tail and write it to
1365  * disk, waiting for the IO to complete.
1366  */
1367 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1368                                      unsigned long tail_block, int write_op)
1369 {
1370         journal_superblock_t *sb = journal->j_superblock;
1371
1372         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1373         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1374                   tail_block, tail_tid);
1375
1376         sb->s_sequence = cpu_to_be32(tail_tid);
1377         sb->s_start    = cpu_to_be32(tail_block);
1378
1379         jbd2_write_superblock(journal, write_op);
1380
1381         /* Log is no longer empty */
1382         write_lock(&journal->j_state_lock);
1383         WARN_ON(!sb->s_sequence);
1384         journal->j_flags &= ~JBD2_FLUSHED;
1385         write_unlock(&journal->j_state_lock);
1386 }
1387
1388 /**
1389  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1390  * @journal: The journal to update.
1391  *
1392  * Update a journal's dynamic superblock fields to show that journal is empty.
1393  * Write updated superblock to disk waiting for IO to complete.
1394  */
1395 static void jbd2_mark_journal_empty(journal_t *journal)
1396 {
1397         journal_superblock_t *sb = journal->j_superblock;
1398
1399         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1400         read_lock(&journal->j_state_lock);
1401         /* Is it already empty? */
1402         if (sb->s_start == 0) {
1403                 read_unlock(&journal->j_state_lock);
1404                 return;
1405         }
1406         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1407                   journal->j_tail_sequence);
1408
1409         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1410         sb->s_start    = cpu_to_be32(0);
1411         read_unlock(&journal->j_state_lock);
1412
1413         jbd2_write_superblock(journal, WRITE_FUA);
1414
1415         /* Log is no longer empty */
1416         write_lock(&journal->j_state_lock);
1417         journal->j_flags |= JBD2_FLUSHED;
1418         write_unlock(&journal->j_state_lock);
1419 }
1420
1421
1422 /**
1423  * jbd2_journal_update_sb_errno() - Update error in the journal.
1424  * @journal: The journal to update.
1425  *
1426  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1427  * to complete.
1428  */
1429 void jbd2_journal_update_sb_errno(journal_t *journal)
1430 {
1431         journal_superblock_t *sb = journal->j_superblock;
1432
1433         read_lock(&journal->j_state_lock);
1434         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1435                   journal->j_errno);
1436         sb->s_errno    = cpu_to_be32(journal->j_errno);
1437         jbd2_superblock_csum_set(journal, sb);
1438         read_unlock(&journal->j_state_lock);
1439
1440         jbd2_write_superblock(journal, WRITE_SYNC);
1441 }
1442 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1443
1444 /*
1445  * Read the superblock for a given journal, performing initial
1446  * validation of the format.
1447  */
1448 static int journal_get_superblock(journal_t *journal)
1449 {
1450         struct buffer_head *bh;
1451         journal_superblock_t *sb;
1452         int err = -EIO;
1453
1454         bh = journal->j_sb_buffer;
1455
1456         J_ASSERT(bh != NULL);
1457         if (!buffer_uptodate(bh)) {
1458                 ll_rw_block(READ, 1, &bh);
1459                 wait_on_buffer(bh);
1460                 if (!buffer_uptodate(bh)) {
1461                         printk(KERN_ERR
1462                                 "JBD2: IO error reading journal superblock\n");
1463                         goto out;
1464                 }
1465         }
1466
1467         if (buffer_verified(bh))
1468                 return 0;
1469
1470         sb = journal->j_superblock;
1471
1472         err = -EINVAL;
1473
1474         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1475             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1476                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1477                 goto out;
1478         }
1479
1480         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1481         case JBD2_SUPERBLOCK_V1:
1482                 journal->j_format_version = 1;
1483                 break;
1484         case JBD2_SUPERBLOCK_V2:
1485                 journal->j_format_version = 2;
1486                 break;
1487         default:
1488                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1489                 goto out;
1490         }
1491
1492         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1493                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1494         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1495                 printk(KERN_WARNING "JBD2: journal file too short\n");
1496                 goto out;
1497         }
1498
1499         if (be32_to_cpu(sb->s_first) == 0 ||
1500             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1501                 printk(KERN_WARNING
1502                         "JBD2: Invalid start block of journal: %u\n",
1503                         be32_to_cpu(sb->s_first));
1504                 goto out;
1505         }
1506
1507         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1508             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1509                 /* Can't have checksum v1 and v2 on at the same time! */
1510                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1511                        "at the same time!\n");
1512                 goto out;
1513         }
1514
1515         if (!jbd2_verify_csum_type(journal, sb)) {
1516                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1517                 goto out;
1518         }
1519
1520         /* Load the checksum driver */
1521         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1522                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1523                 if (IS_ERR(journal->j_chksum_driver)) {
1524                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1525                         err = PTR_ERR(journal->j_chksum_driver);
1526                         journal->j_chksum_driver = NULL;
1527                         goto out;
1528                 }
1529         }
1530
1531         /* Check superblock checksum */
1532         if (!jbd2_superblock_csum_verify(journal, sb)) {
1533                 printk(KERN_ERR "JBD: journal checksum error\n");
1534                 goto out;
1535         }
1536
1537         /* Precompute checksum seed for all metadata */
1538         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1539                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1540                                                    sizeof(sb->s_uuid));
1541
1542         set_buffer_verified(bh);
1543
1544         return 0;
1545
1546 out:
1547         journal_fail_superblock(journal);
1548         return err;
1549 }
1550
1551 /*
1552  * Load the on-disk journal superblock and read the key fields into the
1553  * journal_t.
1554  */
1555
1556 static int load_superblock(journal_t *journal)
1557 {
1558         int err;
1559         journal_superblock_t *sb;
1560
1561         err = journal_get_superblock(journal);
1562         if (err)
1563                 return err;
1564
1565         sb = journal->j_superblock;
1566
1567         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1568         journal->j_tail = be32_to_cpu(sb->s_start);
1569         journal->j_first = be32_to_cpu(sb->s_first);
1570         journal->j_last = be32_to_cpu(sb->s_maxlen);
1571         journal->j_errno = be32_to_cpu(sb->s_errno);
1572
1573         return 0;
1574 }
1575
1576
1577 /**
1578  * int jbd2_journal_load() - Read journal from disk.
1579  * @journal: Journal to act on.
1580  *
1581  * Given a journal_t structure which tells us which disk blocks contain
1582  * a journal, read the journal from disk to initialise the in-memory
1583  * structures.
1584  */
1585 int jbd2_journal_load(journal_t *journal)
1586 {
1587         int err;
1588         journal_superblock_t *sb;
1589
1590         err = load_superblock(journal);
1591         if (err)
1592                 return err;
1593
1594         sb = journal->j_superblock;
1595         /* If this is a V2 superblock, then we have to check the
1596          * features flags on it. */
1597
1598         if (journal->j_format_version >= 2) {
1599                 if ((sb->s_feature_ro_compat &
1600                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1601                     (sb->s_feature_incompat &
1602                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1603                         printk(KERN_WARNING
1604                                 "JBD2: Unrecognised features on journal\n");
1605                         return -EINVAL;
1606                 }
1607         }
1608
1609         /*
1610          * Create a slab for this blocksize
1611          */
1612         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1613         if (err)
1614                 return err;
1615
1616         /* Let the recovery code check whether it needs to recover any
1617          * data from the journal. */
1618         if (jbd2_journal_recover(journal))
1619                 goto recovery_error;
1620
1621         if (journal->j_failed_commit) {
1622                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1623                        "is corrupt.\n", journal->j_failed_commit,
1624                        journal->j_devname);
1625                 return -EIO;
1626         }
1627
1628         /* OK, we've finished with the dynamic journal bits:
1629          * reinitialise the dynamic contents of the superblock in memory
1630          * and reset them on disk. */
1631         if (journal_reset(journal))
1632                 goto recovery_error;
1633
1634         journal->j_flags &= ~JBD2_ABORT;
1635         journal->j_flags |= JBD2_LOADED;
1636         return 0;
1637
1638 recovery_error:
1639         printk(KERN_WARNING "JBD2: recovery failed\n");
1640         return -EIO;
1641 }
1642
1643 /**
1644  * void jbd2_journal_destroy() - Release a journal_t structure.
1645  * @journal: Journal to act on.
1646  *
1647  * Release a journal_t structure once it is no longer in use by the
1648  * journaled object.
1649  * Return <0 if we couldn't clean up the journal.
1650  */
1651 int jbd2_journal_destroy(journal_t *journal)
1652 {
1653         int err = 0;
1654
1655         /* Wait for the commit thread to wake up and die. */
1656         journal_kill_thread(journal);
1657
1658         /* Force a final log commit */
1659         if (journal->j_running_transaction)
1660                 jbd2_journal_commit_transaction(journal);
1661
1662         /* Force any old transactions to disk */
1663
1664         /* Totally anal locking here... */
1665         spin_lock(&journal->j_list_lock);
1666         while (journal->j_checkpoint_transactions != NULL) {
1667                 spin_unlock(&journal->j_list_lock);
1668                 mutex_lock(&journal->j_checkpoint_mutex);
1669                 jbd2_log_do_checkpoint(journal);
1670                 mutex_unlock(&journal->j_checkpoint_mutex);
1671                 spin_lock(&journal->j_list_lock);
1672         }
1673
1674         J_ASSERT(journal->j_running_transaction == NULL);
1675         J_ASSERT(journal->j_committing_transaction == NULL);
1676         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1677         spin_unlock(&journal->j_list_lock);
1678
1679         if (journal->j_sb_buffer) {
1680                 if (!is_journal_aborted(journal)) {
1681                         mutex_lock(&journal->j_checkpoint_mutex);
1682                         jbd2_mark_journal_empty(journal);
1683                         mutex_unlock(&journal->j_checkpoint_mutex);
1684                 } else
1685                         err = -EIO;
1686                 brelse(journal->j_sb_buffer);
1687         }
1688
1689         if (journal->j_proc_entry)
1690                 jbd2_stats_proc_exit(journal);
1691         if (journal->j_inode)
1692                 iput(journal->j_inode);
1693         if (journal->j_revoke)
1694                 jbd2_journal_destroy_revoke(journal);
1695         if (journal->j_chksum_driver)
1696                 crypto_free_shash(journal->j_chksum_driver);
1697         kfree(journal->j_wbuf);
1698         kfree(journal);
1699
1700         return err;
1701 }
1702
1703
1704 /**
1705  *int jbd2_journal_check_used_features () - Check if features specified are used.
1706  * @journal: Journal to check.
1707  * @compat: bitmask of compatible features
1708  * @ro: bitmask of features that force read-only mount
1709  * @incompat: bitmask of incompatible features
1710  *
1711  * Check whether the journal uses all of a given set of
1712  * features.  Return true (non-zero) if it does.
1713  **/
1714
1715 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1716                                  unsigned long ro, unsigned long incompat)
1717 {
1718         journal_superblock_t *sb;
1719
1720         if (!compat && !ro && !incompat)
1721                 return 1;
1722         /* Load journal superblock if it is not loaded yet. */
1723         if (journal->j_format_version == 0 &&
1724             journal_get_superblock(journal) != 0)
1725                 return 0;
1726         if (journal->j_format_version == 1)
1727                 return 0;
1728
1729         sb = journal->j_superblock;
1730
1731         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1732             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1733             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1734                 return 1;
1735
1736         return 0;
1737 }
1738
1739 /**
1740  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1741  * @journal: Journal to check.
1742  * @compat: bitmask of compatible features
1743  * @ro: bitmask of features that force read-only mount
1744  * @incompat: bitmask of incompatible features
1745  *
1746  * Check whether the journaling code supports the use of
1747  * all of a given set of features on this journal.  Return true
1748  * (non-zero) if it can. */
1749
1750 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1751                                       unsigned long ro, unsigned long incompat)
1752 {
1753         if (!compat && !ro && !incompat)
1754                 return 1;
1755
1756         /* We can support any known requested features iff the
1757          * superblock is in version 2.  Otherwise we fail to support any
1758          * extended sb features. */
1759
1760         if (journal->j_format_version != 2)
1761                 return 0;
1762
1763         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1764             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1765             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1766                 return 1;
1767
1768         return 0;
1769 }
1770
1771 /**
1772  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1773  * @journal: Journal to act on.
1774  * @compat: bitmask of compatible features
1775  * @ro: bitmask of features that force read-only mount
1776  * @incompat: bitmask of incompatible features
1777  *
1778  * Mark a given journal feature as present on the
1779  * superblock.  Returns true if the requested features could be set.
1780  *
1781  */
1782
1783 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1784                           unsigned long ro, unsigned long incompat)
1785 {
1786 #define INCOMPAT_FEATURE_ON(f) \
1787                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1788 #define COMPAT_FEATURE_ON(f) \
1789                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1790         journal_superblock_t *sb;
1791
1792         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1793                 return 1;
1794
1795         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1796                 return 0;
1797
1798         /* Asking for checksumming v2 and v1?  Only give them v2. */
1799         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1800             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1801                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1802
1803         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1804                   compat, ro, incompat);
1805
1806         sb = journal->j_superblock;
1807
1808         /* If enabling v2 checksums, update superblock */
1809         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1810                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1811                 sb->s_feature_compat &=
1812                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1813
1814                 /* Load the checksum driver */
1815                 if (journal->j_chksum_driver == NULL) {
1816                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1817                                                                       0, 0);
1818                         if (IS_ERR(journal->j_chksum_driver)) {
1819                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1820                                        "driver.\n");
1821                                 journal->j_chksum_driver = NULL;
1822                                 return 0;
1823                         }
1824                 }
1825
1826                 /* Precompute checksum seed for all metadata */
1827                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1828                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1829                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1830                                                            sb->s_uuid,
1831                                                            sizeof(sb->s_uuid));
1832         }
1833
1834         /* If enabling v1 checksums, downgrade superblock */
1835         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1836                 sb->s_feature_incompat &=
1837                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1838
1839         sb->s_feature_compat    |= cpu_to_be32(compat);
1840         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1841         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1842
1843         return 1;
1844 #undef COMPAT_FEATURE_ON
1845 #undef INCOMPAT_FEATURE_ON
1846 }
1847
1848 /*
1849  * jbd2_journal_clear_features () - Clear a given journal feature in the
1850  *                                  superblock
1851  * @journal: Journal to act on.
1852  * @compat: bitmask of compatible features
1853  * @ro: bitmask of features that force read-only mount
1854  * @incompat: bitmask of incompatible features
1855  *
1856  * Clear a given journal feature as present on the
1857  * superblock.
1858  */
1859 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1860                                 unsigned long ro, unsigned long incompat)
1861 {
1862         journal_superblock_t *sb;
1863
1864         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1865                   compat, ro, incompat);
1866
1867         sb = journal->j_superblock;
1868
1869         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1870         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1871         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1872 }
1873 EXPORT_SYMBOL(jbd2_journal_clear_features);
1874
1875 /**
1876  * int jbd2_journal_flush () - Flush journal
1877  * @journal: Journal to act on.
1878  *
1879  * Flush all data for a given journal to disk and empty the journal.
1880  * Filesystems can use this when remounting readonly to ensure that
1881  * recovery does not need to happen on remount.
1882  */
1883
1884 int jbd2_journal_flush(journal_t *journal)
1885 {
1886         int err = 0;
1887         transaction_t *transaction = NULL;
1888
1889         write_lock(&journal->j_state_lock);
1890
1891         /* Force everything buffered to the log... */
1892         if (journal->j_running_transaction) {
1893                 transaction = journal->j_running_transaction;
1894                 __jbd2_log_start_commit(journal, transaction->t_tid);
1895         } else if (journal->j_committing_transaction)
1896                 transaction = journal->j_committing_transaction;
1897
1898         /* Wait for the log commit to complete... */
1899         if (transaction) {
1900                 tid_t tid = transaction->t_tid;
1901
1902                 write_unlock(&journal->j_state_lock);
1903                 jbd2_log_wait_commit(journal, tid);
1904         } else {
1905                 write_unlock(&journal->j_state_lock);
1906         }
1907
1908         /* ...and flush everything in the log out to disk. */
1909         spin_lock(&journal->j_list_lock);
1910         while (!err && journal->j_checkpoint_transactions != NULL) {
1911                 spin_unlock(&journal->j_list_lock);
1912                 mutex_lock(&journal->j_checkpoint_mutex);
1913                 err = jbd2_log_do_checkpoint(journal);
1914                 mutex_unlock(&journal->j_checkpoint_mutex);
1915                 spin_lock(&journal->j_list_lock);
1916         }
1917         spin_unlock(&journal->j_list_lock);
1918
1919         if (is_journal_aborted(journal))
1920                 return -EIO;
1921
1922         mutex_lock(&journal->j_checkpoint_mutex);
1923         jbd2_cleanup_journal_tail(journal);
1924
1925         /* Finally, mark the journal as really needing no recovery.
1926          * This sets s_start==0 in the underlying superblock, which is
1927          * the magic code for a fully-recovered superblock.  Any future
1928          * commits of data to the journal will restore the current
1929          * s_start value. */
1930         jbd2_mark_journal_empty(journal);
1931         mutex_unlock(&journal->j_checkpoint_mutex);
1932         write_lock(&journal->j_state_lock);
1933         J_ASSERT(!journal->j_running_transaction);
1934         J_ASSERT(!journal->j_committing_transaction);
1935         J_ASSERT(!journal->j_checkpoint_transactions);
1936         J_ASSERT(journal->j_head == journal->j_tail);
1937         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1938         write_unlock(&journal->j_state_lock);
1939         return 0;
1940 }
1941
1942 /**
1943  * int jbd2_journal_wipe() - Wipe journal contents
1944  * @journal: Journal to act on.
1945  * @write: flag (see below)
1946  *
1947  * Wipe out all of the contents of a journal, safely.  This will produce
1948  * a warning if the journal contains any valid recovery information.
1949  * Must be called between journal_init_*() and jbd2_journal_load().
1950  *
1951  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1952  * we merely suppress recovery.
1953  */
1954
1955 int jbd2_journal_wipe(journal_t *journal, int write)
1956 {
1957         int err = 0;
1958
1959         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1960
1961         err = load_superblock(journal);
1962         if (err)
1963                 return err;
1964
1965         if (!journal->j_tail)
1966                 goto no_recovery;
1967
1968         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1969                 write ? "Clearing" : "Ignoring");
1970
1971         err = jbd2_journal_skip_recovery(journal);
1972         if (write) {
1973                 /* Lock to make assertions happy... */
1974                 mutex_lock(&journal->j_checkpoint_mutex);
1975                 jbd2_mark_journal_empty(journal);
1976                 mutex_unlock(&journal->j_checkpoint_mutex);
1977         }
1978
1979  no_recovery:
1980         return err;
1981 }
1982
1983 /*
1984  * Journal abort has very specific semantics, which we describe
1985  * for journal abort.
1986  *
1987  * Two internal functions, which provide abort to the jbd layer
1988  * itself are here.
1989  */
1990
1991 /*
1992  * Quick version for internal journal use (doesn't lock the journal).
1993  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1994  * and don't attempt to make any other journal updates.
1995  */
1996 void __jbd2_journal_abort_hard(journal_t *journal)
1997 {
1998         transaction_t *transaction;
1999
2000         if (journal->j_flags & JBD2_ABORT)
2001                 return;
2002
2003         printk(KERN_ERR "Aborting journal on device %s.\n",
2004                journal->j_devname);
2005
2006         write_lock(&journal->j_state_lock);
2007         journal->j_flags |= JBD2_ABORT;
2008         transaction = journal->j_running_transaction;
2009         if (transaction)
2010                 __jbd2_log_start_commit(journal, transaction->t_tid);
2011         write_unlock(&journal->j_state_lock);
2012 }
2013
2014 /* Soft abort: record the abort error status in the journal superblock,
2015  * but don't do any other IO. */
2016 static void __journal_abort_soft (journal_t *journal, int errno)
2017 {
2018         if (journal->j_flags & JBD2_ABORT)
2019                 return;
2020
2021         if (!journal->j_errno)
2022                 journal->j_errno = errno;
2023
2024         __jbd2_journal_abort_hard(journal);
2025
2026         if (errno)
2027                 jbd2_journal_update_sb_errno(journal);
2028 }
2029
2030 /**
2031  * void jbd2_journal_abort () - Shutdown the journal immediately.
2032  * @journal: the journal to shutdown.
2033  * @errno:   an error number to record in the journal indicating
2034  *           the reason for the shutdown.
2035  *
2036  * Perform a complete, immediate shutdown of the ENTIRE
2037  * journal (not of a single transaction).  This operation cannot be
2038  * undone without closing and reopening the journal.
2039  *
2040  * The jbd2_journal_abort function is intended to support higher level error
2041  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2042  * mode.
2043  *
2044  * Journal abort has very specific semantics.  Any existing dirty,
2045  * unjournaled buffers in the main filesystem will still be written to
2046  * disk by bdflush, but the journaling mechanism will be suspended
2047  * immediately and no further transaction commits will be honoured.
2048  *
2049  * Any dirty, journaled buffers will be written back to disk without
2050  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2051  * filesystem, but we _do_ attempt to leave as much data as possible
2052  * behind for fsck to use for cleanup.
2053  *
2054  * Any attempt to get a new transaction handle on a journal which is in
2055  * ABORT state will just result in an -EROFS error return.  A
2056  * jbd2_journal_stop on an existing handle will return -EIO if we have
2057  * entered abort state during the update.
2058  *
2059  * Recursive transactions are not disturbed by journal abort until the
2060  * final jbd2_journal_stop, which will receive the -EIO error.
2061  *
2062  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2063  * which will be recorded (if possible) in the journal superblock.  This
2064  * allows a client to record failure conditions in the middle of a
2065  * transaction without having to complete the transaction to record the
2066  * failure to disk.  ext3_error, for example, now uses this
2067  * functionality.
2068  *
2069  * Errors which originate from within the journaling layer will NOT
2070  * supply an errno; a null errno implies that absolutely no further
2071  * writes are done to the journal (unless there are any already in
2072  * progress).
2073  *
2074  */
2075
2076 void jbd2_journal_abort(journal_t *journal, int errno)
2077 {
2078         __journal_abort_soft(journal, errno);
2079 }
2080
2081 /**
2082  * int jbd2_journal_errno () - returns the journal's error state.
2083  * @journal: journal to examine.
2084  *
2085  * This is the errno number set with jbd2_journal_abort(), the last
2086  * time the journal was mounted - if the journal was stopped
2087  * without calling abort this will be 0.
2088  *
2089  * If the journal has been aborted on this mount time -EROFS will
2090  * be returned.
2091  */
2092 int jbd2_journal_errno(journal_t *journal)
2093 {
2094         int err;
2095
2096         read_lock(&journal->j_state_lock);
2097         if (journal->j_flags & JBD2_ABORT)
2098                 err = -EROFS;
2099         else
2100                 err = journal->j_errno;
2101         read_unlock(&journal->j_state_lock);
2102         return err;
2103 }
2104
2105 /**
2106  * int jbd2_journal_clear_err () - clears the journal's error state
2107  * @journal: journal to act on.
2108  *
2109  * An error must be cleared or acked to take a FS out of readonly
2110  * mode.
2111  */
2112 int jbd2_journal_clear_err(journal_t *journal)
2113 {
2114         int err = 0;
2115
2116         write_lock(&journal->j_state_lock);
2117         if (journal->j_flags & JBD2_ABORT)
2118                 err = -EROFS;
2119         else
2120                 journal->j_errno = 0;
2121         write_unlock(&journal->j_state_lock);
2122         return err;
2123 }
2124
2125 /**
2126  * void jbd2_journal_ack_err() - Ack journal err.
2127  * @journal: journal to act on.
2128  *
2129  * An error must be cleared or acked to take a FS out of readonly
2130  * mode.
2131  */
2132 void jbd2_journal_ack_err(journal_t *journal)
2133 {
2134         write_lock(&journal->j_state_lock);
2135         if (journal->j_errno)
2136                 journal->j_flags |= JBD2_ACK_ERR;
2137         write_unlock(&journal->j_state_lock);
2138 }
2139
2140 int jbd2_journal_blocks_per_page(struct inode *inode)
2141 {
2142         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2143 }
2144
2145 /*
2146  * helper functions to deal with 32 or 64bit block numbers.
2147  */
2148 size_t journal_tag_bytes(journal_t *journal)
2149 {
2150         journal_block_tag_t tag;
2151         size_t x = 0;
2152
2153         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2154                 x += sizeof(tag.t_checksum);
2155
2156         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2157                 return x + JBD2_TAG_SIZE64;
2158         else
2159                 return x + JBD2_TAG_SIZE32;
2160 }
2161
2162 /*
2163  * JBD memory management
2164  *
2165  * These functions are used to allocate block-sized chunks of memory
2166  * used for making copies of buffer_head data.  Very often it will be
2167  * page-sized chunks of data, but sometimes it will be in
2168  * sub-page-size chunks.  (For example, 16k pages on Power systems
2169  * with a 4k block file system.)  For blocks smaller than a page, we
2170  * use a SLAB allocator.  There are slab caches for each block size,
2171  * which are allocated at mount time, if necessary, and we only free
2172  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2173  * this reason we don't need to a mutex to protect access to
2174  * jbd2_slab[] allocating or releasing memory; only in
2175  * jbd2_journal_create_slab().
2176  */
2177 #define JBD2_MAX_SLABS 8
2178 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2179
2180 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2181         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2182         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2183 };
2184
2185
2186 static void jbd2_journal_destroy_slabs(void)
2187 {
2188         int i;
2189
2190         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2191                 if (jbd2_slab[i])
2192                         kmem_cache_destroy(jbd2_slab[i]);
2193                 jbd2_slab[i] = NULL;
2194         }
2195 }
2196
2197 static int jbd2_journal_create_slab(size_t size)
2198 {
2199         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2200         int i = order_base_2(size) - 10;
2201         size_t slab_size;
2202
2203         if (size == PAGE_SIZE)
2204                 return 0;
2205
2206         if (i >= JBD2_MAX_SLABS)
2207                 return -EINVAL;
2208
2209         if (unlikely(i < 0))
2210                 i = 0;
2211         mutex_lock(&jbd2_slab_create_mutex);
2212         if (jbd2_slab[i]) {
2213                 mutex_unlock(&jbd2_slab_create_mutex);
2214                 return 0;       /* Already created */
2215         }
2216
2217         slab_size = 1 << (i+10);
2218         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2219                                          slab_size, 0, NULL);
2220         mutex_unlock(&jbd2_slab_create_mutex);
2221         if (!jbd2_slab[i]) {
2222                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2223                 return -ENOMEM;
2224         }
2225         return 0;
2226 }
2227
2228 static struct kmem_cache *get_slab(size_t size)
2229 {
2230         int i = order_base_2(size) - 10;
2231
2232         BUG_ON(i >= JBD2_MAX_SLABS);
2233         if (unlikely(i < 0))
2234                 i = 0;
2235         BUG_ON(jbd2_slab[i] == NULL);
2236         return jbd2_slab[i];
2237 }
2238
2239 void *jbd2_alloc(size_t size, gfp_t flags)
2240 {
2241         void *ptr;
2242
2243         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2244
2245         flags |= __GFP_REPEAT;
2246         if (size == PAGE_SIZE)
2247                 ptr = (void *)__get_free_pages(flags, 0);
2248         else if (size > PAGE_SIZE) {
2249                 int order = get_order(size);
2250
2251                 if (order < 3)
2252                         ptr = (void *)__get_free_pages(flags, order);
2253                 else
2254                         ptr = vmalloc(size);
2255         } else
2256                 ptr = kmem_cache_alloc(get_slab(size), flags);
2257
2258         /* Check alignment; SLUB has gotten this wrong in the past,
2259          * and this can lead to user data corruption! */
2260         BUG_ON(((unsigned long) ptr) & (size-1));
2261
2262         return ptr;
2263 }
2264
2265 void jbd2_free(void *ptr, size_t size)
2266 {
2267         if (size == PAGE_SIZE) {
2268                 free_pages((unsigned long)ptr, 0);
2269                 return;
2270         }
2271         if (size > PAGE_SIZE) {
2272                 int order = get_order(size);
2273
2274                 if (order < 3)
2275                         free_pages((unsigned long)ptr, order);
2276                 else
2277                         vfree(ptr);
2278                 return;
2279         }
2280         kmem_cache_free(get_slab(size), ptr);
2281 };
2282
2283 /*
2284  * Journal_head storage management
2285  */
2286 static struct kmem_cache *jbd2_journal_head_cache;
2287 #ifdef CONFIG_JBD2_DEBUG
2288 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2289 #endif
2290
2291 static int jbd2_journal_init_journal_head_cache(void)
2292 {
2293         int retval;
2294
2295         J_ASSERT(jbd2_journal_head_cache == NULL);
2296         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2297                                 sizeof(struct journal_head),
2298                                 0,              /* offset */
2299                                 SLAB_TEMPORARY, /* flags */
2300                                 NULL);          /* ctor */
2301         retval = 0;
2302         if (!jbd2_journal_head_cache) {
2303                 retval = -ENOMEM;
2304                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2305         }
2306         return retval;
2307 }
2308
2309 static void jbd2_journal_destroy_journal_head_cache(void)
2310 {
2311         if (jbd2_journal_head_cache) {
2312                 kmem_cache_destroy(jbd2_journal_head_cache);
2313                 jbd2_journal_head_cache = NULL;
2314         }
2315 }
2316
2317 /*
2318  * journal_head splicing and dicing
2319  */
2320 static struct journal_head *journal_alloc_journal_head(void)
2321 {
2322         struct journal_head *ret;
2323
2324 #ifdef CONFIG_JBD2_DEBUG
2325         atomic_inc(&nr_journal_heads);
2326 #endif
2327         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2328         if (!ret) {
2329                 jbd_debug(1, "out of memory for journal_head\n");
2330                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2331                 while (!ret) {
2332                         yield();
2333                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2334                 }
2335         }
2336         return ret;
2337 }
2338
2339 static void journal_free_journal_head(struct journal_head *jh)
2340 {
2341 #ifdef CONFIG_JBD2_DEBUG
2342         atomic_dec(&nr_journal_heads);
2343         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2344 #endif
2345         kmem_cache_free(jbd2_journal_head_cache, jh);
2346 }
2347
2348 /*
2349  * A journal_head is attached to a buffer_head whenever JBD has an
2350  * interest in the buffer.
2351  *
2352  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2353  * is set.  This bit is tested in core kernel code where we need to take
2354  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2355  * there.
2356  *
2357  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2358  *
2359  * When a buffer has its BH_JBD bit set it is immune from being released by
2360  * core kernel code, mainly via ->b_count.
2361  *
2362  * A journal_head is detached from its buffer_head when the journal_head's
2363  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2364  * transaction (b_cp_transaction) hold their references to b_jcount.
2365  *
2366  * Various places in the kernel want to attach a journal_head to a buffer_head
2367  * _before_ attaching the journal_head to a transaction.  To protect the
2368  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2369  * journal_head's b_jcount refcount by one.  The caller must call
2370  * jbd2_journal_put_journal_head() to undo this.
2371  *
2372  * So the typical usage would be:
2373  *
2374  *      (Attach a journal_head if needed.  Increments b_jcount)
2375  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2376  *      ...
2377  *      (Get another reference for transaction)
2378  *      jbd2_journal_grab_journal_head(bh);
2379  *      jh->b_transaction = xxx;
2380  *      (Put original reference)
2381  *      jbd2_journal_put_journal_head(jh);
2382  */
2383
2384 /*
2385  * Give a buffer_head a journal_head.
2386  *
2387  * May sleep.
2388  */
2389 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2390 {
2391         struct journal_head *jh;
2392         struct journal_head *new_jh = NULL;
2393
2394 repeat:
2395         if (!buffer_jbd(bh))
2396                 new_jh = journal_alloc_journal_head();
2397
2398         jbd_lock_bh_journal_head(bh);
2399         if (buffer_jbd(bh)) {
2400                 jh = bh2jh(bh);
2401         } else {
2402                 J_ASSERT_BH(bh,
2403                         (atomic_read(&bh->b_count) > 0) ||
2404                         (bh->b_page && bh->b_page->mapping));
2405
2406                 if (!new_jh) {
2407                         jbd_unlock_bh_journal_head(bh);
2408                         goto repeat;
2409                 }
2410
2411                 jh = new_jh;
2412                 new_jh = NULL;          /* We consumed it */
2413                 set_buffer_jbd(bh);
2414                 bh->b_private = jh;
2415                 jh->b_bh = bh;
2416                 get_bh(bh);
2417                 BUFFER_TRACE(bh, "added journal_head");
2418         }
2419         jh->b_jcount++;
2420         jbd_unlock_bh_journal_head(bh);
2421         if (new_jh)
2422                 journal_free_journal_head(new_jh);
2423         return bh->b_private;
2424 }
2425
2426 /*
2427  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2428  * having a journal_head, return NULL
2429  */
2430 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2431 {
2432         struct journal_head *jh = NULL;
2433
2434         jbd_lock_bh_journal_head(bh);
2435         if (buffer_jbd(bh)) {
2436                 jh = bh2jh(bh);
2437                 jh->b_jcount++;
2438         }
2439         jbd_unlock_bh_journal_head(bh);
2440         return jh;
2441 }
2442
2443 static void __journal_remove_journal_head(struct buffer_head *bh)
2444 {
2445         struct journal_head *jh = bh2jh(bh);
2446
2447         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2448         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2449         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2450         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2451         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2452         J_ASSERT_BH(bh, buffer_jbd(bh));
2453         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2454         BUFFER_TRACE(bh, "remove journal_head");
2455         if (jh->b_frozen_data) {
2456                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2457                 jbd2_free(jh->b_frozen_data, bh->b_size);
2458         }
2459         if (jh->b_committed_data) {
2460                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2461                 jbd2_free(jh->b_committed_data, bh->b_size);
2462         }
2463         bh->b_private = NULL;
2464         jh->b_bh = NULL;        /* debug, really */
2465         clear_buffer_jbd(bh);
2466         journal_free_journal_head(jh);
2467 }
2468
2469 /*
2470  * Drop a reference on the passed journal_head.  If it fell to zero then
2471  * release the journal_head from the buffer_head.
2472  */
2473 void jbd2_journal_put_journal_head(struct journal_head *jh)
2474 {
2475         struct buffer_head *bh = jh2bh(jh);
2476
2477         jbd_lock_bh_journal_head(bh);
2478         J_ASSERT_JH(jh, jh->b_jcount > 0);
2479         --jh->b_jcount;
2480         if (!jh->b_jcount) {
2481                 __journal_remove_journal_head(bh);
2482                 jbd_unlock_bh_journal_head(bh);
2483                 __brelse(bh);
2484         } else
2485                 jbd_unlock_bh_journal_head(bh);
2486 }
2487
2488 /*
2489  * Initialize jbd inode head
2490  */
2491 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2492 {
2493         jinode->i_transaction = NULL;
2494         jinode->i_next_transaction = NULL;
2495         jinode->i_vfs_inode = inode;
2496         jinode->i_flags = 0;
2497         INIT_LIST_HEAD(&jinode->i_list);
2498 }
2499
2500 /*
2501  * Function to be called before we start removing inode from memory (i.e.,
2502  * clear_inode() is a fine place to be called from). It removes inode from
2503  * transaction's lists.
2504  */
2505 void jbd2_journal_release_jbd_inode(journal_t *journal,
2506                                     struct jbd2_inode *jinode)
2507 {
2508         if (!journal)
2509                 return;
2510 restart:
2511         spin_lock(&journal->j_list_lock);
2512         /* Is commit writing out inode - we have to wait */
2513         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2514                 wait_queue_head_t *wq;
2515                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2516                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2517                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2518                 spin_unlock(&journal->j_list_lock);
2519                 schedule();
2520                 finish_wait(wq, &wait.wait);
2521                 goto restart;
2522         }
2523
2524         if (jinode->i_transaction) {
2525                 list_del(&jinode->i_list);
2526                 jinode->i_transaction = NULL;
2527         }
2528         spin_unlock(&journal->j_list_lock);
2529 }
2530
2531
2532 #ifdef CONFIG_PROC_FS
2533
2534 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2535
2536 static void __init jbd2_create_jbd_stats_proc_entry(void)
2537 {
2538         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2539 }
2540
2541 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2542 {
2543         if (proc_jbd2_stats)
2544                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2545 }
2546
2547 #else
2548
2549 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2550 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2551
2552 #endif
2553
2554 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2555
2556 static int __init jbd2_journal_init_handle_cache(void)
2557 {
2558         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2559         if (jbd2_handle_cache == NULL) {
2560                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2561                 return -ENOMEM;
2562         }
2563         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2564         if (jbd2_inode_cache == NULL) {
2565                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2566                 kmem_cache_destroy(jbd2_handle_cache);
2567                 return -ENOMEM;
2568         }
2569         return 0;
2570 }
2571
2572 static void jbd2_journal_destroy_handle_cache(void)
2573 {
2574         if (jbd2_handle_cache)
2575                 kmem_cache_destroy(jbd2_handle_cache);
2576         if (jbd2_inode_cache)
2577                 kmem_cache_destroy(jbd2_inode_cache);
2578
2579 }
2580
2581 /*
2582  * Module startup and shutdown
2583  */
2584
2585 static int __init journal_init_caches(void)
2586 {
2587         int ret;
2588
2589         ret = jbd2_journal_init_revoke_caches();
2590         if (ret == 0)
2591                 ret = jbd2_journal_init_journal_head_cache();
2592         if (ret == 0)
2593                 ret = jbd2_journal_init_handle_cache();
2594         if (ret == 0)
2595                 ret = jbd2_journal_init_transaction_cache();
2596         return ret;
2597 }
2598
2599 static void jbd2_journal_destroy_caches(void)
2600 {
2601         jbd2_journal_destroy_revoke_caches();
2602         jbd2_journal_destroy_journal_head_cache();
2603         jbd2_journal_destroy_handle_cache();
2604         jbd2_journal_destroy_transaction_cache();
2605         jbd2_journal_destroy_slabs();
2606 }
2607
2608 static int __init journal_init(void)
2609 {
2610         int ret;
2611
2612         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2613
2614         ret = journal_init_caches();
2615         if (ret == 0) {
2616                 jbd2_create_jbd_stats_proc_entry();
2617         } else {
2618                 jbd2_journal_destroy_caches();
2619         }
2620         return ret;
2621 }
2622
2623 static void __exit journal_exit(void)
2624 {
2625 #ifdef CONFIG_JBD2_DEBUG
2626         int n = atomic_read(&nr_journal_heads);
2627         if (n)
2628                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2629 #endif
2630         jbd2_remove_jbd_stats_proc_entry();
2631         jbd2_journal_destroy_caches();
2632 }
2633
2634 MODULE_LICENSE("GPL");
2635 module_init(journal_init);
2636 module_exit(journal_exit);
2637