]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
jbd2: don't create journal_head for temporary journal buffers
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO. If we end up using the existing buffer_head's data
314  * for the write, then we have to make sure nobody modifies it while the
315  * IO is in progress. do_get_write_access() handles this.
316  *
317  * The function returns a pointer to the buffer_head to be used for IO.
318  * 
319  *
320  * Return value:
321  *  <0: Error
322  * >=0: Finished OK
323  *
324  * On success:
325  * Bit 0 set == escape performed on the data
326  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
327  */
328
329 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
330                                   struct journal_head  *jh_in,
331                                   struct buffer_head **bh_out,
332                                   sector_t blocknr)
333 {
334         int need_copy_out = 0;
335         int done_copy_out = 0;
336         int do_escape = 0;
337         char *mapped_data;
338         struct buffer_head *new_bh;
339         struct page *new_page;
340         unsigned int new_offset;
341         struct buffer_head *bh_in = jh2bh(jh_in);
342         journal_t *journal = transaction->t_journal;
343
344         /*
345          * The buffer really shouldn't be locked: only the current committing
346          * transaction is allowed to write it, so nobody else is allowed
347          * to do any IO.
348          *
349          * akpm: except if we're journalling data, and write() output is
350          * also part of a shared mapping, and another thread has
351          * decided to launch a writepage() against this buffer.
352          */
353         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
354
355 retry_alloc:
356         new_bh = alloc_buffer_head(GFP_NOFS);
357         if (!new_bh) {
358                 /*
359                  * Failure is not an option, but __GFP_NOFAIL is going
360                  * away; so we retry ourselves here.
361                  */
362                 congestion_wait(BLK_RW_ASYNC, HZ/50);
363                 goto retry_alloc;
364         }
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         jbd_lock_bh_state(bh_in);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 jbd_unlock_bh_state(bh_in);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 jbd_lock_bh_state(bh_in);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         set_buffer_mapped(new_bh);
455         set_buffer_dirty(new_bh);
456
457         *bh_out = new_bh;
458
459         /*
460          * The to-be-written buffer needs to get moved to the io queue,
461          * and the original buffer whose contents we are shadowing or
462          * copying is moved to the transaction's shadow queue.
463          */
464         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465         spin_lock(&journal->j_list_lock);
466         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467         spin_unlock(&journal->j_list_lock);
468         jbd_unlock_bh_state(bh_in);
469
470         return do_escape | (done_copy_out << 1);
471 }
472
473 /*
474  * Allocation code for the journal file.  Manage the space left in the
475  * journal, so that we can begin checkpointing when appropriate.
476  */
477
478 /*
479  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
480  *
481  * Called with the journal already locked.
482  *
483  * Called under j_state_lock
484  */
485
486 int __jbd2_log_space_left(journal_t *journal)
487 {
488         int left = journal->j_free;
489
490         /* assert_spin_locked(&journal->j_state_lock); */
491
492         /*
493          * Be pessimistic here about the number of those free blocks which
494          * might be required for log descriptor control blocks.
495          */
496
497 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
498
499         left -= MIN_LOG_RESERVED_BLOCKS;
500
501         if (left <= 0)
502                 return 0;
503         left -= (left >> 3);
504         return left;
505 }
506
507 /*
508  * Called with j_state_lock locked for writing.
509  * Returns true if a transaction commit was started.
510  */
511 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
512 {
513         /* Return if the txn has already requested to be committed */
514         if (journal->j_commit_request == target)
515                 return 0;
516
517         /*
518          * The only transaction we can possibly wait upon is the
519          * currently running transaction (if it exists).  Otherwise,
520          * the target tid must be an old one.
521          */
522         if (journal->j_running_transaction &&
523             journal->j_running_transaction->t_tid == target) {
524                 /*
525                  * We want a new commit: OK, mark the request and wakeup the
526                  * commit thread.  We do _not_ do the commit ourselves.
527                  */
528
529                 journal->j_commit_request = target;
530                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
531                           journal->j_commit_request,
532                           journal->j_commit_sequence);
533                 journal->j_running_transaction->t_requested = jiffies;
534                 wake_up(&journal->j_wait_commit);
535                 return 1;
536         } else if (!tid_geq(journal->j_commit_request, target))
537                 /* This should never happen, but if it does, preserve
538                    the evidence before kjournald goes into a loop and
539                    increments j_commit_sequence beyond all recognition. */
540                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
541                           journal->j_commit_request,
542                           journal->j_commit_sequence,
543                           target, journal->j_running_transaction ? 
544                           journal->j_running_transaction->t_tid : 0);
545         return 0;
546 }
547
548 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
549 {
550         int ret;
551
552         write_lock(&journal->j_state_lock);
553         ret = __jbd2_log_start_commit(journal, tid);
554         write_unlock(&journal->j_state_lock);
555         return ret;
556 }
557
558 /*
559  * Force and wait upon a commit if the calling process is not within
560  * transaction.  This is used for forcing out undo-protected data which contains
561  * bitmaps, when the fs is running out of space.
562  *
563  * We can only force the running transaction if we don't have an active handle;
564  * otherwise, we will deadlock.
565  *
566  * Returns true if a transaction was started.
567  */
568 int jbd2_journal_force_commit_nested(journal_t *journal)
569 {
570         transaction_t *transaction = NULL;
571         tid_t tid;
572         int need_to_start = 0;
573
574         read_lock(&journal->j_state_lock);
575         if (journal->j_running_transaction && !current->journal_info) {
576                 transaction = journal->j_running_transaction;
577                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
578                         need_to_start = 1;
579         } else if (journal->j_committing_transaction)
580                 transaction = journal->j_committing_transaction;
581
582         if (!transaction) {
583                 read_unlock(&journal->j_state_lock);
584                 return 0;       /* Nothing to retry */
585         }
586
587         tid = transaction->t_tid;
588         read_unlock(&journal->j_state_lock);
589         if (need_to_start)
590                 jbd2_log_start_commit(journal, tid);
591         jbd2_log_wait_commit(journal, tid);
592         return 1;
593 }
594
595 /*
596  * Start a commit of the current running transaction (if any).  Returns true
597  * if a transaction is going to be committed (or is currently already
598  * committing), and fills its tid in at *ptid
599  */
600 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
601 {
602         int ret = 0;
603
604         write_lock(&journal->j_state_lock);
605         if (journal->j_running_transaction) {
606                 tid_t tid = journal->j_running_transaction->t_tid;
607
608                 __jbd2_log_start_commit(journal, tid);
609                 /* There's a running transaction and we've just made sure
610                  * it's commit has been scheduled. */
611                 if (ptid)
612                         *ptid = tid;
613                 ret = 1;
614         } else if (journal->j_committing_transaction) {
615                 /*
616                  * If commit has been started, then we have to wait for
617                  * completion of that transaction.
618                  */
619                 if (ptid)
620                         *ptid = journal->j_committing_transaction->t_tid;
621                 ret = 1;
622         }
623         write_unlock(&journal->j_state_lock);
624         return ret;
625 }
626
627 /*
628  * Return 1 if a given transaction has not yet sent barrier request
629  * connected with a transaction commit. If 0 is returned, transaction
630  * may or may not have sent the barrier. Used to avoid sending barrier
631  * twice in common cases.
632  */
633 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
634 {
635         int ret = 0;
636         transaction_t *commit_trans;
637
638         if (!(journal->j_flags & JBD2_BARRIER))
639                 return 0;
640         read_lock(&journal->j_state_lock);
641         /* Transaction already committed? */
642         if (tid_geq(journal->j_commit_sequence, tid))
643                 goto out;
644         commit_trans = journal->j_committing_transaction;
645         if (!commit_trans || commit_trans->t_tid != tid) {
646                 ret = 1;
647                 goto out;
648         }
649         /*
650          * Transaction is being committed and we already proceeded to
651          * submitting a flush to fs partition?
652          */
653         if (journal->j_fs_dev != journal->j_dev) {
654                 if (!commit_trans->t_need_data_flush ||
655                     commit_trans->t_state >= T_COMMIT_DFLUSH)
656                         goto out;
657         } else {
658                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
659                         goto out;
660         }
661         ret = 1;
662 out:
663         read_unlock(&journal->j_state_lock);
664         return ret;
665 }
666 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
667
668 /*
669  * Wait for a specified commit to complete.
670  * The caller may not hold the journal lock.
671  */
672 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
673 {
674         int err = 0;
675
676         read_lock(&journal->j_state_lock);
677 #ifdef CONFIG_JBD2_DEBUG
678         if (!tid_geq(journal->j_commit_request, tid)) {
679                 printk(KERN_EMERG
680                        "%s: error: j_commit_request=%d, tid=%d\n",
681                        __func__, journal->j_commit_request, tid);
682         }
683 #endif
684         while (tid_gt(tid, journal->j_commit_sequence)) {
685                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
686                                   tid, journal->j_commit_sequence);
687                 wake_up(&journal->j_wait_commit);
688                 read_unlock(&journal->j_state_lock);
689                 wait_event(journal->j_wait_done_commit,
690                                 !tid_gt(tid, journal->j_commit_sequence));
691                 read_lock(&journal->j_state_lock);
692         }
693         read_unlock(&journal->j_state_lock);
694
695         if (unlikely(is_journal_aborted(journal))) {
696                 printk(KERN_EMERG "journal commit I/O error\n");
697                 err = -EIO;
698         }
699         return err;
700 }
701
702 /*
703  * When this function returns the transaction corresponding to tid
704  * will be completed.  If the transaction has currently running, start
705  * committing that transaction before waiting for it to complete.  If
706  * the transaction id is stale, it is by definition already completed,
707  * so just return SUCCESS.
708  */
709 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
710 {
711         int     need_to_wait = 1;
712
713         read_lock(&journal->j_state_lock);
714         if (journal->j_running_transaction &&
715             journal->j_running_transaction->t_tid == tid) {
716                 if (journal->j_commit_request != tid) {
717                         /* transaction not yet started, so request it */
718                         read_unlock(&journal->j_state_lock);
719                         jbd2_log_start_commit(journal, tid);
720                         goto wait_commit;
721                 }
722         } else if (!(journal->j_committing_transaction &&
723                      journal->j_committing_transaction->t_tid == tid))
724                 need_to_wait = 0;
725         read_unlock(&journal->j_state_lock);
726         if (!need_to_wait)
727                 return 0;
728 wait_commit:
729         return jbd2_log_wait_commit(journal, tid);
730 }
731 EXPORT_SYMBOL(jbd2_complete_transaction);
732
733 /*
734  * Log buffer allocation routines:
735  */
736
737 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
738 {
739         unsigned long blocknr;
740
741         write_lock(&journal->j_state_lock);
742         J_ASSERT(journal->j_free > 1);
743
744         blocknr = journal->j_head;
745         journal->j_head++;
746         journal->j_free--;
747         if (journal->j_head == journal->j_last)
748                 journal->j_head = journal->j_first;
749         write_unlock(&journal->j_state_lock);
750         return jbd2_journal_bmap(journal, blocknr, retp);
751 }
752
753 /*
754  * Conversion of logical to physical block numbers for the journal
755  *
756  * On external journals the journal blocks are identity-mapped, so
757  * this is a no-op.  If needed, we can use j_blk_offset - everything is
758  * ready.
759  */
760 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
761                  unsigned long long *retp)
762 {
763         int err = 0;
764         unsigned long long ret;
765
766         if (journal->j_inode) {
767                 ret = bmap(journal->j_inode, blocknr);
768                 if (ret)
769                         *retp = ret;
770                 else {
771                         printk(KERN_ALERT "%s: journal block not found "
772                                         "at offset %lu on %s\n",
773                                __func__, blocknr, journal->j_devname);
774                         err = -EIO;
775                         __journal_abort_soft(journal, err);
776                 }
777         } else {
778                 *retp = blocknr; /* +journal->j_blk_offset */
779         }
780         return err;
781 }
782
783 /*
784  * We play buffer_head aliasing tricks to write data/metadata blocks to
785  * the journal without copying their contents, but for journal
786  * descriptor blocks we do need to generate bona fide buffers.
787  *
788  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
789  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
790  * But we don't bother doing that, so there will be coherency problems with
791  * mmaps of blockdevs which hold live JBD-controlled filesystems.
792  */
793 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
794 {
795         struct buffer_head *bh;
796         unsigned long long blocknr;
797         int err;
798
799         err = jbd2_journal_next_log_block(journal, &blocknr);
800
801         if (err)
802                 return NULL;
803
804         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
805         if (!bh)
806                 return NULL;
807         lock_buffer(bh);
808         memset(bh->b_data, 0, journal->j_blocksize);
809         set_buffer_uptodate(bh);
810         unlock_buffer(bh);
811         BUFFER_TRACE(bh, "return this buffer");
812         return jbd2_journal_add_journal_head(bh);
813 }
814
815 /*
816  * Return tid of the oldest transaction in the journal and block in the journal
817  * where the transaction starts.
818  *
819  * If the journal is now empty, return which will be the next transaction ID
820  * we will write and where will that transaction start.
821  *
822  * The return value is 0 if journal tail cannot be pushed any further, 1 if
823  * it can.
824  */
825 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
826                               unsigned long *block)
827 {
828         transaction_t *transaction;
829         int ret;
830
831         read_lock(&journal->j_state_lock);
832         spin_lock(&journal->j_list_lock);
833         transaction = journal->j_checkpoint_transactions;
834         if (transaction) {
835                 *tid = transaction->t_tid;
836                 *block = transaction->t_log_start;
837         } else if ((transaction = journal->j_committing_transaction) != NULL) {
838                 *tid = transaction->t_tid;
839                 *block = transaction->t_log_start;
840         } else if ((transaction = journal->j_running_transaction) != NULL) {
841                 *tid = transaction->t_tid;
842                 *block = journal->j_head;
843         } else {
844                 *tid = journal->j_transaction_sequence;
845                 *block = journal->j_head;
846         }
847         ret = tid_gt(*tid, journal->j_tail_sequence);
848         spin_unlock(&journal->j_list_lock);
849         read_unlock(&journal->j_state_lock);
850
851         return ret;
852 }
853
854 /*
855  * Update information in journal structure and in on disk journal superblock
856  * about log tail. This function does not check whether information passed in
857  * really pushes log tail further. It's responsibility of the caller to make
858  * sure provided log tail information is valid (e.g. by holding
859  * j_checkpoint_mutex all the time between computing log tail and calling this
860  * function as is the case with jbd2_cleanup_journal_tail()).
861  *
862  * Requires j_checkpoint_mutex
863  */
864 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
865 {
866         unsigned long freed;
867
868         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
869
870         /*
871          * We cannot afford for write to remain in drive's caches since as
872          * soon as we update j_tail, next transaction can start reusing journal
873          * space and if we lose sb update during power failure we'd replay
874          * old transaction with possibly newly overwritten data.
875          */
876         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
877         write_lock(&journal->j_state_lock);
878         freed = block - journal->j_tail;
879         if (block < journal->j_tail)
880                 freed += journal->j_last - journal->j_first;
881
882         trace_jbd2_update_log_tail(journal, tid, block, freed);
883         jbd_debug(1,
884                   "Cleaning journal tail from %d to %d (offset %lu), "
885                   "freeing %lu\n",
886                   journal->j_tail_sequence, tid, block, freed);
887
888         journal->j_free += freed;
889         journal->j_tail_sequence = tid;
890         journal->j_tail = block;
891         write_unlock(&journal->j_state_lock);
892 }
893
894 /*
895  * This is a variaon of __jbd2_update_log_tail which checks for validity of
896  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
897  * with other threads updating log tail.
898  */
899 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
900 {
901         mutex_lock(&journal->j_checkpoint_mutex);
902         if (tid_gt(tid, journal->j_tail_sequence))
903                 __jbd2_update_log_tail(journal, tid, block);
904         mutex_unlock(&journal->j_checkpoint_mutex);
905 }
906
907 struct jbd2_stats_proc_session {
908         journal_t *journal;
909         struct transaction_stats_s *stats;
910         int start;
911         int max;
912 };
913
914 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
915 {
916         return *pos ? NULL : SEQ_START_TOKEN;
917 }
918
919 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
920 {
921         return NULL;
922 }
923
924 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
925 {
926         struct jbd2_stats_proc_session *s = seq->private;
927
928         if (v != SEQ_START_TOKEN)
929                 return 0;
930         seq_printf(seq, "%lu transactions (%lu requested), "
931                    "each up to %u blocks\n",
932                    s->stats->ts_tid, s->stats->ts_requested,
933                    s->journal->j_max_transaction_buffers);
934         if (s->stats->ts_tid == 0)
935                 return 0;
936         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
937             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
938         seq_printf(seq, "  %ums request delay\n",
939             (s->stats->ts_requested == 0) ? 0 :
940             jiffies_to_msecs(s->stats->run.rs_request_delay /
941                              s->stats->ts_requested));
942         seq_printf(seq, "  %ums running transaction\n",
943             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
944         seq_printf(seq, "  %ums transaction was being locked\n",
945             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
946         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
947             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
948         seq_printf(seq, "  %ums logging transaction\n",
949             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
950         seq_printf(seq, "  %lluus average transaction commit time\n",
951                    div_u64(s->journal->j_average_commit_time, 1000));
952         seq_printf(seq, "  %lu handles per transaction\n",
953             s->stats->run.rs_handle_count / s->stats->ts_tid);
954         seq_printf(seq, "  %lu blocks per transaction\n",
955             s->stats->run.rs_blocks / s->stats->ts_tid);
956         seq_printf(seq, "  %lu logged blocks per transaction\n",
957             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
958         return 0;
959 }
960
961 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
962 {
963 }
964
965 static const struct seq_operations jbd2_seq_info_ops = {
966         .start  = jbd2_seq_info_start,
967         .next   = jbd2_seq_info_next,
968         .stop   = jbd2_seq_info_stop,
969         .show   = jbd2_seq_info_show,
970 };
971
972 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
973 {
974         journal_t *journal = PDE_DATA(inode);
975         struct jbd2_stats_proc_session *s;
976         int rc, size;
977
978         s = kmalloc(sizeof(*s), GFP_KERNEL);
979         if (s == NULL)
980                 return -ENOMEM;
981         size = sizeof(struct transaction_stats_s);
982         s->stats = kmalloc(size, GFP_KERNEL);
983         if (s->stats == NULL) {
984                 kfree(s);
985                 return -ENOMEM;
986         }
987         spin_lock(&journal->j_history_lock);
988         memcpy(s->stats, &journal->j_stats, size);
989         s->journal = journal;
990         spin_unlock(&journal->j_history_lock);
991
992         rc = seq_open(file, &jbd2_seq_info_ops);
993         if (rc == 0) {
994                 struct seq_file *m = file->private_data;
995                 m->private = s;
996         } else {
997                 kfree(s->stats);
998                 kfree(s);
999         }
1000         return rc;
1001
1002 }
1003
1004 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1005 {
1006         struct seq_file *seq = file->private_data;
1007         struct jbd2_stats_proc_session *s = seq->private;
1008         kfree(s->stats);
1009         kfree(s);
1010         return seq_release(inode, file);
1011 }
1012
1013 static const struct file_operations jbd2_seq_info_fops = {
1014         .owner          = THIS_MODULE,
1015         .open           = jbd2_seq_info_open,
1016         .read           = seq_read,
1017         .llseek         = seq_lseek,
1018         .release        = jbd2_seq_info_release,
1019 };
1020
1021 static struct proc_dir_entry *proc_jbd2_stats;
1022
1023 static void jbd2_stats_proc_init(journal_t *journal)
1024 {
1025         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1026         if (journal->j_proc_entry) {
1027                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1028                                  &jbd2_seq_info_fops, journal);
1029         }
1030 }
1031
1032 static void jbd2_stats_proc_exit(journal_t *journal)
1033 {
1034         remove_proc_entry("info", journal->j_proc_entry);
1035         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1036 }
1037
1038 /*
1039  * Management for journal control blocks: functions to create and
1040  * destroy journal_t structures, and to initialise and read existing
1041  * journal blocks from disk.  */
1042
1043 /* First: create and setup a journal_t object in memory.  We initialise
1044  * very few fields yet: that has to wait until we have created the
1045  * journal structures from from scratch, or loaded them from disk. */
1046
1047 static journal_t * journal_init_common (void)
1048 {
1049         journal_t *journal;
1050         int err;
1051
1052         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1053         if (!journal)
1054                 return NULL;
1055
1056         init_waitqueue_head(&journal->j_wait_transaction_locked);
1057         init_waitqueue_head(&journal->j_wait_logspace);
1058         init_waitqueue_head(&journal->j_wait_done_commit);
1059         init_waitqueue_head(&journal->j_wait_checkpoint);
1060         init_waitqueue_head(&journal->j_wait_commit);
1061         init_waitqueue_head(&journal->j_wait_updates);
1062         mutex_init(&journal->j_barrier);
1063         mutex_init(&journal->j_checkpoint_mutex);
1064         spin_lock_init(&journal->j_revoke_lock);
1065         spin_lock_init(&journal->j_list_lock);
1066         rwlock_init(&journal->j_state_lock);
1067
1068         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1069         journal->j_min_batch_time = 0;
1070         journal->j_max_batch_time = 15000; /* 15ms */
1071
1072         /* The journal is marked for error until we succeed with recovery! */
1073         journal->j_flags = JBD2_ABORT;
1074
1075         /* Set up a default-sized revoke table for the new mount. */
1076         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1077         if (err) {
1078                 kfree(journal);
1079                 return NULL;
1080         }
1081
1082         spin_lock_init(&journal->j_history_lock);
1083
1084         return journal;
1085 }
1086
1087 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1088  *
1089  * Create a journal structure assigned some fixed set of disk blocks to
1090  * the journal.  We don't actually touch those disk blocks yet, but we
1091  * need to set up all of the mapping information to tell the journaling
1092  * system where the journal blocks are.
1093  *
1094  */
1095
1096 /**
1097  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1098  *  @bdev: Block device on which to create the journal
1099  *  @fs_dev: Device which hold journalled filesystem for this journal.
1100  *  @start: Block nr Start of journal.
1101  *  @len:  Length of the journal in blocks.
1102  *  @blocksize: blocksize of journalling device
1103  *
1104  *  Returns: a newly created journal_t *
1105  *
1106  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1107  *  range of blocks on an arbitrary block device.
1108  *
1109  */
1110 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1111                         struct block_device *fs_dev,
1112                         unsigned long long start, int len, int blocksize)
1113 {
1114         journal_t *journal = journal_init_common();
1115         struct buffer_head *bh;
1116         char *p;
1117         int n;
1118
1119         if (!journal)
1120                 return NULL;
1121
1122         /* journal descriptor can store up to n blocks -bzzz */
1123         journal->j_blocksize = blocksize;
1124         journal->j_dev = bdev;
1125         journal->j_fs_dev = fs_dev;
1126         journal->j_blk_offset = start;
1127         journal->j_maxlen = len;
1128         bdevname(journal->j_dev, journal->j_devname);
1129         p = journal->j_devname;
1130         while ((p = strchr(p, '/')))
1131                 *p = '!';
1132         jbd2_stats_proc_init(journal);
1133         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1134         journal->j_wbufsize = n;
1135         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1136         if (!journal->j_wbuf) {
1137                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1138                         __func__);
1139                 goto out_err;
1140         }
1141
1142         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1143         if (!bh) {
1144                 printk(KERN_ERR
1145                        "%s: Cannot get buffer for journal superblock\n",
1146                        __func__);
1147                 goto out_err;
1148         }
1149         journal->j_sb_buffer = bh;
1150         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1151
1152         return journal;
1153 out_err:
1154         kfree(journal->j_wbuf);
1155         jbd2_stats_proc_exit(journal);
1156         kfree(journal);
1157         return NULL;
1158 }
1159
1160 /**
1161  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1162  *  @inode: An inode to create the journal in
1163  *
1164  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1165  * the journal.  The inode must exist already, must support bmap() and
1166  * must have all data blocks preallocated.
1167  */
1168 journal_t * jbd2_journal_init_inode (struct inode *inode)
1169 {
1170         struct buffer_head *bh;
1171         journal_t *journal = journal_init_common();
1172         char *p;
1173         int err;
1174         int n;
1175         unsigned long long blocknr;
1176
1177         if (!journal)
1178                 return NULL;
1179
1180         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1181         journal->j_inode = inode;
1182         bdevname(journal->j_dev, journal->j_devname);
1183         p = journal->j_devname;
1184         while ((p = strchr(p, '/')))
1185                 *p = '!';
1186         p = journal->j_devname + strlen(journal->j_devname);
1187         sprintf(p, "-%lu", journal->j_inode->i_ino);
1188         jbd_debug(1,
1189                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1190                   journal, inode->i_sb->s_id, inode->i_ino,
1191                   (long long) inode->i_size,
1192                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1193
1194         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1195         journal->j_blocksize = inode->i_sb->s_blocksize;
1196         jbd2_stats_proc_init(journal);
1197
1198         /* journal descriptor can store up to n blocks -bzzz */
1199         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1200         journal->j_wbufsize = n;
1201         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1202         if (!journal->j_wbuf) {
1203                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1204                         __func__);
1205                 goto out_err;
1206         }
1207
1208         err = jbd2_journal_bmap(journal, 0, &blocknr);
1209         /* If that failed, give up */
1210         if (err) {
1211                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1212                        __func__);
1213                 goto out_err;
1214         }
1215
1216         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1217         if (!bh) {
1218                 printk(KERN_ERR
1219                        "%s: Cannot get buffer for journal superblock\n",
1220                        __func__);
1221                 goto out_err;
1222         }
1223         journal->j_sb_buffer = bh;
1224         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1225
1226         return journal;
1227 out_err:
1228         kfree(journal->j_wbuf);
1229         jbd2_stats_proc_exit(journal);
1230         kfree(journal);
1231         return NULL;
1232 }
1233
1234 /*
1235  * If the journal init or create aborts, we need to mark the journal
1236  * superblock as being NULL to prevent the journal destroy from writing
1237  * back a bogus superblock.
1238  */
1239 static void journal_fail_superblock (journal_t *journal)
1240 {
1241         struct buffer_head *bh = journal->j_sb_buffer;
1242         brelse(bh);
1243         journal->j_sb_buffer = NULL;
1244 }
1245
1246 /*
1247  * Given a journal_t structure, initialise the various fields for
1248  * startup of a new journaling session.  We use this both when creating
1249  * a journal, and after recovering an old journal to reset it for
1250  * subsequent use.
1251  */
1252
1253 static int journal_reset(journal_t *journal)
1254 {
1255         journal_superblock_t *sb = journal->j_superblock;
1256         unsigned long long first, last;
1257
1258         first = be32_to_cpu(sb->s_first);
1259         last = be32_to_cpu(sb->s_maxlen);
1260         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1261                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1262                        first, last);
1263                 journal_fail_superblock(journal);
1264                 return -EINVAL;
1265         }
1266
1267         journal->j_first = first;
1268         journal->j_last = last;
1269
1270         journal->j_head = first;
1271         journal->j_tail = first;
1272         journal->j_free = last - first;
1273
1274         journal->j_tail_sequence = journal->j_transaction_sequence;
1275         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1276         journal->j_commit_request = journal->j_commit_sequence;
1277
1278         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1279
1280         /*
1281          * As a special case, if the on-disk copy is already marked as needing
1282          * no recovery (s_start == 0), then we can safely defer the superblock
1283          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1284          * attempting a write to a potential-readonly device.
1285          */
1286         if (sb->s_start == 0) {
1287                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1288                         "(start %ld, seq %d, errno %d)\n",
1289                         journal->j_tail, journal->j_tail_sequence,
1290                         journal->j_errno);
1291                 journal->j_flags |= JBD2_FLUSHED;
1292         } else {
1293                 /* Lock here to make assertions happy... */
1294                 mutex_lock(&journal->j_checkpoint_mutex);
1295                 /*
1296                  * Update log tail information. We use WRITE_FUA since new
1297                  * transaction will start reusing journal space and so we
1298                  * must make sure information about current log tail is on
1299                  * disk before that.
1300                  */
1301                 jbd2_journal_update_sb_log_tail(journal,
1302                                                 journal->j_tail_sequence,
1303                                                 journal->j_tail,
1304                                                 WRITE_FUA);
1305                 mutex_unlock(&journal->j_checkpoint_mutex);
1306         }
1307         return jbd2_journal_start_thread(journal);
1308 }
1309
1310 static void jbd2_write_superblock(journal_t *journal, int write_op)
1311 {
1312         struct buffer_head *bh = journal->j_sb_buffer;
1313         int ret;
1314
1315         trace_jbd2_write_superblock(journal, write_op);
1316         if (!(journal->j_flags & JBD2_BARRIER))
1317                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1318         lock_buffer(bh);
1319         if (buffer_write_io_error(bh)) {
1320                 /*
1321                  * Oh, dear.  A previous attempt to write the journal
1322                  * superblock failed.  This could happen because the
1323                  * USB device was yanked out.  Or it could happen to
1324                  * be a transient write error and maybe the block will
1325                  * be remapped.  Nothing we can do but to retry the
1326                  * write and hope for the best.
1327                  */
1328                 printk(KERN_ERR "JBD2: previous I/O error detected "
1329                        "for journal superblock update for %s.\n",
1330                        journal->j_devname);
1331                 clear_buffer_write_io_error(bh);
1332                 set_buffer_uptodate(bh);
1333         }
1334         get_bh(bh);
1335         bh->b_end_io = end_buffer_write_sync;
1336         ret = submit_bh(write_op, bh);
1337         wait_on_buffer(bh);
1338         if (buffer_write_io_error(bh)) {
1339                 clear_buffer_write_io_error(bh);
1340                 set_buffer_uptodate(bh);
1341                 ret = -EIO;
1342         }
1343         if (ret) {
1344                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1345                        "journal superblock for %s.\n", ret,
1346                        journal->j_devname);
1347         }
1348 }
1349
1350 /**
1351  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1352  * @journal: The journal to update.
1353  * @tail_tid: TID of the new transaction at the tail of the log
1354  * @tail_block: The first block of the transaction at the tail of the log
1355  * @write_op: With which operation should we write the journal sb
1356  *
1357  * Update a journal's superblock information about log tail and write it to
1358  * disk, waiting for the IO to complete.
1359  */
1360 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1361                                      unsigned long tail_block, int write_op)
1362 {
1363         journal_superblock_t *sb = journal->j_superblock;
1364
1365         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1366         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1367                   tail_block, tail_tid);
1368
1369         sb->s_sequence = cpu_to_be32(tail_tid);
1370         sb->s_start    = cpu_to_be32(tail_block);
1371
1372         jbd2_write_superblock(journal, write_op);
1373
1374         /* Log is no longer empty */
1375         write_lock(&journal->j_state_lock);
1376         WARN_ON(!sb->s_sequence);
1377         journal->j_flags &= ~JBD2_FLUSHED;
1378         write_unlock(&journal->j_state_lock);
1379 }
1380
1381 /**
1382  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1383  * @journal: The journal to update.
1384  *
1385  * Update a journal's dynamic superblock fields to show that journal is empty.
1386  * Write updated superblock to disk waiting for IO to complete.
1387  */
1388 static void jbd2_mark_journal_empty(journal_t *journal)
1389 {
1390         journal_superblock_t *sb = journal->j_superblock;
1391
1392         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1393         read_lock(&journal->j_state_lock);
1394         /* Is it already empty? */
1395         if (sb->s_start == 0) {
1396                 read_unlock(&journal->j_state_lock);
1397                 return;
1398         }
1399         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1400                   journal->j_tail_sequence);
1401
1402         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1403         sb->s_start    = cpu_to_be32(0);
1404         read_unlock(&journal->j_state_lock);
1405
1406         jbd2_write_superblock(journal, WRITE_FUA);
1407
1408         /* Log is no longer empty */
1409         write_lock(&journal->j_state_lock);
1410         journal->j_flags |= JBD2_FLUSHED;
1411         write_unlock(&journal->j_state_lock);
1412 }
1413
1414
1415 /**
1416  * jbd2_journal_update_sb_errno() - Update error in the journal.
1417  * @journal: The journal to update.
1418  *
1419  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1420  * to complete.
1421  */
1422 void jbd2_journal_update_sb_errno(journal_t *journal)
1423 {
1424         journal_superblock_t *sb = journal->j_superblock;
1425
1426         read_lock(&journal->j_state_lock);
1427         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1428                   journal->j_errno);
1429         sb->s_errno    = cpu_to_be32(journal->j_errno);
1430         jbd2_superblock_csum_set(journal, sb);
1431         read_unlock(&journal->j_state_lock);
1432
1433         jbd2_write_superblock(journal, WRITE_SYNC);
1434 }
1435 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1436
1437 /*
1438  * Read the superblock for a given journal, performing initial
1439  * validation of the format.
1440  */
1441 static int journal_get_superblock(journal_t *journal)
1442 {
1443         struct buffer_head *bh;
1444         journal_superblock_t *sb;
1445         int err = -EIO;
1446
1447         bh = journal->j_sb_buffer;
1448
1449         J_ASSERT(bh != NULL);
1450         if (!buffer_uptodate(bh)) {
1451                 ll_rw_block(READ, 1, &bh);
1452                 wait_on_buffer(bh);
1453                 if (!buffer_uptodate(bh)) {
1454                         printk(KERN_ERR
1455                                 "JBD2: IO error reading journal superblock\n");
1456                         goto out;
1457                 }
1458         }
1459
1460         if (buffer_verified(bh))
1461                 return 0;
1462
1463         sb = journal->j_superblock;
1464
1465         err = -EINVAL;
1466
1467         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1468             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1469                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1470                 goto out;
1471         }
1472
1473         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1474         case JBD2_SUPERBLOCK_V1:
1475                 journal->j_format_version = 1;
1476                 break;
1477         case JBD2_SUPERBLOCK_V2:
1478                 journal->j_format_version = 2;
1479                 break;
1480         default:
1481                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1482                 goto out;
1483         }
1484
1485         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1486                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1487         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1488                 printk(KERN_WARNING "JBD2: journal file too short\n");
1489                 goto out;
1490         }
1491
1492         if (be32_to_cpu(sb->s_first) == 0 ||
1493             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1494                 printk(KERN_WARNING
1495                         "JBD2: Invalid start block of journal: %u\n",
1496                         be32_to_cpu(sb->s_first));
1497                 goto out;
1498         }
1499
1500         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1501             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1502                 /* Can't have checksum v1 and v2 on at the same time! */
1503                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1504                        "at the same time!\n");
1505                 goto out;
1506         }
1507
1508         if (!jbd2_verify_csum_type(journal, sb)) {
1509                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1510                 goto out;
1511         }
1512
1513         /* Load the checksum driver */
1514         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1515                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1516                 if (IS_ERR(journal->j_chksum_driver)) {
1517                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1518                         err = PTR_ERR(journal->j_chksum_driver);
1519                         journal->j_chksum_driver = NULL;
1520                         goto out;
1521                 }
1522         }
1523
1524         /* Check superblock checksum */
1525         if (!jbd2_superblock_csum_verify(journal, sb)) {
1526                 printk(KERN_ERR "JBD: journal checksum error\n");
1527                 goto out;
1528         }
1529
1530         /* Precompute checksum seed for all metadata */
1531         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1532                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1533                                                    sizeof(sb->s_uuid));
1534
1535         set_buffer_verified(bh);
1536
1537         return 0;
1538
1539 out:
1540         journal_fail_superblock(journal);
1541         return err;
1542 }
1543
1544 /*
1545  * Load the on-disk journal superblock and read the key fields into the
1546  * journal_t.
1547  */
1548
1549 static int load_superblock(journal_t *journal)
1550 {
1551         int err;
1552         journal_superblock_t *sb;
1553
1554         err = journal_get_superblock(journal);
1555         if (err)
1556                 return err;
1557
1558         sb = journal->j_superblock;
1559
1560         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1561         journal->j_tail = be32_to_cpu(sb->s_start);
1562         journal->j_first = be32_to_cpu(sb->s_first);
1563         journal->j_last = be32_to_cpu(sb->s_maxlen);
1564         journal->j_errno = be32_to_cpu(sb->s_errno);
1565
1566         return 0;
1567 }
1568
1569
1570 /**
1571  * int jbd2_journal_load() - Read journal from disk.
1572  * @journal: Journal to act on.
1573  *
1574  * Given a journal_t structure which tells us which disk blocks contain
1575  * a journal, read the journal from disk to initialise the in-memory
1576  * structures.
1577  */
1578 int jbd2_journal_load(journal_t *journal)
1579 {
1580         int err;
1581         journal_superblock_t *sb;
1582
1583         err = load_superblock(journal);
1584         if (err)
1585                 return err;
1586
1587         sb = journal->j_superblock;
1588         /* If this is a V2 superblock, then we have to check the
1589          * features flags on it. */
1590
1591         if (journal->j_format_version >= 2) {
1592                 if ((sb->s_feature_ro_compat &
1593                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1594                     (sb->s_feature_incompat &
1595                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1596                         printk(KERN_WARNING
1597                                 "JBD2: Unrecognised features on journal\n");
1598                         return -EINVAL;
1599                 }
1600         }
1601
1602         /*
1603          * Create a slab for this blocksize
1604          */
1605         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1606         if (err)
1607                 return err;
1608
1609         /* Let the recovery code check whether it needs to recover any
1610          * data from the journal. */
1611         if (jbd2_journal_recover(journal))
1612                 goto recovery_error;
1613
1614         if (journal->j_failed_commit) {
1615                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1616                        "is corrupt.\n", journal->j_failed_commit,
1617                        journal->j_devname);
1618                 return -EIO;
1619         }
1620
1621         /* OK, we've finished with the dynamic journal bits:
1622          * reinitialise the dynamic contents of the superblock in memory
1623          * and reset them on disk. */
1624         if (journal_reset(journal))
1625                 goto recovery_error;
1626
1627         journal->j_flags &= ~JBD2_ABORT;
1628         journal->j_flags |= JBD2_LOADED;
1629         return 0;
1630
1631 recovery_error:
1632         printk(KERN_WARNING "JBD2: recovery failed\n");
1633         return -EIO;
1634 }
1635
1636 /**
1637  * void jbd2_journal_destroy() - Release a journal_t structure.
1638  * @journal: Journal to act on.
1639  *
1640  * Release a journal_t structure once it is no longer in use by the
1641  * journaled object.
1642  * Return <0 if we couldn't clean up the journal.
1643  */
1644 int jbd2_journal_destroy(journal_t *journal)
1645 {
1646         int err = 0;
1647
1648         /* Wait for the commit thread to wake up and die. */
1649         journal_kill_thread(journal);
1650
1651         /* Force a final log commit */
1652         if (journal->j_running_transaction)
1653                 jbd2_journal_commit_transaction(journal);
1654
1655         /* Force any old transactions to disk */
1656
1657         /* Totally anal locking here... */
1658         spin_lock(&journal->j_list_lock);
1659         while (journal->j_checkpoint_transactions != NULL) {
1660                 spin_unlock(&journal->j_list_lock);
1661                 mutex_lock(&journal->j_checkpoint_mutex);
1662                 jbd2_log_do_checkpoint(journal);
1663                 mutex_unlock(&journal->j_checkpoint_mutex);
1664                 spin_lock(&journal->j_list_lock);
1665         }
1666
1667         J_ASSERT(journal->j_running_transaction == NULL);
1668         J_ASSERT(journal->j_committing_transaction == NULL);
1669         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1670         spin_unlock(&journal->j_list_lock);
1671
1672         if (journal->j_sb_buffer) {
1673                 if (!is_journal_aborted(journal)) {
1674                         mutex_lock(&journal->j_checkpoint_mutex);
1675                         jbd2_mark_journal_empty(journal);
1676                         mutex_unlock(&journal->j_checkpoint_mutex);
1677                 } else
1678                         err = -EIO;
1679                 brelse(journal->j_sb_buffer);
1680         }
1681
1682         if (journal->j_proc_entry)
1683                 jbd2_stats_proc_exit(journal);
1684         if (journal->j_inode)
1685                 iput(journal->j_inode);
1686         if (journal->j_revoke)
1687                 jbd2_journal_destroy_revoke(journal);
1688         if (journal->j_chksum_driver)
1689                 crypto_free_shash(journal->j_chksum_driver);
1690         kfree(journal->j_wbuf);
1691         kfree(journal);
1692
1693         return err;
1694 }
1695
1696
1697 /**
1698  *int jbd2_journal_check_used_features () - Check if features specified are used.
1699  * @journal: Journal to check.
1700  * @compat: bitmask of compatible features
1701  * @ro: bitmask of features that force read-only mount
1702  * @incompat: bitmask of incompatible features
1703  *
1704  * Check whether the journal uses all of a given set of
1705  * features.  Return true (non-zero) if it does.
1706  **/
1707
1708 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1709                                  unsigned long ro, unsigned long incompat)
1710 {
1711         journal_superblock_t *sb;
1712
1713         if (!compat && !ro && !incompat)
1714                 return 1;
1715         /* Load journal superblock if it is not loaded yet. */
1716         if (journal->j_format_version == 0 &&
1717             journal_get_superblock(journal) != 0)
1718                 return 0;
1719         if (journal->j_format_version == 1)
1720                 return 0;
1721
1722         sb = journal->j_superblock;
1723
1724         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1725             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1726             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1727                 return 1;
1728
1729         return 0;
1730 }
1731
1732 /**
1733  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1734  * @journal: Journal to check.
1735  * @compat: bitmask of compatible features
1736  * @ro: bitmask of features that force read-only mount
1737  * @incompat: bitmask of incompatible features
1738  *
1739  * Check whether the journaling code supports the use of
1740  * all of a given set of features on this journal.  Return true
1741  * (non-zero) if it can. */
1742
1743 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1744                                       unsigned long ro, unsigned long incompat)
1745 {
1746         if (!compat && !ro && !incompat)
1747                 return 1;
1748
1749         /* We can support any known requested features iff the
1750          * superblock is in version 2.  Otherwise we fail to support any
1751          * extended sb features. */
1752
1753         if (journal->j_format_version != 2)
1754                 return 0;
1755
1756         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1757             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1758             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1759                 return 1;
1760
1761         return 0;
1762 }
1763
1764 /**
1765  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1766  * @journal: Journal to act on.
1767  * @compat: bitmask of compatible features
1768  * @ro: bitmask of features that force read-only mount
1769  * @incompat: bitmask of incompatible features
1770  *
1771  * Mark a given journal feature as present on the
1772  * superblock.  Returns true if the requested features could be set.
1773  *
1774  */
1775
1776 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1777                           unsigned long ro, unsigned long incompat)
1778 {
1779 #define INCOMPAT_FEATURE_ON(f) \
1780                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1781 #define COMPAT_FEATURE_ON(f) \
1782                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1783         journal_superblock_t *sb;
1784
1785         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1786                 return 1;
1787
1788         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1789                 return 0;
1790
1791         /* Asking for checksumming v2 and v1?  Only give them v2. */
1792         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1793             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1794                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1795
1796         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1797                   compat, ro, incompat);
1798
1799         sb = journal->j_superblock;
1800
1801         /* If enabling v2 checksums, update superblock */
1802         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1803                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1804                 sb->s_feature_compat &=
1805                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1806
1807                 /* Load the checksum driver */
1808                 if (journal->j_chksum_driver == NULL) {
1809                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1810                                                                       0, 0);
1811                         if (IS_ERR(journal->j_chksum_driver)) {
1812                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1813                                        "driver.\n");
1814                                 journal->j_chksum_driver = NULL;
1815                                 return 0;
1816                         }
1817                 }
1818
1819                 /* Precompute checksum seed for all metadata */
1820                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1821                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1822                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1823                                                            sb->s_uuid,
1824                                                            sizeof(sb->s_uuid));
1825         }
1826
1827         /* If enabling v1 checksums, downgrade superblock */
1828         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1829                 sb->s_feature_incompat &=
1830                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1831
1832         sb->s_feature_compat    |= cpu_to_be32(compat);
1833         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1834         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1835
1836         return 1;
1837 #undef COMPAT_FEATURE_ON
1838 #undef INCOMPAT_FEATURE_ON
1839 }
1840
1841 /*
1842  * jbd2_journal_clear_features () - Clear a given journal feature in the
1843  *                                  superblock
1844  * @journal: Journal to act on.
1845  * @compat: bitmask of compatible features
1846  * @ro: bitmask of features that force read-only mount
1847  * @incompat: bitmask of incompatible features
1848  *
1849  * Clear a given journal feature as present on the
1850  * superblock.
1851  */
1852 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1853                                 unsigned long ro, unsigned long incompat)
1854 {
1855         journal_superblock_t *sb;
1856
1857         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1858                   compat, ro, incompat);
1859
1860         sb = journal->j_superblock;
1861
1862         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1863         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1864         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1865 }
1866 EXPORT_SYMBOL(jbd2_journal_clear_features);
1867
1868 /**
1869  * int jbd2_journal_flush () - Flush journal
1870  * @journal: Journal to act on.
1871  *
1872  * Flush all data for a given journal to disk and empty the journal.
1873  * Filesystems can use this when remounting readonly to ensure that
1874  * recovery does not need to happen on remount.
1875  */
1876
1877 int jbd2_journal_flush(journal_t *journal)
1878 {
1879         int err = 0;
1880         transaction_t *transaction = NULL;
1881
1882         write_lock(&journal->j_state_lock);
1883
1884         /* Force everything buffered to the log... */
1885         if (journal->j_running_transaction) {
1886                 transaction = journal->j_running_transaction;
1887                 __jbd2_log_start_commit(journal, transaction->t_tid);
1888         } else if (journal->j_committing_transaction)
1889                 transaction = journal->j_committing_transaction;
1890
1891         /* Wait for the log commit to complete... */
1892         if (transaction) {
1893                 tid_t tid = transaction->t_tid;
1894
1895                 write_unlock(&journal->j_state_lock);
1896                 jbd2_log_wait_commit(journal, tid);
1897         } else {
1898                 write_unlock(&journal->j_state_lock);
1899         }
1900
1901         /* ...and flush everything in the log out to disk. */
1902         spin_lock(&journal->j_list_lock);
1903         while (!err && journal->j_checkpoint_transactions != NULL) {
1904                 spin_unlock(&journal->j_list_lock);
1905                 mutex_lock(&journal->j_checkpoint_mutex);
1906                 err = jbd2_log_do_checkpoint(journal);
1907                 mutex_unlock(&journal->j_checkpoint_mutex);
1908                 spin_lock(&journal->j_list_lock);
1909         }
1910         spin_unlock(&journal->j_list_lock);
1911
1912         if (is_journal_aborted(journal))
1913                 return -EIO;
1914
1915         mutex_lock(&journal->j_checkpoint_mutex);
1916         jbd2_cleanup_journal_tail(journal);
1917
1918         /* Finally, mark the journal as really needing no recovery.
1919          * This sets s_start==0 in the underlying superblock, which is
1920          * the magic code for a fully-recovered superblock.  Any future
1921          * commits of data to the journal will restore the current
1922          * s_start value. */
1923         jbd2_mark_journal_empty(journal);
1924         mutex_unlock(&journal->j_checkpoint_mutex);
1925         write_lock(&journal->j_state_lock);
1926         J_ASSERT(!journal->j_running_transaction);
1927         J_ASSERT(!journal->j_committing_transaction);
1928         J_ASSERT(!journal->j_checkpoint_transactions);
1929         J_ASSERT(journal->j_head == journal->j_tail);
1930         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1931         write_unlock(&journal->j_state_lock);
1932         return 0;
1933 }
1934
1935 /**
1936  * int jbd2_journal_wipe() - Wipe journal contents
1937  * @journal: Journal to act on.
1938  * @write: flag (see below)
1939  *
1940  * Wipe out all of the contents of a journal, safely.  This will produce
1941  * a warning if the journal contains any valid recovery information.
1942  * Must be called between journal_init_*() and jbd2_journal_load().
1943  *
1944  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1945  * we merely suppress recovery.
1946  */
1947
1948 int jbd2_journal_wipe(journal_t *journal, int write)
1949 {
1950         int err = 0;
1951
1952         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1953
1954         err = load_superblock(journal);
1955         if (err)
1956                 return err;
1957
1958         if (!journal->j_tail)
1959                 goto no_recovery;
1960
1961         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1962                 write ? "Clearing" : "Ignoring");
1963
1964         err = jbd2_journal_skip_recovery(journal);
1965         if (write) {
1966                 /* Lock to make assertions happy... */
1967                 mutex_lock(&journal->j_checkpoint_mutex);
1968                 jbd2_mark_journal_empty(journal);
1969                 mutex_unlock(&journal->j_checkpoint_mutex);
1970         }
1971
1972  no_recovery:
1973         return err;
1974 }
1975
1976 /*
1977  * Journal abort has very specific semantics, which we describe
1978  * for journal abort.
1979  *
1980  * Two internal functions, which provide abort to the jbd layer
1981  * itself are here.
1982  */
1983
1984 /*
1985  * Quick version for internal journal use (doesn't lock the journal).
1986  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1987  * and don't attempt to make any other journal updates.
1988  */
1989 void __jbd2_journal_abort_hard(journal_t *journal)
1990 {
1991         transaction_t *transaction;
1992
1993         if (journal->j_flags & JBD2_ABORT)
1994                 return;
1995
1996         printk(KERN_ERR "Aborting journal on device %s.\n",
1997                journal->j_devname);
1998
1999         write_lock(&journal->j_state_lock);
2000         journal->j_flags |= JBD2_ABORT;
2001         transaction = journal->j_running_transaction;
2002         if (transaction)
2003                 __jbd2_log_start_commit(journal, transaction->t_tid);
2004         write_unlock(&journal->j_state_lock);
2005 }
2006
2007 /* Soft abort: record the abort error status in the journal superblock,
2008  * but don't do any other IO. */
2009 static void __journal_abort_soft (journal_t *journal, int errno)
2010 {
2011         if (journal->j_flags & JBD2_ABORT)
2012                 return;
2013
2014         if (!journal->j_errno)
2015                 journal->j_errno = errno;
2016
2017         __jbd2_journal_abort_hard(journal);
2018
2019         if (errno)
2020                 jbd2_journal_update_sb_errno(journal);
2021 }
2022
2023 /**
2024  * void jbd2_journal_abort () - Shutdown the journal immediately.
2025  * @journal: the journal to shutdown.
2026  * @errno:   an error number to record in the journal indicating
2027  *           the reason for the shutdown.
2028  *
2029  * Perform a complete, immediate shutdown of the ENTIRE
2030  * journal (not of a single transaction).  This operation cannot be
2031  * undone without closing and reopening the journal.
2032  *
2033  * The jbd2_journal_abort function is intended to support higher level error
2034  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2035  * mode.
2036  *
2037  * Journal abort has very specific semantics.  Any existing dirty,
2038  * unjournaled buffers in the main filesystem will still be written to
2039  * disk by bdflush, but the journaling mechanism will be suspended
2040  * immediately and no further transaction commits will be honoured.
2041  *
2042  * Any dirty, journaled buffers will be written back to disk without
2043  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2044  * filesystem, but we _do_ attempt to leave as much data as possible
2045  * behind for fsck to use for cleanup.
2046  *
2047  * Any attempt to get a new transaction handle on a journal which is in
2048  * ABORT state will just result in an -EROFS error return.  A
2049  * jbd2_journal_stop on an existing handle will return -EIO if we have
2050  * entered abort state during the update.
2051  *
2052  * Recursive transactions are not disturbed by journal abort until the
2053  * final jbd2_journal_stop, which will receive the -EIO error.
2054  *
2055  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2056  * which will be recorded (if possible) in the journal superblock.  This
2057  * allows a client to record failure conditions in the middle of a
2058  * transaction without having to complete the transaction to record the
2059  * failure to disk.  ext3_error, for example, now uses this
2060  * functionality.
2061  *
2062  * Errors which originate from within the journaling layer will NOT
2063  * supply an errno; a null errno implies that absolutely no further
2064  * writes are done to the journal (unless there are any already in
2065  * progress).
2066  *
2067  */
2068
2069 void jbd2_journal_abort(journal_t *journal, int errno)
2070 {
2071         __journal_abort_soft(journal, errno);
2072 }
2073
2074 /**
2075  * int jbd2_journal_errno () - returns the journal's error state.
2076  * @journal: journal to examine.
2077  *
2078  * This is the errno number set with jbd2_journal_abort(), the last
2079  * time the journal was mounted - if the journal was stopped
2080  * without calling abort this will be 0.
2081  *
2082  * If the journal has been aborted on this mount time -EROFS will
2083  * be returned.
2084  */
2085 int jbd2_journal_errno(journal_t *journal)
2086 {
2087         int err;
2088
2089         read_lock(&journal->j_state_lock);
2090         if (journal->j_flags & JBD2_ABORT)
2091                 err = -EROFS;
2092         else
2093                 err = journal->j_errno;
2094         read_unlock(&journal->j_state_lock);
2095         return err;
2096 }
2097
2098 /**
2099  * int jbd2_journal_clear_err () - clears the journal's error state
2100  * @journal: journal to act on.
2101  *
2102  * An error must be cleared or acked to take a FS out of readonly
2103  * mode.
2104  */
2105 int jbd2_journal_clear_err(journal_t *journal)
2106 {
2107         int err = 0;
2108
2109         write_lock(&journal->j_state_lock);
2110         if (journal->j_flags & JBD2_ABORT)
2111                 err = -EROFS;
2112         else
2113                 journal->j_errno = 0;
2114         write_unlock(&journal->j_state_lock);
2115         return err;
2116 }
2117
2118 /**
2119  * void jbd2_journal_ack_err() - Ack journal err.
2120  * @journal: journal to act on.
2121  *
2122  * An error must be cleared or acked to take a FS out of readonly
2123  * mode.
2124  */
2125 void jbd2_journal_ack_err(journal_t *journal)
2126 {
2127         write_lock(&journal->j_state_lock);
2128         if (journal->j_errno)
2129                 journal->j_flags |= JBD2_ACK_ERR;
2130         write_unlock(&journal->j_state_lock);
2131 }
2132
2133 int jbd2_journal_blocks_per_page(struct inode *inode)
2134 {
2135         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2136 }
2137
2138 /*
2139  * helper functions to deal with 32 or 64bit block numbers.
2140  */
2141 size_t journal_tag_bytes(journal_t *journal)
2142 {
2143         journal_block_tag_t tag;
2144         size_t x = 0;
2145
2146         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2147                 x += sizeof(tag.t_checksum);
2148
2149         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2150                 return x + JBD2_TAG_SIZE64;
2151         else
2152                 return x + JBD2_TAG_SIZE32;
2153 }
2154
2155 /*
2156  * JBD memory management
2157  *
2158  * These functions are used to allocate block-sized chunks of memory
2159  * used for making copies of buffer_head data.  Very often it will be
2160  * page-sized chunks of data, but sometimes it will be in
2161  * sub-page-size chunks.  (For example, 16k pages on Power systems
2162  * with a 4k block file system.)  For blocks smaller than a page, we
2163  * use a SLAB allocator.  There are slab caches for each block size,
2164  * which are allocated at mount time, if necessary, and we only free
2165  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2166  * this reason we don't need to a mutex to protect access to
2167  * jbd2_slab[] allocating or releasing memory; only in
2168  * jbd2_journal_create_slab().
2169  */
2170 #define JBD2_MAX_SLABS 8
2171 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2172
2173 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2174         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2175         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2176 };
2177
2178
2179 static void jbd2_journal_destroy_slabs(void)
2180 {
2181         int i;
2182
2183         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2184                 if (jbd2_slab[i])
2185                         kmem_cache_destroy(jbd2_slab[i]);
2186                 jbd2_slab[i] = NULL;
2187         }
2188 }
2189
2190 static int jbd2_journal_create_slab(size_t size)
2191 {
2192         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2193         int i = order_base_2(size) - 10;
2194         size_t slab_size;
2195
2196         if (size == PAGE_SIZE)
2197                 return 0;
2198
2199         if (i >= JBD2_MAX_SLABS)
2200                 return -EINVAL;
2201
2202         if (unlikely(i < 0))
2203                 i = 0;
2204         mutex_lock(&jbd2_slab_create_mutex);
2205         if (jbd2_slab[i]) {
2206                 mutex_unlock(&jbd2_slab_create_mutex);
2207                 return 0;       /* Already created */
2208         }
2209
2210         slab_size = 1 << (i+10);
2211         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2212                                          slab_size, 0, NULL);
2213         mutex_unlock(&jbd2_slab_create_mutex);
2214         if (!jbd2_slab[i]) {
2215                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2216                 return -ENOMEM;
2217         }
2218         return 0;
2219 }
2220
2221 static struct kmem_cache *get_slab(size_t size)
2222 {
2223         int i = order_base_2(size) - 10;
2224
2225         BUG_ON(i >= JBD2_MAX_SLABS);
2226         if (unlikely(i < 0))
2227                 i = 0;
2228         BUG_ON(jbd2_slab[i] == NULL);
2229         return jbd2_slab[i];
2230 }
2231
2232 void *jbd2_alloc(size_t size, gfp_t flags)
2233 {
2234         void *ptr;
2235
2236         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2237
2238         flags |= __GFP_REPEAT;
2239         if (size == PAGE_SIZE)
2240                 ptr = (void *)__get_free_pages(flags, 0);
2241         else if (size > PAGE_SIZE) {
2242                 int order = get_order(size);
2243
2244                 if (order < 3)
2245                         ptr = (void *)__get_free_pages(flags, order);
2246                 else
2247                         ptr = vmalloc(size);
2248         } else
2249                 ptr = kmem_cache_alloc(get_slab(size), flags);
2250
2251         /* Check alignment; SLUB has gotten this wrong in the past,
2252          * and this can lead to user data corruption! */
2253         BUG_ON(((unsigned long) ptr) & (size-1));
2254
2255         return ptr;
2256 }
2257
2258 void jbd2_free(void *ptr, size_t size)
2259 {
2260         if (size == PAGE_SIZE) {
2261                 free_pages((unsigned long)ptr, 0);
2262                 return;
2263         }
2264         if (size > PAGE_SIZE) {
2265                 int order = get_order(size);
2266
2267                 if (order < 3)
2268                         free_pages((unsigned long)ptr, order);
2269                 else
2270                         vfree(ptr);
2271                 return;
2272         }
2273         kmem_cache_free(get_slab(size), ptr);
2274 };
2275
2276 /*
2277  * Journal_head storage management
2278  */
2279 static struct kmem_cache *jbd2_journal_head_cache;
2280 #ifdef CONFIG_JBD2_DEBUG
2281 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2282 #endif
2283
2284 static int jbd2_journal_init_journal_head_cache(void)
2285 {
2286         int retval;
2287
2288         J_ASSERT(jbd2_journal_head_cache == NULL);
2289         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2290                                 sizeof(struct journal_head),
2291                                 0,              /* offset */
2292                                 SLAB_TEMPORARY, /* flags */
2293                                 NULL);          /* ctor */
2294         retval = 0;
2295         if (!jbd2_journal_head_cache) {
2296                 retval = -ENOMEM;
2297                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2298         }
2299         return retval;
2300 }
2301
2302 static void jbd2_journal_destroy_journal_head_cache(void)
2303 {
2304         if (jbd2_journal_head_cache) {
2305                 kmem_cache_destroy(jbd2_journal_head_cache);
2306                 jbd2_journal_head_cache = NULL;
2307         }
2308 }
2309
2310 /*
2311  * journal_head splicing and dicing
2312  */
2313 static struct journal_head *journal_alloc_journal_head(void)
2314 {
2315         struct journal_head *ret;
2316
2317 #ifdef CONFIG_JBD2_DEBUG
2318         atomic_inc(&nr_journal_heads);
2319 #endif
2320         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2321         if (!ret) {
2322                 jbd_debug(1, "out of memory for journal_head\n");
2323                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2324                 while (!ret) {
2325                         yield();
2326                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2327                 }
2328         }
2329         return ret;
2330 }
2331
2332 static void journal_free_journal_head(struct journal_head *jh)
2333 {
2334 #ifdef CONFIG_JBD2_DEBUG
2335         atomic_dec(&nr_journal_heads);
2336         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2337 #endif
2338         kmem_cache_free(jbd2_journal_head_cache, jh);
2339 }
2340
2341 /*
2342  * A journal_head is attached to a buffer_head whenever JBD has an
2343  * interest in the buffer.
2344  *
2345  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2346  * is set.  This bit is tested in core kernel code where we need to take
2347  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2348  * there.
2349  *
2350  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2351  *
2352  * When a buffer has its BH_JBD bit set it is immune from being released by
2353  * core kernel code, mainly via ->b_count.
2354  *
2355  * A journal_head is detached from its buffer_head when the journal_head's
2356  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2357  * transaction (b_cp_transaction) hold their references to b_jcount.
2358  *
2359  * Various places in the kernel want to attach a journal_head to a buffer_head
2360  * _before_ attaching the journal_head to a transaction.  To protect the
2361  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2362  * journal_head's b_jcount refcount by one.  The caller must call
2363  * jbd2_journal_put_journal_head() to undo this.
2364  *
2365  * So the typical usage would be:
2366  *
2367  *      (Attach a journal_head if needed.  Increments b_jcount)
2368  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2369  *      ...
2370  *      (Get another reference for transaction)
2371  *      jbd2_journal_grab_journal_head(bh);
2372  *      jh->b_transaction = xxx;
2373  *      (Put original reference)
2374  *      jbd2_journal_put_journal_head(jh);
2375  */
2376
2377 /*
2378  * Give a buffer_head a journal_head.
2379  *
2380  * May sleep.
2381  */
2382 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2383 {
2384         struct journal_head *jh;
2385         struct journal_head *new_jh = NULL;
2386
2387 repeat:
2388         if (!buffer_jbd(bh))
2389                 new_jh = journal_alloc_journal_head();
2390
2391         jbd_lock_bh_journal_head(bh);
2392         if (buffer_jbd(bh)) {
2393                 jh = bh2jh(bh);
2394         } else {
2395                 J_ASSERT_BH(bh,
2396                         (atomic_read(&bh->b_count) > 0) ||
2397                         (bh->b_page && bh->b_page->mapping));
2398
2399                 if (!new_jh) {
2400                         jbd_unlock_bh_journal_head(bh);
2401                         goto repeat;
2402                 }
2403
2404                 jh = new_jh;
2405                 new_jh = NULL;          /* We consumed it */
2406                 set_buffer_jbd(bh);
2407                 bh->b_private = jh;
2408                 jh->b_bh = bh;
2409                 get_bh(bh);
2410                 BUFFER_TRACE(bh, "added journal_head");
2411         }
2412         jh->b_jcount++;
2413         jbd_unlock_bh_journal_head(bh);
2414         if (new_jh)
2415                 journal_free_journal_head(new_jh);
2416         return bh->b_private;
2417 }
2418
2419 /*
2420  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2421  * having a journal_head, return NULL
2422  */
2423 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2424 {
2425         struct journal_head *jh = NULL;
2426
2427         jbd_lock_bh_journal_head(bh);
2428         if (buffer_jbd(bh)) {
2429                 jh = bh2jh(bh);
2430                 jh->b_jcount++;
2431         }
2432         jbd_unlock_bh_journal_head(bh);
2433         return jh;
2434 }
2435
2436 static void __journal_remove_journal_head(struct buffer_head *bh)
2437 {
2438         struct journal_head *jh = bh2jh(bh);
2439
2440         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2441         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2442         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2443         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2444         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2445         J_ASSERT_BH(bh, buffer_jbd(bh));
2446         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2447         BUFFER_TRACE(bh, "remove journal_head");
2448         if (jh->b_frozen_data) {
2449                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2450                 jbd2_free(jh->b_frozen_data, bh->b_size);
2451         }
2452         if (jh->b_committed_data) {
2453                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2454                 jbd2_free(jh->b_committed_data, bh->b_size);
2455         }
2456         bh->b_private = NULL;
2457         jh->b_bh = NULL;        /* debug, really */
2458         clear_buffer_jbd(bh);
2459         journal_free_journal_head(jh);
2460 }
2461
2462 /*
2463  * Drop a reference on the passed journal_head.  If it fell to zero then
2464  * release the journal_head from the buffer_head.
2465  */
2466 void jbd2_journal_put_journal_head(struct journal_head *jh)
2467 {
2468         struct buffer_head *bh = jh2bh(jh);
2469
2470         jbd_lock_bh_journal_head(bh);
2471         J_ASSERT_JH(jh, jh->b_jcount > 0);
2472         --jh->b_jcount;
2473         if (!jh->b_jcount) {
2474                 __journal_remove_journal_head(bh);
2475                 jbd_unlock_bh_journal_head(bh);
2476                 __brelse(bh);
2477         } else
2478                 jbd_unlock_bh_journal_head(bh);
2479 }
2480
2481 /*
2482  * Initialize jbd inode head
2483  */
2484 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2485 {
2486         jinode->i_transaction = NULL;
2487         jinode->i_next_transaction = NULL;
2488         jinode->i_vfs_inode = inode;
2489         jinode->i_flags = 0;
2490         INIT_LIST_HEAD(&jinode->i_list);
2491 }
2492
2493 /*
2494  * Function to be called before we start removing inode from memory (i.e.,
2495  * clear_inode() is a fine place to be called from). It removes inode from
2496  * transaction's lists.
2497  */
2498 void jbd2_journal_release_jbd_inode(journal_t *journal,
2499                                     struct jbd2_inode *jinode)
2500 {
2501         if (!journal)
2502                 return;
2503 restart:
2504         spin_lock(&journal->j_list_lock);
2505         /* Is commit writing out inode - we have to wait */
2506         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2507                 wait_queue_head_t *wq;
2508                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2509                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2510                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2511                 spin_unlock(&journal->j_list_lock);
2512                 schedule();
2513                 finish_wait(wq, &wait.wait);
2514                 goto restart;
2515         }
2516
2517         if (jinode->i_transaction) {
2518                 list_del(&jinode->i_list);
2519                 jinode->i_transaction = NULL;
2520         }
2521         spin_unlock(&journal->j_list_lock);
2522 }
2523
2524
2525 #ifdef CONFIG_PROC_FS
2526
2527 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2528
2529 static void __init jbd2_create_jbd_stats_proc_entry(void)
2530 {
2531         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2532 }
2533
2534 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2535 {
2536         if (proc_jbd2_stats)
2537                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2538 }
2539
2540 #else
2541
2542 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2543 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2544
2545 #endif
2546
2547 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2548
2549 static int __init jbd2_journal_init_handle_cache(void)
2550 {
2551         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2552         if (jbd2_handle_cache == NULL) {
2553                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2554                 return -ENOMEM;
2555         }
2556         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2557         if (jbd2_inode_cache == NULL) {
2558                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2559                 kmem_cache_destroy(jbd2_handle_cache);
2560                 return -ENOMEM;
2561         }
2562         return 0;
2563 }
2564
2565 static void jbd2_journal_destroy_handle_cache(void)
2566 {
2567         if (jbd2_handle_cache)
2568                 kmem_cache_destroy(jbd2_handle_cache);
2569         if (jbd2_inode_cache)
2570                 kmem_cache_destroy(jbd2_inode_cache);
2571
2572 }
2573
2574 /*
2575  * Module startup and shutdown
2576  */
2577
2578 static int __init journal_init_caches(void)
2579 {
2580         int ret;
2581
2582         ret = jbd2_journal_init_revoke_caches();
2583         if (ret == 0)
2584                 ret = jbd2_journal_init_journal_head_cache();
2585         if (ret == 0)
2586                 ret = jbd2_journal_init_handle_cache();
2587         if (ret == 0)
2588                 ret = jbd2_journal_init_transaction_cache();
2589         return ret;
2590 }
2591
2592 static void jbd2_journal_destroy_caches(void)
2593 {
2594         jbd2_journal_destroy_revoke_caches();
2595         jbd2_journal_destroy_journal_head_cache();
2596         jbd2_journal_destroy_handle_cache();
2597         jbd2_journal_destroy_transaction_cache();
2598         jbd2_journal_destroy_slabs();
2599 }
2600
2601 static int __init journal_init(void)
2602 {
2603         int ret;
2604
2605         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2606
2607         ret = journal_init_caches();
2608         if (ret == 0) {
2609                 jbd2_create_jbd_stats_proc_entry();
2610         } else {
2611                 jbd2_journal_destroy_caches();
2612         }
2613         return ret;
2614 }
2615
2616 static void __exit journal_exit(void)
2617 {
2618 #ifdef CONFIG_JBD2_DEBUG
2619         int n = atomic_read(&nr_journal_heads);
2620         if (n)
2621                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2622 #endif
2623         jbd2_remove_jbd_stats_proc_entry();
2624         jbd2_journal_destroy_caches();
2625 }
2626
2627 MODULE_LICENSE("GPL");
2628 module_init(journal_init);
2629 module_exit(journal_exit);
2630