]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
jbd2: remove unused waitqueues
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  * 
319  *
320  * Return value:
321  *  <0: Error
322  * >=0: Finished OK
323  *
324  * On success:
325  * Bit 0 set == escape performed on the data
326  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
327  */
328
329 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
330                                   struct journal_head  *jh_in,
331                                   struct buffer_head **bh_out,
332                                   sector_t blocknr)
333 {
334         int need_copy_out = 0;
335         int done_copy_out = 0;
336         int do_escape = 0;
337         char *mapped_data;
338         struct buffer_head *new_bh;
339         struct page *new_page;
340         unsigned int new_offset;
341         struct buffer_head *bh_in = jh2bh(jh_in);
342         journal_t *journal = transaction->t_journal;
343
344         /*
345          * The buffer really shouldn't be locked: only the current committing
346          * transaction is allowed to write it, so nobody else is allowed
347          * to do any IO.
348          *
349          * akpm: except if we're journalling data, and write() output is
350          * also part of a shared mapping, and another thread has
351          * decided to launch a writepage() against this buffer.
352          */
353         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
354
355 retry_alloc:
356         new_bh = alloc_buffer_head(GFP_NOFS);
357         if (!new_bh) {
358                 /*
359                  * Failure is not an option, but __GFP_NOFAIL is going
360                  * away; so we retry ourselves here.
361                  */
362                 congestion_wait(BLK_RW_ASYNC, HZ/50);
363                 goto retry_alloc;
364         }
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         jbd_lock_bh_state(bh_in);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 jbd_unlock_bh_state(bh_in);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 jbd_lock_bh_state(bh_in);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         new_bh->b_private = bh_in;
455         set_buffer_mapped(new_bh);
456         set_buffer_dirty(new_bh);
457
458         *bh_out = new_bh;
459
460         /*
461          * The to-be-written buffer needs to get moved to the io queue,
462          * and the original buffer whose contents we are shadowing or
463          * copying is moved to the transaction's shadow queue.
464          */
465         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466         spin_lock(&journal->j_list_lock);
467         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468         spin_unlock(&journal->j_list_lock);
469         set_buffer_shadow(bh_in);
470         jbd_unlock_bh_state(bh_in);
471
472         return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486         /* Return if the txn has already requested to be committed */
487         if (journal->j_commit_request == target)
488                 return 0;
489
490         /*
491          * The only transaction we can possibly wait upon is the
492          * currently running transaction (if it exists).  Otherwise,
493          * the target tid must be an old one.
494          */
495         if (journal->j_running_transaction &&
496             journal->j_running_transaction->t_tid == target) {
497                 /*
498                  * We want a new commit: OK, mark the request and wakeup the
499                  * commit thread.  We do _not_ do the commit ourselves.
500                  */
501
502                 journal->j_commit_request = target;
503                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence);
506                 journal->j_running_transaction->t_requested = jiffies;
507                 wake_up(&journal->j_wait_commit);
508                 return 1;
509         } else if (!tid_geq(journal->j_commit_request, target))
510                 /* This should never happen, but if it does, preserve
511                    the evidence before kjournald goes into a loop and
512                    increments j_commit_sequence beyond all recognition. */
513                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence,
516                           target, journal->j_running_transaction ? 
517                           journal->j_running_transaction->t_tid : 0);
518         return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523         int ret;
524
525         write_lock(&journal->j_state_lock);
526         ret = __jbd2_log_start_commit(journal, tid);
527         write_unlock(&journal->j_state_lock);
528         return ret;
529 }
530
531 /*
532  * Force and wait upon a commit if the calling process is not within
533  * transaction.  This is used for forcing out undo-protected data which contains
534  * bitmaps, when the fs is running out of space.
535  *
536  * We can only force the running transaction if we don't have an active handle;
537  * otherwise, we will deadlock.
538  *
539  * Returns true if a transaction was started.
540  */
541 int jbd2_journal_force_commit_nested(journal_t *journal)
542 {
543         transaction_t *transaction = NULL;
544         tid_t tid;
545         int need_to_start = 0;
546
547         read_lock(&journal->j_state_lock);
548         if (journal->j_running_transaction && !current->journal_info) {
549                 transaction = journal->j_running_transaction;
550                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
551                         need_to_start = 1;
552         } else if (journal->j_committing_transaction)
553                 transaction = journal->j_committing_transaction;
554
555         if (!transaction) {
556                 read_unlock(&journal->j_state_lock);
557                 return 0;       /* Nothing to retry */
558         }
559
560         tid = transaction->t_tid;
561         read_unlock(&journal->j_state_lock);
562         if (need_to_start)
563                 jbd2_log_start_commit(journal, tid);
564         jbd2_log_wait_commit(journal, tid);
565         return 1;
566 }
567
568 /*
569  * Start a commit of the current running transaction (if any).  Returns true
570  * if a transaction is going to be committed (or is currently already
571  * committing), and fills its tid in at *ptid
572  */
573 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
574 {
575         int ret = 0;
576
577         write_lock(&journal->j_state_lock);
578         if (journal->j_running_transaction) {
579                 tid_t tid = journal->j_running_transaction->t_tid;
580
581                 __jbd2_log_start_commit(journal, tid);
582                 /* There's a running transaction and we've just made sure
583                  * it's commit has been scheduled. */
584                 if (ptid)
585                         *ptid = tid;
586                 ret = 1;
587         } else if (journal->j_committing_transaction) {
588                 /*
589                  * If commit has been started, then we have to wait for
590                  * completion of that transaction.
591                  */
592                 if (ptid)
593                         *ptid = journal->j_committing_transaction->t_tid;
594                 ret = 1;
595         }
596         write_unlock(&journal->j_state_lock);
597         return ret;
598 }
599
600 /*
601  * Return 1 if a given transaction has not yet sent barrier request
602  * connected with a transaction commit. If 0 is returned, transaction
603  * may or may not have sent the barrier. Used to avoid sending barrier
604  * twice in common cases.
605  */
606 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
607 {
608         int ret = 0;
609         transaction_t *commit_trans;
610
611         if (!(journal->j_flags & JBD2_BARRIER))
612                 return 0;
613         read_lock(&journal->j_state_lock);
614         /* Transaction already committed? */
615         if (tid_geq(journal->j_commit_sequence, tid))
616                 goto out;
617         commit_trans = journal->j_committing_transaction;
618         if (!commit_trans || commit_trans->t_tid != tid) {
619                 ret = 1;
620                 goto out;
621         }
622         /*
623          * Transaction is being committed and we already proceeded to
624          * submitting a flush to fs partition?
625          */
626         if (journal->j_fs_dev != journal->j_dev) {
627                 if (!commit_trans->t_need_data_flush ||
628                     commit_trans->t_state >= T_COMMIT_DFLUSH)
629                         goto out;
630         } else {
631                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
632                         goto out;
633         }
634         ret = 1;
635 out:
636         read_unlock(&journal->j_state_lock);
637         return ret;
638 }
639 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
640
641 /*
642  * Wait for a specified commit to complete.
643  * The caller may not hold the journal lock.
644  */
645 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
646 {
647         int err = 0;
648
649         read_lock(&journal->j_state_lock);
650 #ifdef CONFIG_JBD2_DEBUG
651         if (!tid_geq(journal->j_commit_request, tid)) {
652                 printk(KERN_EMERG
653                        "%s: error: j_commit_request=%d, tid=%d\n",
654                        __func__, journal->j_commit_request, tid);
655         }
656 #endif
657         while (tid_gt(tid, journal->j_commit_sequence)) {
658                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
659                                   tid, journal->j_commit_sequence);
660                 wake_up(&journal->j_wait_commit);
661                 read_unlock(&journal->j_state_lock);
662                 wait_event(journal->j_wait_done_commit,
663                                 !tid_gt(tid, journal->j_commit_sequence));
664                 read_lock(&journal->j_state_lock);
665         }
666         read_unlock(&journal->j_state_lock);
667
668         if (unlikely(is_journal_aborted(journal))) {
669                 printk(KERN_EMERG "journal commit I/O error\n");
670                 err = -EIO;
671         }
672         return err;
673 }
674
675 /*
676  * When this function returns the transaction corresponding to tid
677  * will be completed.  If the transaction has currently running, start
678  * committing that transaction before waiting for it to complete.  If
679  * the transaction id is stale, it is by definition already completed,
680  * so just return SUCCESS.
681  */
682 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
683 {
684         int     need_to_wait = 1;
685
686         read_lock(&journal->j_state_lock);
687         if (journal->j_running_transaction &&
688             journal->j_running_transaction->t_tid == tid) {
689                 if (journal->j_commit_request != tid) {
690                         /* transaction not yet started, so request it */
691                         read_unlock(&journal->j_state_lock);
692                         jbd2_log_start_commit(journal, tid);
693                         goto wait_commit;
694                 }
695         } else if (!(journal->j_committing_transaction &&
696                      journal->j_committing_transaction->t_tid == tid))
697                 need_to_wait = 0;
698         read_unlock(&journal->j_state_lock);
699         if (!need_to_wait)
700                 return 0;
701 wait_commit:
702         return jbd2_log_wait_commit(journal, tid);
703 }
704 EXPORT_SYMBOL(jbd2_complete_transaction);
705
706 /*
707  * Log buffer allocation routines:
708  */
709
710 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
711 {
712         unsigned long blocknr;
713
714         write_lock(&journal->j_state_lock);
715         J_ASSERT(journal->j_free > 1);
716
717         blocknr = journal->j_head;
718         journal->j_head++;
719         journal->j_free--;
720         if (journal->j_head == journal->j_last)
721                 journal->j_head = journal->j_first;
722         write_unlock(&journal->j_state_lock);
723         return jbd2_journal_bmap(journal, blocknr, retp);
724 }
725
726 /*
727  * Conversion of logical to physical block numbers for the journal
728  *
729  * On external journals the journal blocks are identity-mapped, so
730  * this is a no-op.  If needed, we can use j_blk_offset - everything is
731  * ready.
732  */
733 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
734                  unsigned long long *retp)
735 {
736         int err = 0;
737         unsigned long long ret;
738
739         if (journal->j_inode) {
740                 ret = bmap(journal->j_inode, blocknr);
741                 if (ret)
742                         *retp = ret;
743                 else {
744                         printk(KERN_ALERT "%s: journal block not found "
745                                         "at offset %lu on %s\n",
746                                __func__, blocknr, journal->j_devname);
747                         err = -EIO;
748                         __journal_abort_soft(journal, err);
749                 }
750         } else {
751                 *retp = blocknr; /* +journal->j_blk_offset */
752         }
753         return err;
754 }
755
756 /*
757  * We play buffer_head aliasing tricks to write data/metadata blocks to
758  * the journal without copying their contents, but for journal
759  * descriptor blocks we do need to generate bona fide buffers.
760  *
761  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
762  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
763  * But we don't bother doing that, so there will be coherency problems with
764  * mmaps of blockdevs which hold live JBD-controlled filesystems.
765  */
766 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
767 {
768         struct buffer_head *bh;
769         unsigned long long blocknr;
770         int err;
771
772         err = jbd2_journal_next_log_block(journal, &blocknr);
773
774         if (err)
775                 return NULL;
776
777         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
778         if (!bh)
779                 return NULL;
780         lock_buffer(bh);
781         memset(bh->b_data, 0, journal->j_blocksize);
782         set_buffer_uptodate(bh);
783         unlock_buffer(bh);
784         BUFFER_TRACE(bh, "return this buffer");
785         return bh;
786 }
787
788 /*
789  * Return tid of the oldest transaction in the journal and block in the journal
790  * where the transaction starts.
791  *
792  * If the journal is now empty, return which will be the next transaction ID
793  * we will write and where will that transaction start.
794  *
795  * The return value is 0 if journal tail cannot be pushed any further, 1 if
796  * it can.
797  */
798 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
799                               unsigned long *block)
800 {
801         transaction_t *transaction;
802         int ret;
803
804         read_lock(&journal->j_state_lock);
805         spin_lock(&journal->j_list_lock);
806         transaction = journal->j_checkpoint_transactions;
807         if (transaction) {
808                 *tid = transaction->t_tid;
809                 *block = transaction->t_log_start;
810         } else if ((transaction = journal->j_committing_transaction) != NULL) {
811                 *tid = transaction->t_tid;
812                 *block = transaction->t_log_start;
813         } else if ((transaction = journal->j_running_transaction) != NULL) {
814                 *tid = transaction->t_tid;
815                 *block = journal->j_head;
816         } else {
817                 *tid = journal->j_transaction_sequence;
818                 *block = journal->j_head;
819         }
820         ret = tid_gt(*tid, journal->j_tail_sequence);
821         spin_unlock(&journal->j_list_lock);
822         read_unlock(&journal->j_state_lock);
823
824         return ret;
825 }
826
827 /*
828  * Update information in journal structure and in on disk journal superblock
829  * about log tail. This function does not check whether information passed in
830  * really pushes log tail further. It's responsibility of the caller to make
831  * sure provided log tail information is valid (e.g. by holding
832  * j_checkpoint_mutex all the time between computing log tail and calling this
833  * function as is the case with jbd2_cleanup_journal_tail()).
834  *
835  * Requires j_checkpoint_mutex
836  */
837 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
838 {
839         unsigned long freed;
840
841         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
842
843         /*
844          * We cannot afford for write to remain in drive's caches since as
845          * soon as we update j_tail, next transaction can start reusing journal
846          * space and if we lose sb update during power failure we'd replay
847          * old transaction with possibly newly overwritten data.
848          */
849         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
850         write_lock(&journal->j_state_lock);
851         freed = block - journal->j_tail;
852         if (block < journal->j_tail)
853                 freed += journal->j_last - journal->j_first;
854
855         trace_jbd2_update_log_tail(journal, tid, block, freed);
856         jbd_debug(1,
857                   "Cleaning journal tail from %d to %d (offset %lu), "
858                   "freeing %lu\n",
859                   journal->j_tail_sequence, tid, block, freed);
860
861         journal->j_free += freed;
862         journal->j_tail_sequence = tid;
863         journal->j_tail = block;
864         write_unlock(&journal->j_state_lock);
865 }
866
867 /*
868  * This is a variaon of __jbd2_update_log_tail which checks for validity of
869  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
870  * with other threads updating log tail.
871  */
872 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
873 {
874         mutex_lock(&journal->j_checkpoint_mutex);
875         if (tid_gt(tid, journal->j_tail_sequence))
876                 __jbd2_update_log_tail(journal, tid, block);
877         mutex_unlock(&journal->j_checkpoint_mutex);
878 }
879
880 struct jbd2_stats_proc_session {
881         journal_t *journal;
882         struct transaction_stats_s *stats;
883         int start;
884         int max;
885 };
886
887 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
888 {
889         return *pos ? NULL : SEQ_START_TOKEN;
890 }
891
892 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
893 {
894         return NULL;
895 }
896
897 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
898 {
899         struct jbd2_stats_proc_session *s = seq->private;
900
901         if (v != SEQ_START_TOKEN)
902                 return 0;
903         seq_printf(seq, "%lu transactions (%lu requested), "
904                    "each up to %u blocks\n",
905                    s->stats->ts_tid, s->stats->ts_requested,
906                    s->journal->j_max_transaction_buffers);
907         if (s->stats->ts_tid == 0)
908                 return 0;
909         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
910             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
911         seq_printf(seq, "  %ums request delay\n",
912             (s->stats->ts_requested == 0) ? 0 :
913             jiffies_to_msecs(s->stats->run.rs_request_delay /
914                              s->stats->ts_requested));
915         seq_printf(seq, "  %ums running transaction\n",
916             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
917         seq_printf(seq, "  %ums transaction was being locked\n",
918             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
919         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
920             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
921         seq_printf(seq, "  %ums logging transaction\n",
922             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
923         seq_printf(seq, "  %lluus average transaction commit time\n",
924                    div_u64(s->journal->j_average_commit_time, 1000));
925         seq_printf(seq, "  %lu handles per transaction\n",
926             s->stats->run.rs_handle_count / s->stats->ts_tid);
927         seq_printf(seq, "  %lu blocks per transaction\n",
928             s->stats->run.rs_blocks / s->stats->ts_tid);
929         seq_printf(seq, "  %lu logged blocks per transaction\n",
930             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
931         return 0;
932 }
933
934 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
935 {
936 }
937
938 static const struct seq_operations jbd2_seq_info_ops = {
939         .start  = jbd2_seq_info_start,
940         .next   = jbd2_seq_info_next,
941         .stop   = jbd2_seq_info_stop,
942         .show   = jbd2_seq_info_show,
943 };
944
945 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
946 {
947         journal_t *journal = PDE_DATA(inode);
948         struct jbd2_stats_proc_session *s;
949         int rc, size;
950
951         s = kmalloc(sizeof(*s), GFP_KERNEL);
952         if (s == NULL)
953                 return -ENOMEM;
954         size = sizeof(struct transaction_stats_s);
955         s->stats = kmalloc(size, GFP_KERNEL);
956         if (s->stats == NULL) {
957                 kfree(s);
958                 return -ENOMEM;
959         }
960         spin_lock(&journal->j_history_lock);
961         memcpy(s->stats, &journal->j_stats, size);
962         s->journal = journal;
963         spin_unlock(&journal->j_history_lock);
964
965         rc = seq_open(file, &jbd2_seq_info_ops);
966         if (rc == 0) {
967                 struct seq_file *m = file->private_data;
968                 m->private = s;
969         } else {
970                 kfree(s->stats);
971                 kfree(s);
972         }
973         return rc;
974
975 }
976
977 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
978 {
979         struct seq_file *seq = file->private_data;
980         struct jbd2_stats_proc_session *s = seq->private;
981         kfree(s->stats);
982         kfree(s);
983         return seq_release(inode, file);
984 }
985
986 static const struct file_operations jbd2_seq_info_fops = {
987         .owner          = THIS_MODULE,
988         .open           = jbd2_seq_info_open,
989         .read           = seq_read,
990         .llseek         = seq_lseek,
991         .release        = jbd2_seq_info_release,
992 };
993
994 static struct proc_dir_entry *proc_jbd2_stats;
995
996 static void jbd2_stats_proc_init(journal_t *journal)
997 {
998         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
999         if (journal->j_proc_entry) {
1000                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1001                                  &jbd2_seq_info_fops, journal);
1002         }
1003 }
1004
1005 static void jbd2_stats_proc_exit(journal_t *journal)
1006 {
1007         remove_proc_entry("info", journal->j_proc_entry);
1008         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1009 }
1010
1011 /*
1012  * Management for journal control blocks: functions to create and
1013  * destroy journal_t structures, and to initialise and read existing
1014  * journal blocks from disk.  */
1015
1016 /* First: create and setup a journal_t object in memory.  We initialise
1017  * very few fields yet: that has to wait until we have created the
1018  * journal structures from from scratch, or loaded them from disk. */
1019
1020 static journal_t * journal_init_common (void)
1021 {
1022         journal_t *journal;
1023         int err;
1024
1025         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1026         if (!journal)
1027                 return NULL;
1028
1029         init_waitqueue_head(&journal->j_wait_transaction_locked);
1030         init_waitqueue_head(&journal->j_wait_done_commit);
1031         init_waitqueue_head(&journal->j_wait_commit);
1032         init_waitqueue_head(&journal->j_wait_updates);
1033         mutex_init(&journal->j_barrier);
1034         mutex_init(&journal->j_checkpoint_mutex);
1035         spin_lock_init(&journal->j_revoke_lock);
1036         spin_lock_init(&journal->j_list_lock);
1037         rwlock_init(&journal->j_state_lock);
1038
1039         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1040         journal->j_min_batch_time = 0;
1041         journal->j_max_batch_time = 15000; /* 15ms */
1042
1043         /* The journal is marked for error until we succeed with recovery! */
1044         journal->j_flags = JBD2_ABORT;
1045
1046         /* Set up a default-sized revoke table for the new mount. */
1047         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1048         if (err) {
1049                 kfree(journal);
1050                 return NULL;
1051         }
1052
1053         spin_lock_init(&journal->j_history_lock);
1054
1055         return journal;
1056 }
1057
1058 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1059  *
1060  * Create a journal structure assigned some fixed set of disk blocks to
1061  * the journal.  We don't actually touch those disk blocks yet, but we
1062  * need to set up all of the mapping information to tell the journaling
1063  * system where the journal blocks are.
1064  *
1065  */
1066
1067 /**
1068  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1069  *  @bdev: Block device on which to create the journal
1070  *  @fs_dev: Device which hold journalled filesystem for this journal.
1071  *  @start: Block nr Start of journal.
1072  *  @len:  Length of the journal in blocks.
1073  *  @blocksize: blocksize of journalling device
1074  *
1075  *  Returns: a newly created journal_t *
1076  *
1077  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1078  *  range of blocks on an arbitrary block device.
1079  *
1080  */
1081 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1082                         struct block_device *fs_dev,
1083                         unsigned long long start, int len, int blocksize)
1084 {
1085         journal_t *journal = journal_init_common();
1086         struct buffer_head *bh;
1087         char *p;
1088         int n;
1089
1090         if (!journal)
1091                 return NULL;
1092
1093         /* journal descriptor can store up to n blocks -bzzz */
1094         journal->j_blocksize = blocksize;
1095         journal->j_dev = bdev;
1096         journal->j_fs_dev = fs_dev;
1097         journal->j_blk_offset = start;
1098         journal->j_maxlen = len;
1099         bdevname(journal->j_dev, journal->j_devname);
1100         p = journal->j_devname;
1101         while ((p = strchr(p, '/')))
1102                 *p = '!';
1103         jbd2_stats_proc_init(journal);
1104         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1105         journal->j_wbufsize = n;
1106         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1107         if (!journal->j_wbuf) {
1108                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1109                         __func__);
1110                 goto out_err;
1111         }
1112
1113         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1114         if (!bh) {
1115                 printk(KERN_ERR
1116                        "%s: Cannot get buffer for journal superblock\n",
1117                        __func__);
1118                 goto out_err;
1119         }
1120         journal->j_sb_buffer = bh;
1121         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1122
1123         return journal;
1124 out_err:
1125         kfree(journal->j_wbuf);
1126         jbd2_stats_proc_exit(journal);
1127         kfree(journal);
1128         return NULL;
1129 }
1130
1131 /**
1132  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1133  *  @inode: An inode to create the journal in
1134  *
1135  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1136  * the journal.  The inode must exist already, must support bmap() and
1137  * must have all data blocks preallocated.
1138  */
1139 journal_t * jbd2_journal_init_inode (struct inode *inode)
1140 {
1141         struct buffer_head *bh;
1142         journal_t *journal = journal_init_common();
1143         char *p;
1144         int err;
1145         int n;
1146         unsigned long long blocknr;
1147
1148         if (!journal)
1149                 return NULL;
1150
1151         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1152         journal->j_inode = inode;
1153         bdevname(journal->j_dev, journal->j_devname);
1154         p = journal->j_devname;
1155         while ((p = strchr(p, '/')))
1156                 *p = '!';
1157         p = journal->j_devname + strlen(journal->j_devname);
1158         sprintf(p, "-%lu", journal->j_inode->i_ino);
1159         jbd_debug(1,
1160                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1161                   journal, inode->i_sb->s_id, inode->i_ino,
1162                   (long long) inode->i_size,
1163                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1164
1165         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1166         journal->j_blocksize = inode->i_sb->s_blocksize;
1167         jbd2_stats_proc_init(journal);
1168
1169         /* journal descriptor can store up to n blocks -bzzz */
1170         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1171         journal->j_wbufsize = n;
1172         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1173         if (!journal->j_wbuf) {
1174                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1175                         __func__);
1176                 goto out_err;
1177         }
1178
1179         err = jbd2_journal_bmap(journal, 0, &blocknr);
1180         /* If that failed, give up */
1181         if (err) {
1182                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1183                        __func__);
1184                 goto out_err;
1185         }
1186
1187         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1188         if (!bh) {
1189                 printk(KERN_ERR
1190                        "%s: Cannot get buffer for journal superblock\n",
1191                        __func__);
1192                 goto out_err;
1193         }
1194         journal->j_sb_buffer = bh;
1195         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197         return journal;
1198 out_err:
1199         kfree(journal->j_wbuf);
1200         jbd2_stats_proc_exit(journal);
1201         kfree(journal);
1202         return NULL;
1203 }
1204
1205 /*
1206  * If the journal init or create aborts, we need to mark the journal
1207  * superblock as being NULL to prevent the journal destroy from writing
1208  * back a bogus superblock.
1209  */
1210 static void journal_fail_superblock (journal_t *journal)
1211 {
1212         struct buffer_head *bh = journal->j_sb_buffer;
1213         brelse(bh);
1214         journal->j_sb_buffer = NULL;
1215 }
1216
1217 /*
1218  * Given a journal_t structure, initialise the various fields for
1219  * startup of a new journaling session.  We use this both when creating
1220  * a journal, and after recovering an old journal to reset it for
1221  * subsequent use.
1222  */
1223
1224 static int journal_reset(journal_t *journal)
1225 {
1226         journal_superblock_t *sb = journal->j_superblock;
1227         unsigned long long first, last;
1228
1229         first = be32_to_cpu(sb->s_first);
1230         last = be32_to_cpu(sb->s_maxlen);
1231         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1232                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1233                        first, last);
1234                 journal_fail_superblock(journal);
1235                 return -EINVAL;
1236         }
1237
1238         journal->j_first = first;
1239         journal->j_last = last;
1240
1241         journal->j_head = first;
1242         journal->j_tail = first;
1243         journal->j_free = last - first;
1244
1245         journal->j_tail_sequence = journal->j_transaction_sequence;
1246         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1247         journal->j_commit_request = journal->j_commit_sequence;
1248
1249         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1250
1251         /*
1252          * As a special case, if the on-disk copy is already marked as needing
1253          * no recovery (s_start == 0), then we can safely defer the superblock
1254          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1255          * attempting a write to a potential-readonly device.
1256          */
1257         if (sb->s_start == 0) {
1258                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1259                         "(start %ld, seq %d, errno %d)\n",
1260                         journal->j_tail, journal->j_tail_sequence,
1261                         journal->j_errno);
1262                 journal->j_flags |= JBD2_FLUSHED;
1263         } else {
1264                 /* Lock here to make assertions happy... */
1265                 mutex_lock(&journal->j_checkpoint_mutex);
1266                 /*
1267                  * Update log tail information. We use WRITE_FUA since new
1268                  * transaction will start reusing journal space and so we
1269                  * must make sure information about current log tail is on
1270                  * disk before that.
1271                  */
1272                 jbd2_journal_update_sb_log_tail(journal,
1273                                                 journal->j_tail_sequence,
1274                                                 journal->j_tail,
1275                                                 WRITE_FUA);
1276                 mutex_unlock(&journal->j_checkpoint_mutex);
1277         }
1278         return jbd2_journal_start_thread(journal);
1279 }
1280
1281 static void jbd2_write_superblock(journal_t *journal, int write_op)
1282 {
1283         struct buffer_head *bh = journal->j_sb_buffer;
1284         int ret;
1285
1286         trace_jbd2_write_superblock(journal, write_op);
1287         if (!(journal->j_flags & JBD2_BARRIER))
1288                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1289         lock_buffer(bh);
1290         if (buffer_write_io_error(bh)) {
1291                 /*
1292                  * Oh, dear.  A previous attempt to write the journal
1293                  * superblock failed.  This could happen because the
1294                  * USB device was yanked out.  Or it could happen to
1295                  * be a transient write error and maybe the block will
1296                  * be remapped.  Nothing we can do but to retry the
1297                  * write and hope for the best.
1298                  */
1299                 printk(KERN_ERR "JBD2: previous I/O error detected "
1300                        "for journal superblock update for %s.\n",
1301                        journal->j_devname);
1302                 clear_buffer_write_io_error(bh);
1303                 set_buffer_uptodate(bh);
1304         }
1305         get_bh(bh);
1306         bh->b_end_io = end_buffer_write_sync;
1307         ret = submit_bh(write_op, bh);
1308         wait_on_buffer(bh);
1309         if (buffer_write_io_error(bh)) {
1310                 clear_buffer_write_io_error(bh);
1311                 set_buffer_uptodate(bh);
1312                 ret = -EIO;
1313         }
1314         if (ret) {
1315                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1316                        "journal superblock for %s.\n", ret,
1317                        journal->j_devname);
1318         }
1319 }
1320
1321 /**
1322  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1323  * @journal: The journal to update.
1324  * @tail_tid: TID of the new transaction at the tail of the log
1325  * @tail_block: The first block of the transaction at the tail of the log
1326  * @write_op: With which operation should we write the journal sb
1327  *
1328  * Update a journal's superblock information about log tail and write it to
1329  * disk, waiting for the IO to complete.
1330  */
1331 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1332                                      unsigned long tail_block, int write_op)
1333 {
1334         journal_superblock_t *sb = journal->j_superblock;
1335
1336         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1337         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1338                   tail_block, tail_tid);
1339
1340         sb->s_sequence = cpu_to_be32(tail_tid);
1341         sb->s_start    = cpu_to_be32(tail_block);
1342
1343         jbd2_write_superblock(journal, write_op);
1344
1345         /* Log is no longer empty */
1346         write_lock(&journal->j_state_lock);
1347         WARN_ON(!sb->s_sequence);
1348         journal->j_flags &= ~JBD2_FLUSHED;
1349         write_unlock(&journal->j_state_lock);
1350 }
1351
1352 /**
1353  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1354  * @journal: The journal to update.
1355  *
1356  * Update a journal's dynamic superblock fields to show that journal is empty.
1357  * Write updated superblock to disk waiting for IO to complete.
1358  */
1359 static void jbd2_mark_journal_empty(journal_t *journal)
1360 {
1361         journal_superblock_t *sb = journal->j_superblock;
1362
1363         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1364         read_lock(&journal->j_state_lock);
1365         /* Is it already empty? */
1366         if (sb->s_start == 0) {
1367                 read_unlock(&journal->j_state_lock);
1368                 return;
1369         }
1370         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1371                   journal->j_tail_sequence);
1372
1373         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1374         sb->s_start    = cpu_to_be32(0);
1375         read_unlock(&journal->j_state_lock);
1376
1377         jbd2_write_superblock(journal, WRITE_FUA);
1378
1379         /* Log is no longer empty */
1380         write_lock(&journal->j_state_lock);
1381         journal->j_flags |= JBD2_FLUSHED;
1382         write_unlock(&journal->j_state_lock);
1383 }
1384
1385
1386 /**
1387  * jbd2_journal_update_sb_errno() - Update error in the journal.
1388  * @journal: The journal to update.
1389  *
1390  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1391  * to complete.
1392  */
1393 void jbd2_journal_update_sb_errno(journal_t *journal)
1394 {
1395         journal_superblock_t *sb = journal->j_superblock;
1396
1397         read_lock(&journal->j_state_lock);
1398         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1399                   journal->j_errno);
1400         sb->s_errno    = cpu_to_be32(journal->j_errno);
1401         jbd2_superblock_csum_set(journal, sb);
1402         read_unlock(&journal->j_state_lock);
1403
1404         jbd2_write_superblock(journal, WRITE_SYNC);
1405 }
1406 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1407
1408 /*
1409  * Read the superblock for a given journal, performing initial
1410  * validation of the format.
1411  */
1412 static int journal_get_superblock(journal_t *journal)
1413 {
1414         struct buffer_head *bh;
1415         journal_superblock_t *sb;
1416         int err = -EIO;
1417
1418         bh = journal->j_sb_buffer;
1419
1420         J_ASSERT(bh != NULL);
1421         if (!buffer_uptodate(bh)) {
1422                 ll_rw_block(READ, 1, &bh);
1423                 wait_on_buffer(bh);
1424                 if (!buffer_uptodate(bh)) {
1425                         printk(KERN_ERR
1426                                 "JBD2: IO error reading journal superblock\n");
1427                         goto out;
1428                 }
1429         }
1430
1431         if (buffer_verified(bh))
1432                 return 0;
1433
1434         sb = journal->j_superblock;
1435
1436         err = -EINVAL;
1437
1438         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1439             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1440                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1441                 goto out;
1442         }
1443
1444         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1445         case JBD2_SUPERBLOCK_V1:
1446                 journal->j_format_version = 1;
1447                 break;
1448         case JBD2_SUPERBLOCK_V2:
1449                 journal->j_format_version = 2;
1450                 break;
1451         default:
1452                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1453                 goto out;
1454         }
1455
1456         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1457                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1458         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1459                 printk(KERN_WARNING "JBD2: journal file too short\n");
1460                 goto out;
1461         }
1462
1463         if (be32_to_cpu(sb->s_first) == 0 ||
1464             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1465                 printk(KERN_WARNING
1466                         "JBD2: Invalid start block of journal: %u\n",
1467                         be32_to_cpu(sb->s_first));
1468                 goto out;
1469         }
1470
1471         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1472             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1473                 /* Can't have checksum v1 and v2 on at the same time! */
1474                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1475                        "at the same time!\n");
1476                 goto out;
1477         }
1478
1479         if (!jbd2_verify_csum_type(journal, sb)) {
1480                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1481                 goto out;
1482         }
1483
1484         /* Load the checksum driver */
1485         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1486                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1487                 if (IS_ERR(journal->j_chksum_driver)) {
1488                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1489                         err = PTR_ERR(journal->j_chksum_driver);
1490                         journal->j_chksum_driver = NULL;
1491                         goto out;
1492                 }
1493         }
1494
1495         /* Check superblock checksum */
1496         if (!jbd2_superblock_csum_verify(journal, sb)) {
1497                 printk(KERN_ERR "JBD: journal checksum error\n");
1498                 goto out;
1499         }
1500
1501         /* Precompute checksum seed for all metadata */
1502         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1503                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1504                                                    sizeof(sb->s_uuid));
1505
1506         set_buffer_verified(bh);
1507
1508         return 0;
1509
1510 out:
1511         journal_fail_superblock(journal);
1512         return err;
1513 }
1514
1515 /*
1516  * Load the on-disk journal superblock and read the key fields into the
1517  * journal_t.
1518  */
1519
1520 static int load_superblock(journal_t *journal)
1521 {
1522         int err;
1523         journal_superblock_t *sb;
1524
1525         err = journal_get_superblock(journal);
1526         if (err)
1527                 return err;
1528
1529         sb = journal->j_superblock;
1530
1531         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1532         journal->j_tail = be32_to_cpu(sb->s_start);
1533         journal->j_first = be32_to_cpu(sb->s_first);
1534         journal->j_last = be32_to_cpu(sb->s_maxlen);
1535         journal->j_errno = be32_to_cpu(sb->s_errno);
1536
1537         return 0;
1538 }
1539
1540
1541 /**
1542  * int jbd2_journal_load() - Read journal from disk.
1543  * @journal: Journal to act on.
1544  *
1545  * Given a journal_t structure which tells us which disk blocks contain
1546  * a journal, read the journal from disk to initialise the in-memory
1547  * structures.
1548  */
1549 int jbd2_journal_load(journal_t *journal)
1550 {
1551         int err;
1552         journal_superblock_t *sb;
1553
1554         err = load_superblock(journal);
1555         if (err)
1556                 return err;
1557
1558         sb = journal->j_superblock;
1559         /* If this is a V2 superblock, then we have to check the
1560          * features flags on it. */
1561
1562         if (journal->j_format_version >= 2) {
1563                 if ((sb->s_feature_ro_compat &
1564                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1565                     (sb->s_feature_incompat &
1566                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1567                         printk(KERN_WARNING
1568                                 "JBD2: Unrecognised features on journal\n");
1569                         return -EINVAL;
1570                 }
1571         }
1572
1573         /*
1574          * Create a slab for this blocksize
1575          */
1576         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1577         if (err)
1578                 return err;
1579
1580         /* Let the recovery code check whether it needs to recover any
1581          * data from the journal. */
1582         if (jbd2_journal_recover(journal))
1583                 goto recovery_error;
1584
1585         if (journal->j_failed_commit) {
1586                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1587                        "is corrupt.\n", journal->j_failed_commit,
1588                        journal->j_devname);
1589                 return -EIO;
1590         }
1591
1592         /* OK, we've finished with the dynamic journal bits:
1593          * reinitialise the dynamic contents of the superblock in memory
1594          * and reset them on disk. */
1595         if (journal_reset(journal))
1596                 goto recovery_error;
1597
1598         journal->j_flags &= ~JBD2_ABORT;
1599         journal->j_flags |= JBD2_LOADED;
1600         return 0;
1601
1602 recovery_error:
1603         printk(KERN_WARNING "JBD2: recovery failed\n");
1604         return -EIO;
1605 }
1606
1607 /**
1608  * void jbd2_journal_destroy() - Release a journal_t structure.
1609  * @journal: Journal to act on.
1610  *
1611  * Release a journal_t structure once it is no longer in use by the
1612  * journaled object.
1613  * Return <0 if we couldn't clean up the journal.
1614  */
1615 int jbd2_journal_destroy(journal_t *journal)
1616 {
1617         int err = 0;
1618
1619         /* Wait for the commit thread to wake up and die. */
1620         journal_kill_thread(journal);
1621
1622         /* Force a final log commit */
1623         if (journal->j_running_transaction)
1624                 jbd2_journal_commit_transaction(journal);
1625
1626         /* Force any old transactions to disk */
1627
1628         /* Totally anal locking here... */
1629         spin_lock(&journal->j_list_lock);
1630         while (journal->j_checkpoint_transactions != NULL) {
1631                 spin_unlock(&journal->j_list_lock);
1632                 mutex_lock(&journal->j_checkpoint_mutex);
1633                 jbd2_log_do_checkpoint(journal);
1634                 mutex_unlock(&journal->j_checkpoint_mutex);
1635                 spin_lock(&journal->j_list_lock);
1636         }
1637
1638         J_ASSERT(journal->j_running_transaction == NULL);
1639         J_ASSERT(journal->j_committing_transaction == NULL);
1640         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1641         spin_unlock(&journal->j_list_lock);
1642
1643         if (journal->j_sb_buffer) {
1644                 if (!is_journal_aborted(journal)) {
1645                         mutex_lock(&journal->j_checkpoint_mutex);
1646                         jbd2_mark_journal_empty(journal);
1647                         mutex_unlock(&journal->j_checkpoint_mutex);
1648                 } else
1649                         err = -EIO;
1650                 brelse(journal->j_sb_buffer);
1651         }
1652
1653         if (journal->j_proc_entry)
1654                 jbd2_stats_proc_exit(journal);
1655         if (journal->j_inode)
1656                 iput(journal->j_inode);
1657         if (journal->j_revoke)
1658                 jbd2_journal_destroy_revoke(journal);
1659         if (journal->j_chksum_driver)
1660                 crypto_free_shash(journal->j_chksum_driver);
1661         kfree(journal->j_wbuf);
1662         kfree(journal);
1663
1664         return err;
1665 }
1666
1667
1668 /**
1669  *int jbd2_journal_check_used_features () - Check if features specified are used.
1670  * @journal: Journal to check.
1671  * @compat: bitmask of compatible features
1672  * @ro: bitmask of features that force read-only mount
1673  * @incompat: bitmask of incompatible features
1674  *
1675  * Check whether the journal uses all of a given set of
1676  * features.  Return true (non-zero) if it does.
1677  **/
1678
1679 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1680                                  unsigned long ro, unsigned long incompat)
1681 {
1682         journal_superblock_t *sb;
1683
1684         if (!compat && !ro && !incompat)
1685                 return 1;
1686         /* Load journal superblock if it is not loaded yet. */
1687         if (journal->j_format_version == 0 &&
1688             journal_get_superblock(journal) != 0)
1689                 return 0;
1690         if (journal->j_format_version == 1)
1691                 return 0;
1692
1693         sb = journal->j_superblock;
1694
1695         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1696             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1697             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1698                 return 1;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1705  * @journal: Journal to check.
1706  * @compat: bitmask of compatible features
1707  * @ro: bitmask of features that force read-only mount
1708  * @incompat: bitmask of incompatible features
1709  *
1710  * Check whether the journaling code supports the use of
1711  * all of a given set of features on this journal.  Return true
1712  * (non-zero) if it can. */
1713
1714 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1715                                       unsigned long ro, unsigned long incompat)
1716 {
1717         if (!compat && !ro && !incompat)
1718                 return 1;
1719
1720         /* We can support any known requested features iff the
1721          * superblock is in version 2.  Otherwise we fail to support any
1722          * extended sb features. */
1723
1724         if (journal->j_format_version != 2)
1725                 return 0;
1726
1727         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1728             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1729             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1730                 return 1;
1731
1732         return 0;
1733 }
1734
1735 /**
1736  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1737  * @journal: Journal to act on.
1738  * @compat: bitmask of compatible features
1739  * @ro: bitmask of features that force read-only mount
1740  * @incompat: bitmask of incompatible features
1741  *
1742  * Mark a given journal feature as present on the
1743  * superblock.  Returns true if the requested features could be set.
1744  *
1745  */
1746
1747 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1748                           unsigned long ro, unsigned long incompat)
1749 {
1750 #define INCOMPAT_FEATURE_ON(f) \
1751                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1752 #define COMPAT_FEATURE_ON(f) \
1753                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1754         journal_superblock_t *sb;
1755
1756         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1757                 return 1;
1758
1759         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1760                 return 0;
1761
1762         /* Asking for checksumming v2 and v1?  Only give them v2. */
1763         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1764             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1765                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1766
1767         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1768                   compat, ro, incompat);
1769
1770         sb = journal->j_superblock;
1771
1772         /* If enabling v2 checksums, update superblock */
1773         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1774                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1775                 sb->s_feature_compat &=
1776                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1777
1778                 /* Load the checksum driver */
1779                 if (journal->j_chksum_driver == NULL) {
1780                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1781                                                                       0, 0);
1782                         if (IS_ERR(journal->j_chksum_driver)) {
1783                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1784                                        "driver.\n");
1785                                 journal->j_chksum_driver = NULL;
1786                                 return 0;
1787                         }
1788                 }
1789
1790                 /* Precompute checksum seed for all metadata */
1791                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1792                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1793                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1794                                                            sb->s_uuid,
1795                                                            sizeof(sb->s_uuid));
1796         }
1797
1798         /* If enabling v1 checksums, downgrade superblock */
1799         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1800                 sb->s_feature_incompat &=
1801                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1802
1803         sb->s_feature_compat    |= cpu_to_be32(compat);
1804         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1805         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1806
1807         return 1;
1808 #undef COMPAT_FEATURE_ON
1809 #undef INCOMPAT_FEATURE_ON
1810 }
1811
1812 /*
1813  * jbd2_journal_clear_features () - Clear a given journal feature in the
1814  *                                  superblock
1815  * @journal: Journal to act on.
1816  * @compat: bitmask of compatible features
1817  * @ro: bitmask of features that force read-only mount
1818  * @incompat: bitmask of incompatible features
1819  *
1820  * Clear a given journal feature as present on the
1821  * superblock.
1822  */
1823 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1824                                 unsigned long ro, unsigned long incompat)
1825 {
1826         journal_superblock_t *sb;
1827
1828         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1829                   compat, ro, incompat);
1830
1831         sb = journal->j_superblock;
1832
1833         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1834         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1835         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1836 }
1837 EXPORT_SYMBOL(jbd2_journal_clear_features);
1838
1839 /**
1840  * int jbd2_journal_flush () - Flush journal
1841  * @journal: Journal to act on.
1842  *
1843  * Flush all data for a given journal to disk and empty the journal.
1844  * Filesystems can use this when remounting readonly to ensure that
1845  * recovery does not need to happen on remount.
1846  */
1847
1848 int jbd2_journal_flush(journal_t *journal)
1849 {
1850         int err = 0;
1851         transaction_t *transaction = NULL;
1852
1853         write_lock(&journal->j_state_lock);
1854
1855         /* Force everything buffered to the log... */
1856         if (journal->j_running_transaction) {
1857                 transaction = journal->j_running_transaction;
1858                 __jbd2_log_start_commit(journal, transaction->t_tid);
1859         } else if (journal->j_committing_transaction)
1860                 transaction = journal->j_committing_transaction;
1861
1862         /* Wait for the log commit to complete... */
1863         if (transaction) {
1864                 tid_t tid = transaction->t_tid;
1865
1866                 write_unlock(&journal->j_state_lock);
1867                 jbd2_log_wait_commit(journal, tid);
1868         } else {
1869                 write_unlock(&journal->j_state_lock);
1870         }
1871
1872         /* ...and flush everything in the log out to disk. */
1873         spin_lock(&journal->j_list_lock);
1874         while (!err && journal->j_checkpoint_transactions != NULL) {
1875                 spin_unlock(&journal->j_list_lock);
1876                 mutex_lock(&journal->j_checkpoint_mutex);
1877                 err = jbd2_log_do_checkpoint(journal);
1878                 mutex_unlock(&journal->j_checkpoint_mutex);
1879                 spin_lock(&journal->j_list_lock);
1880         }
1881         spin_unlock(&journal->j_list_lock);
1882
1883         if (is_journal_aborted(journal))
1884                 return -EIO;
1885
1886         mutex_lock(&journal->j_checkpoint_mutex);
1887         jbd2_cleanup_journal_tail(journal);
1888
1889         /* Finally, mark the journal as really needing no recovery.
1890          * This sets s_start==0 in the underlying superblock, which is
1891          * the magic code for a fully-recovered superblock.  Any future
1892          * commits of data to the journal will restore the current
1893          * s_start value. */
1894         jbd2_mark_journal_empty(journal);
1895         mutex_unlock(&journal->j_checkpoint_mutex);
1896         write_lock(&journal->j_state_lock);
1897         J_ASSERT(!journal->j_running_transaction);
1898         J_ASSERT(!journal->j_committing_transaction);
1899         J_ASSERT(!journal->j_checkpoint_transactions);
1900         J_ASSERT(journal->j_head == journal->j_tail);
1901         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1902         write_unlock(&journal->j_state_lock);
1903         return 0;
1904 }
1905
1906 /**
1907  * int jbd2_journal_wipe() - Wipe journal contents
1908  * @journal: Journal to act on.
1909  * @write: flag (see below)
1910  *
1911  * Wipe out all of the contents of a journal, safely.  This will produce
1912  * a warning if the journal contains any valid recovery information.
1913  * Must be called between journal_init_*() and jbd2_journal_load().
1914  *
1915  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1916  * we merely suppress recovery.
1917  */
1918
1919 int jbd2_journal_wipe(journal_t *journal, int write)
1920 {
1921         int err = 0;
1922
1923         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1924
1925         err = load_superblock(journal);
1926         if (err)
1927                 return err;
1928
1929         if (!journal->j_tail)
1930                 goto no_recovery;
1931
1932         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1933                 write ? "Clearing" : "Ignoring");
1934
1935         err = jbd2_journal_skip_recovery(journal);
1936         if (write) {
1937                 /* Lock to make assertions happy... */
1938                 mutex_lock(&journal->j_checkpoint_mutex);
1939                 jbd2_mark_journal_empty(journal);
1940                 mutex_unlock(&journal->j_checkpoint_mutex);
1941         }
1942
1943  no_recovery:
1944         return err;
1945 }
1946
1947 /*
1948  * Journal abort has very specific semantics, which we describe
1949  * for journal abort.
1950  *
1951  * Two internal functions, which provide abort to the jbd layer
1952  * itself are here.
1953  */
1954
1955 /*
1956  * Quick version for internal journal use (doesn't lock the journal).
1957  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1958  * and don't attempt to make any other journal updates.
1959  */
1960 void __jbd2_journal_abort_hard(journal_t *journal)
1961 {
1962         transaction_t *transaction;
1963
1964         if (journal->j_flags & JBD2_ABORT)
1965                 return;
1966
1967         printk(KERN_ERR "Aborting journal on device %s.\n",
1968                journal->j_devname);
1969
1970         write_lock(&journal->j_state_lock);
1971         journal->j_flags |= JBD2_ABORT;
1972         transaction = journal->j_running_transaction;
1973         if (transaction)
1974                 __jbd2_log_start_commit(journal, transaction->t_tid);
1975         write_unlock(&journal->j_state_lock);
1976 }
1977
1978 /* Soft abort: record the abort error status in the journal superblock,
1979  * but don't do any other IO. */
1980 static void __journal_abort_soft (journal_t *journal, int errno)
1981 {
1982         if (journal->j_flags & JBD2_ABORT)
1983                 return;
1984
1985         if (!journal->j_errno)
1986                 journal->j_errno = errno;
1987
1988         __jbd2_journal_abort_hard(journal);
1989
1990         if (errno)
1991                 jbd2_journal_update_sb_errno(journal);
1992 }
1993
1994 /**
1995  * void jbd2_journal_abort () - Shutdown the journal immediately.
1996  * @journal: the journal to shutdown.
1997  * @errno:   an error number to record in the journal indicating
1998  *           the reason for the shutdown.
1999  *
2000  * Perform a complete, immediate shutdown of the ENTIRE
2001  * journal (not of a single transaction).  This operation cannot be
2002  * undone without closing and reopening the journal.
2003  *
2004  * The jbd2_journal_abort function is intended to support higher level error
2005  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2006  * mode.
2007  *
2008  * Journal abort has very specific semantics.  Any existing dirty,
2009  * unjournaled buffers in the main filesystem will still be written to
2010  * disk by bdflush, but the journaling mechanism will be suspended
2011  * immediately and no further transaction commits will be honoured.
2012  *
2013  * Any dirty, journaled buffers will be written back to disk without
2014  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2015  * filesystem, but we _do_ attempt to leave as much data as possible
2016  * behind for fsck to use for cleanup.
2017  *
2018  * Any attempt to get a new transaction handle on a journal which is in
2019  * ABORT state will just result in an -EROFS error return.  A
2020  * jbd2_journal_stop on an existing handle will return -EIO if we have
2021  * entered abort state during the update.
2022  *
2023  * Recursive transactions are not disturbed by journal abort until the
2024  * final jbd2_journal_stop, which will receive the -EIO error.
2025  *
2026  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2027  * which will be recorded (if possible) in the journal superblock.  This
2028  * allows a client to record failure conditions in the middle of a
2029  * transaction without having to complete the transaction to record the
2030  * failure to disk.  ext3_error, for example, now uses this
2031  * functionality.
2032  *
2033  * Errors which originate from within the journaling layer will NOT
2034  * supply an errno; a null errno implies that absolutely no further
2035  * writes are done to the journal (unless there are any already in
2036  * progress).
2037  *
2038  */
2039
2040 void jbd2_journal_abort(journal_t *journal, int errno)
2041 {
2042         __journal_abort_soft(journal, errno);
2043 }
2044
2045 /**
2046  * int jbd2_journal_errno () - returns the journal's error state.
2047  * @journal: journal to examine.
2048  *
2049  * This is the errno number set with jbd2_journal_abort(), the last
2050  * time the journal was mounted - if the journal was stopped
2051  * without calling abort this will be 0.
2052  *
2053  * If the journal has been aborted on this mount time -EROFS will
2054  * be returned.
2055  */
2056 int jbd2_journal_errno(journal_t *journal)
2057 {
2058         int err;
2059
2060         read_lock(&journal->j_state_lock);
2061         if (journal->j_flags & JBD2_ABORT)
2062                 err = -EROFS;
2063         else
2064                 err = journal->j_errno;
2065         read_unlock(&journal->j_state_lock);
2066         return err;
2067 }
2068
2069 /**
2070  * int jbd2_journal_clear_err () - clears the journal's error state
2071  * @journal: journal to act on.
2072  *
2073  * An error must be cleared or acked to take a FS out of readonly
2074  * mode.
2075  */
2076 int jbd2_journal_clear_err(journal_t *journal)
2077 {
2078         int err = 0;
2079
2080         write_lock(&journal->j_state_lock);
2081         if (journal->j_flags & JBD2_ABORT)
2082                 err = -EROFS;
2083         else
2084                 journal->j_errno = 0;
2085         write_unlock(&journal->j_state_lock);
2086         return err;
2087 }
2088
2089 /**
2090  * void jbd2_journal_ack_err() - Ack journal err.
2091  * @journal: journal to act on.
2092  *
2093  * An error must be cleared or acked to take a FS out of readonly
2094  * mode.
2095  */
2096 void jbd2_journal_ack_err(journal_t *journal)
2097 {
2098         write_lock(&journal->j_state_lock);
2099         if (journal->j_errno)
2100                 journal->j_flags |= JBD2_ACK_ERR;
2101         write_unlock(&journal->j_state_lock);
2102 }
2103
2104 int jbd2_journal_blocks_per_page(struct inode *inode)
2105 {
2106         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2107 }
2108
2109 /*
2110  * helper functions to deal with 32 or 64bit block numbers.
2111  */
2112 size_t journal_tag_bytes(journal_t *journal)
2113 {
2114         journal_block_tag_t tag;
2115         size_t x = 0;
2116
2117         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2118                 x += sizeof(tag.t_checksum);
2119
2120         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2121                 return x + JBD2_TAG_SIZE64;
2122         else
2123                 return x + JBD2_TAG_SIZE32;
2124 }
2125
2126 /*
2127  * JBD memory management
2128  *
2129  * These functions are used to allocate block-sized chunks of memory
2130  * used for making copies of buffer_head data.  Very often it will be
2131  * page-sized chunks of data, but sometimes it will be in
2132  * sub-page-size chunks.  (For example, 16k pages on Power systems
2133  * with a 4k block file system.)  For blocks smaller than a page, we
2134  * use a SLAB allocator.  There are slab caches for each block size,
2135  * which are allocated at mount time, if necessary, and we only free
2136  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2137  * this reason we don't need to a mutex to protect access to
2138  * jbd2_slab[] allocating or releasing memory; only in
2139  * jbd2_journal_create_slab().
2140  */
2141 #define JBD2_MAX_SLABS 8
2142 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2143
2144 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2145         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2146         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2147 };
2148
2149
2150 static void jbd2_journal_destroy_slabs(void)
2151 {
2152         int i;
2153
2154         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2155                 if (jbd2_slab[i])
2156                         kmem_cache_destroy(jbd2_slab[i]);
2157                 jbd2_slab[i] = NULL;
2158         }
2159 }
2160
2161 static int jbd2_journal_create_slab(size_t size)
2162 {
2163         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2164         int i = order_base_2(size) - 10;
2165         size_t slab_size;
2166
2167         if (size == PAGE_SIZE)
2168                 return 0;
2169
2170         if (i >= JBD2_MAX_SLABS)
2171                 return -EINVAL;
2172
2173         if (unlikely(i < 0))
2174                 i = 0;
2175         mutex_lock(&jbd2_slab_create_mutex);
2176         if (jbd2_slab[i]) {
2177                 mutex_unlock(&jbd2_slab_create_mutex);
2178                 return 0;       /* Already created */
2179         }
2180
2181         slab_size = 1 << (i+10);
2182         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2183                                          slab_size, 0, NULL);
2184         mutex_unlock(&jbd2_slab_create_mutex);
2185         if (!jbd2_slab[i]) {
2186                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2187                 return -ENOMEM;
2188         }
2189         return 0;
2190 }
2191
2192 static struct kmem_cache *get_slab(size_t size)
2193 {
2194         int i = order_base_2(size) - 10;
2195
2196         BUG_ON(i >= JBD2_MAX_SLABS);
2197         if (unlikely(i < 0))
2198                 i = 0;
2199         BUG_ON(jbd2_slab[i] == NULL);
2200         return jbd2_slab[i];
2201 }
2202
2203 void *jbd2_alloc(size_t size, gfp_t flags)
2204 {
2205         void *ptr;
2206
2207         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2208
2209         flags |= __GFP_REPEAT;
2210         if (size == PAGE_SIZE)
2211                 ptr = (void *)__get_free_pages(flags, 0);
2212         else if (size > PAGE_SIZE) {
2213                 int order = get_order(size);
2214
2215                 if (order < 3)
2216                         ptr = (void *)__get_free_pages(flags, order);
2217                 else
2218                         ptr = vmalloc(size);
2219         } else
2220                 ptr = kmem_cache_alloc(get_slab(size), flags);
2221
2222         /* Check alignment; SLUB has gotten this wrong in the past,
2223          * and this can lead to user data corruption! */
2224         BUG_ON(((unsigned long) ptr) & (size-1));
2225
2226         return ptr;
2227 }
2228
2229 void jbd2_free(void *ptr, size_t size)
2230 {
2231         if (size == PAGE_SIZE) {
2232                 free_pages((unsigned long)ptr, 0);
2233                 return;
2234         }
2235         if (size > PAGE_SIZE) {
2236                 int order = get_order(size);
2237
2238                 if (order < 3)
2239                         free_pages((unsigned long)ptr, order);
2240                 else
2241                         vfree(ptr);
2242                 return;
2243         }
2244         kmem_cache_free(get_slab(size), ptr);
2245 };
2246
2247 /*
2248  * Journal_head storage management
2249  */
2250 static struct kmem_cache *jbd2_journal_head_cache;
2251 #ifdef CONFIG_JBD2_DEBUG
2252 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2253 #endif
2254
2255 static int jbd2_journal_init_journal_head_cache(void)
2256 {
2257         int retval;
2258
2259         J_ASSERT(jbd2_journal_head_cache == NULL);
2260         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2261                                 sizeof(struct journal_head),
2262                                 0,              /* offset */
2263                                 SLAB_TEMPORARY, /* flags */
2264                                 NULL);          /* ctor */
2265         retval = 0;
2266         if (!jbd2_journal_head_cache) {
2267                 retval = -ENOMEM;
2268                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2269         }
2270         return retval;
2271 }
2272
2273 static void jbd2_journal_destroy_journal_head_cache(void)
2274 {
2275         if (jbd2_journal_head_cache) {
2276                 kmem_cache_destroy(jbd2_journal_head_cache);
2277                 jbd2_journal_head_cache = NULL;
2278         }
2279 }
2280
2281 /*
2282  * journal_head splicing and dicing
2283  */
2284 static struct journal_head *journal_alloc_journal_head(void)
2285 {
2286         struct journal_head *ret;
2287
2288 #ifdef CONFIG_JBD2_DEBUG
2289         atomic_inc(&nr_journal_heads);
2290 #endif
2291         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2292         if (!ret) {
2293                 jbd_debug(1, "out of memory for journal_head\n");
2294                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2295                 while (!ret) {
2296                         yield();
2297                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2298                 }
2299         }
2300         return ret;
2301 }
2302
2303 static void journal_free_journal_head(struct journal_head *jh)
2304 {
2305 #ifdef CONFIG_JBD2_DEBUG
2306         atomic_dec(&nr_journal_heads);
2307         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2308 #endif
2309         kmem_cache_free(jbd2_journal_head_cache, jh);
2310 }
2311
2312 /*
2313  * A journal_head is attached to a buffer_head whenever JBD has an
2314  * interest in the buffer.
2315  *
2316  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2317  * is set.  This bit is tested in core kernel code where we need to take
2318  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2319  * there.
2320  *
2321  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2322  *
2323  * When a buffer has its BH_JBD bit set it is immune from being released by
2324  * core kernel code, mainly via ->b_count.
2325  *
2326  * A journal_head is detached from its buffer_head when the journal_head's
2327  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2328  * transaction (b_cp_transaction) hold their references to b_jcount.
2329  *
2330  * Various places in the kernel want to attach a journal_head to a buffer_head
2331  * _before_ attaching the journal_head to a transaction.  To protect the
2332  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2333  * journal_head's b_jcount refcount by one.  The caller must call
2334  * jbd2_journal_put_journal_head() to undo this.
2335  *
2336  * So the typical usage would be:
2337  *
2338  *      (Attach a journal_head if needed.  Increments b_jcount)
2339  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2340  *      ...
2341  *      (Get another reference for transaction)
2342  *      jbd2_journal_grab_journal_head(bh);
2343  *      jh->b_transaction = xxx;
2344  *      (Put original reference)
2345  *      jbd2_journal_put_journal_head(jh);
2346  */
2347
2348 /*
2349  * Give a buffer_head a journal_head.
2350  *
2351  * May sleep.
2352  */
2353 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2354 {
2355         struct journal_head *jh;
2356         struct journal_head *new_jh = NULL;
2357
2358 repeat:
2359         if (!buffer_jbd(bh))
2360                 new_jh = journal_alloc_journal_head();
2361
2362         jbd_lock_bh_journal_head(bh);
2363         if (buffer_jbd(bh)) {
2364                 jh = bh2jh(bh);
2365         } else {
2366                 J_ASSERT_BH(bh,
2367                         (atomic_read(&bh->b_count) > 0) ||
2368                         (bh->b_page && bh->b_page->mapping));
2369
2370                 if (!new_jh) {
2371                         jbd_unlock_bh_journal_head(bh);
2372                         goto repeat;
2373                 }
2374
2375                 jh = new_jh;
2376                 new_jh = NULL;          /* We consumed it */
2377                 set_buffer_jbd(bh);
2378                 bh->b_private = jh;
2379                 jh->b_bh = bh;
2380                 get_bh(bh);
2381                 BUFFER_TRACE(bh, "added journal_head");
2382         }
2383         jh->b_jcount++;
2384         jbd_unlock_bh_journal_head(bh);
2385         if (new_jh)
2386                 journal_free_journal_head(new_jh);
2387         return bh->b_private;
2388 }
2389
2390 /*
2391  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2392  * having a journal_head, return NULL
2393  */
2394 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2395 {
2396         struct journal_head *jh = NULL;
2397
2398         jbd_lock_bh_journal_head(bh);
2399         if (buffer_jbd(bh)) {
2400                 jh = bh2jh(bh);
2401                 jh->b_jcount++;
2402         }
2403         jbd_unlock_bh_journal_head(bh);
2404         return jh;
2405 }
2406
2407 static void __journal_remove_journal_head(struct buffer_head *bh)
2408 {
2409         struct journal_head *jh = bh2jh(bh);
2410
2411         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2412         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2413         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2414         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2415         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2416         J_ASSERT_BH(bh, buffer_jbd(bh));
2417         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2418         BUFFER_TRACE(bh, "remove journal_head");
2419         if (jh->b_frozen_data) {
2420                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2421                 jbd2_free(jh->b_frozen_data, bh->b_size);
2422         }
2423         if (jh->b_committed_data) {
2424                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2425                 jbd2_free(jh->b_committed_data, bh->b_size);
2426         }
2427         bh->b_private = NULL;
2428         jh->b_bh = NULL;        /* debug, really */
2429         clear_buffer_jbd(bh);
2430         journal_free_journal_head(jh);
2431 }
2432
2433 /*
2434  * Drop a reference on the passed journal_head.  If it fell to zero then
2435  * release the journal_head from the buffer_head.
2436  */
2437 void jbd2_journal_put_journal_head(struct journal_head *jh)
2438 {
2439         struct buffer_head *bh = jh2bh(jh);
2440
2441         jbd_lock_bh_journal_head(bh);
2442         J_ASSERT_JH(jh, jh->b_jcount > 0);
2443         --jh->b_jcount;
2444         if (!jh->b_jcount) {
2445                 __journal_remove_journal_head(bh);
2446                 jbd_unlock_bh_journal_head(bh);
2447                 __brelse(bh);
2448         } else
2449                 jbd_unlock_bh_journal_head(bh);
2450 }
2451
2452 /*
2453  * Initialize jbd inode head
2454  */
2455 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2456 {
2457         jinode->i_transaction = NULL;
2458         jinode->i_next_transaction = NULL;
2459         jinode->i_vfs_inode = inode;
2460         jinode->i_flags = 0;
2461         INIT_LIST_HEAD(&jinode->i_list);
2462 }
2463
2464 /*
2465  * Function to be called before we start removing inode from memory (i.e.,
2466  * clear_inode() is a fine place to be called from). It removes inode from
2467  * transaction's lists.
2468  */
2469 void jbd2_journal_release_jbd_inode(journal_t *journal,
2470                                     struct jbd2_inode *jinode)
2471 {
2472         if (!journal)
2473                 return;
2474 restart:
2475         spin_lock(&journal->j_list_lock);
2476         /* Is commit writing out inode - we have to wait */
2477         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2478                 wait_queue_head_t *wq;
2479                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2480                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2481                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2482                 spin_unlock(&journal->j_list_lock);
2483                 schedule();
2484                 finish_wait(wq, &wait.wait);
2485                 goto restart;
2486         }
2487
2488         if (jinode->i_transaction) {
2489                 list_del(&jinode->i_list);
2490                 jinode->i_transaction = NULL;
2491         }
2492         spin_unlock(&journal->j_list_lock);
2493 }
2494
2495
2496 #ifdef CONFIG_PROC_FS
2497
2498 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2499
2500 static void __init jbd2_create_jbd_stats_proc_entry(void)
2501 {
2502         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2503 }
2504
2505 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2506 {
2507         if (proc_jbd2_stats)
2508                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2509 }
2510
2511 #else
2512
2513 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2514 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2515
2516 #endif
2517
2518 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2519
2520 static int __init jbd2_journal_init_handle_cache(void)
2521 {
2522         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2523         if (jbd2_handle_cache == NULL) {
2524                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2525                 return -ENOMEM;
2526         }
2527         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2528         if (jbd2_inode_cache == NULL) {
2529                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2530                 kmem_cache_destroy(jbd2_handle_cache);
2531                 return -ENOMEM;
2532         }
2533         return 0;
2534 }
2535
2536 static void jbd2_journal_destroy_handle_cache(void)
2537 {
2538         if (jbd2_handle_cache)
2539                 kmem_cache_destroy(jbd2_handle_cache);
2540         if (jbd2_inode_cache)
2541                 kmem_cache_destroy(jbd2_inode_cache);
2542
2543 }
2544
2545 /*
2546  * Module startup and shutdown
2547  */
2548
2549 static int __init journal_init_caches(void)
2550 {
2551         int ret;
2552
2553         ret = jbd2_journal_init_revoke_caches();
2554         if (ret == 0)
2555                 ret = jbd2_journal_init_journal_head_cache();
2556         if (ret == 0)
2557                 ret = jbd2_journal_init_handle_cache();
2558         if (ret == 0)
2559                 ret = jbd2_journal_init_transaction_cache();
2560         return ret;
2561 }
2562
2563 static void jbd2_journal_destroy_caches(void)
2564 {
2565         jbd2_journal_destroy_revoke_caches();
2566         jbd2_journal_destroy_journal_head_cache();
2567         jbd2_journal_destroy_handle_cache();
2568         jbd2_journal_destroy_transaction_cache();
2569         jbd2_journal_destroy_slabs();
2570 }
2571
2572 static int __init journal_init(void)
2573 {
2574         int ret;
2575
2576         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2577
2578         ret = journal_init_caches();
2579         if (ret == 0) {
2580                 jbd2_create_jbd_stats_proc_entry();
2581         } else {
2582                 jbd2_journal_destroy_caches();
2583         }
2584         return ret;
2585 }
2586
2587 static void __exit journal_exit(void)
2588 {
2589 #ifdef CONFIG_JBD2_DEBUG
2590         int n = atomic_read(&nr_journal_heads);
2591         if (n)
2592                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2593 #endif
2594         jbd2_remove_jbd_stats_proc_entry();
2595         jbd2_journal_destroy_caches();
2596 }
2597
2598 MODULE_LICENSE("GPL");
2599 module_init(journal_init);
2600 module_exit(journal_exit);
2601