]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/transaction.c
Merge tag 'sunxi-fixes-for-4.12' of https://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42         J_ASSERT(!transaction_cache);
43         transaction_cache = kmem_cache_create("jbd2_transaction_s",
44                                         sizeof(transaction_t),
45                                         0,
46                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47                                         NULL);
48         if (transaction_cache)
49                 return 0;
50         return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55         if (transaction_cache) {
56                 kmem_cache_destroy(transaction_cache);
57                 transaction_cache = NULL;
58         }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64                 return;
65         kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *      The journal MUST be locked.  We don't perform atomic mallocs on the
78  *      new transaction and we can't block without protecting against other
79  *      processes trying to touch the journal while it is in transition.
80  *
81  */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86         transaction->t_journal = journal;
87         transaction->t_state = T_RUNNING;
88         transaction->t_start_time = ktime_get();
89         transaction->t_tid = journal->j_transaction_sequence++;
90         transaction->t_expires = jiffies + journal->j_commit_interval;
91         spin_lock_init(&transaction->t_handle_lock);
92         atomic_set(&transaction->t_updates, 0);
93         atomic_set(&transaction->t_outstanding_credits,
94                    atomic_read(&journal->j_reserved_credits));
95         atomic_set(&transaction->t_handle_count, 0);
96         INIT_LIST_HEAD(&transaction->t_inode_list);
97         INIT_LIST_HEAD(&transaction->t_private_list);
98
99         /* Set up the commit timer for the new transaction. */
100         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101         add_timer(&journal->j_commit_timer);
102
103         J_ASSERT(journal->j_running_transaction == NULL);
104         journal->j_running_transaction = transaction;
105         transaction->t_max_wait = 0;
106         transaction->t_start = jiffies;
107         transaction->t_requested = 0;
108
109         return transaction;
110 }
111
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131                                      unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134         if (jbd2_journal_enable_debug &&
135             time_after(transaction->t_start, ts)) {
136                 ts = jbd2_time_diff(ts, transaction->t_start);
137                 spin_lock(&transaction->t_handle_lock);
138                 if (ts > transaction->t_max_wait)
139                         transaction->t_max_wait = ts;
140                 spin_unlock(&transaction->t_handle_lock);
141         }
142 #endif
143 }
144
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151         __releases(journal->j_state_lock)
152 {
153         DEFINE_WAIT(wait);
154         int need_to_start;
155         tid_t tid = journal->j_running_transaction->t_tid;
156
157         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158                         TASK_UNINTERRUPTIBLE);
159         need_to_start = !tid_geq(journal->j_commit_request, tid);
160         read_unlock(&journal->j_state_lock);
161         if (need_to_start)
162                 jbd2_log_start_commit(journal, tid);
163         jbd2_might_wait_for_commit(journal);
164         schedule();
165         finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170         atomic_sub(blocks, &journal->j_reserved_credits);
171         wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181                                    int rsv_blocks)
182 {
183         transaction_t *t = journal->j_running_transaction;
184         int needed;
185         int total = blocks + rsv_blocks;
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         jbd2_might_wait_for_commit(journal);
218                         wait_event(journal->j_wait_reserved,
219                                    atomic_read(&journal->j_reserved_credits) + total <=
220                                    journal->j_max_transaction_buffers);
221                         return 1;
222                 }
223
224                 wait_transaction_locked(journal);
225                 return 1;
226         }
227
228         /*
229          * The commit code assumes that it can get enough log space
230          * without forcing a checkpoint.  This is *critical* for
231          * correctness: a checkpoint of a buffer which is also
232          * associated with a committing transaction creates a deadlock,
233          * so commit simply cannot force through checkpoints.
234          *
235          * We must therefore ensure the necessary space in the journal
236          * *before* starting to dirty potentially checkpointed buffers
237          * in the new transaction.
238          */
239         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 jbd2_might_wait_for_commit(journal);
243                 write_lock(&journal->j_state_lock);
244                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245                         __jbd2_log_wait_for_space(journal);
246                 write_unlock(&journal->j_state_lock);
247                 return 1;
248         }
249
250         /* No reservation? We are done... */
251         if (!rsv_blocks)
252                 return 0;
253
254         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255         /* We allow at most half of a transaction to be reserved */
256         if (needed > journal->j_max_transaction_buffers / 2) {
257                 sub_reserved_credits(journal, rsv_blocks);
258                 atomic_sub(total, &t->t_outstanding_credits);
259                 read_unlock(&journal->j_state_lock);
260                 jbd2_might_wait_for_commit(journal);
261                 wait_event(journal->j_wait_reserved,
262                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
263                          <= journal->j_max_transaction_buffers / 2);
264                 return 1;
265         }
266         return 0;
267 }
268
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277                              gfp_t gfp_mask)
278 {
279         transaction_t   *transaction, *new_transaction = NULL;
280         int             blocks = handle->h_buffer_credits;
281         int             rsv_blocks = 0;
282         unsigned long ts = jiffies;
283
284         if (handle->h_rsv_handle)
285                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287         /*
288          * Limit the number of reserved credits to 1/2 of maximum transaction
289          * size and limit the number of total credits to not exceed maximum
290          * transaction size per operation.
291          */
292         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294                 printk(KERN_ERR "JBD2: %s wants too many credits "
295                        "credits:%d rsv_credits:%d max:%d\n",
296                        current->comm, blocks, rsv_blocks,
297                        journal->j_max_transaction_buffers);
298                 WARN_ON(1);
299                 return -ENOSPC;
300         }
301
302 alloc_transaction:
303         if (!journal->j_running_transaction) {
304                 /*
305                  * If __GFP_FS is not present, then we may be being called from
306                  * inside the fs writeback layer, so we MUST NOT fail.
307                  */
308                 if ((gfp_mask & __GFP_FS) == 0)
309                         gfp_mask |= __GFP_NOFAIL;
310                 new_transaction = kmem_cache_zalloc(transaction_cache,
311                                                     gfp_mask);
312                 if (!new_transaction)
313                         return -ENOMEM;
314         }
315
316         jbd_debug(3, "New handle %p going live.\n", handle);
317
318         /*
319          * We need to hold j_state_lock until t_updates has been incremented,
320          * for proper journal barrier handling
321          */
322 repeat:
323         read_lock(&journal->j_state_lock);
324         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325         if (is_journal_aborted(journal) ||
326             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327                 read_unlock(&journal->j_state_lock);
328                 jbd2_journal_free_transaction(new_transaction);
329                 return -EROFS;
330         }
331
332         /*
333          * Wait on the journal's transaction barrier if necessary. Specifically
334          * we allow reserved handles to proceed because otherwise commit could
335          * deadlock on page writeback not being able to complete.
336          */
337         if (!handle->h_reserved && journal->j_barrier_count) {
338                 read_unlock(&journal->j_state_lock);
339                 wait_event(journal->j_wait_transaction_locked,
340                                 journal->j_barrier_count == 0);
341                 goto repeat;
342         }
343
344         if (!journal->j_running_transaction) {
345                 read_unlock(&journal->j_state_lock);
346                 if (!new_transaction)
347                         goto alloc_transaction;
348                 write_lock(&journal->j_state_lock);
349                 if (!journal->j_running_transaction &&
350                     (handle->h_reserved || !journal->j_barrier_count)) {
351                         jbd2_get_transaction(journal, new_transaction);
352                         new_transaction = NULL;
353                 }
354                 write_unlock(&journal->j_state_lock);
355                 goto repeat;
356         }
357
358         transaction = journal->j_running_transaction;
359
360         if (!handle->h_reserved) {
361                 /* We may have dropped j_state_lock - restart in that case */
362                 if (add_transaction_credits(journal, blocks, rsv_blocks))
363                         goto repeat;
364         } else {
365                 /*
366                  * We have handle reserved so we are allowed to join T_LOCKED
367                  * transaction and we don't have to check for transaction size
368                  * and journal space.
369                  */
370                 sub_reserved_credits(journal, blocks);
371                 handle->h_reserved = 0;
372         }
373
374         /* OK, account for the buffers that this operation expects to
375          * use and add the handle to the running transaction. 
376          */
377         update_t_max_wait(transaction, ts);
378         handle->h_transaction = transaction;
379         handle->h_requested_credits = blocks;
380         handle->h_start_jiffies = jiffies;
381         atomic_inc(&transaction->t_updates);
382         atomic_inc(&transaction->t_handle_count);
383         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384                   handle, blocks,
385                   atomic_read(&transaction->t_outstanding_credits),
386                   jbd2_log_space_left(journal));
387         read_unlock(&journal->j_state_lock);
388         current->journal_info = handle;
389
390         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391         jbd2_journal_free_transaction(new_transaction);
392         /*
393          * Ensure that no allocations done while the transaction is open are
394          * going to recurse back to the fs layer.
395          */
396         handle->saved_alloc_context = memalloc_nofs_save();
397         return 0;
398 }
399
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404         if (!handle)
405                 return NULL;
406         handle->h_buffer_credits = nblocks;
407         handle->h_ref = 1;
408
409         return handle;
410 }
411
412 /**
413  * handle_t *jbd2_journal_start() - Obtain a new handle.
414  * @journal: Journal to start transaction on.
415  * @nblocks: number of block buffer we might modify
416  *
417  * We make sure that the transaction can guarantee at least nblocks of
418  * modified buffers in the log.  We block until the log can guarantee
419  * that much space. Additionally, if rsv_blocks > 0, we also create another
420  * handle with rsv_blocks reserved blocks in the journal. This handle is
421  * is stored in h_rsv_handle. It is not attached to any particular transaction
422  * and thus doesn't block transaction commit. If the caller uses this reserved
423  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
424  * on the parent handle will dispose the reserved one. Reserved handle has to
425  * be converted to a normal handle using jbd2_journal_start_reserved() before
426  * it can be used.
427  *
428  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
429  * on failure.
430  */
431 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
432                               gfp_t gfp_mask, unsigned int type,
433                               unsigned int line_no)
434 {
435         handle_t *handle = journal_current_handle();
436         int err;
437
438         if (!journal)
439                 return ERR_PTR(-EROFS);
440
441         if (handle) {
442                 J_ASSERT(handle->h_transaction->t_journal == journal);
443                 handle->h_ref++;
444                 return handle;
445         }
446
447         handle = new_handle(nblocks);
448         if (!handle)
449                 return ERR_PTR(-ENOMEM);
450         if (rsv_blocks) {
451                 handle_t *rsv_handle;
452
453                 rsv_handle = new_handle(rsv_blocks);
454                 if (!rsv_handle) {
455                         jbd2_free_handle(handle);
456                         return ERR_PTR(-ENOMEM);
457                 }
458                 rsv_handle->h_reserved = 1;
459                 rsv_handle->h_journal = journal;
460                 handle->h_rsv_handle = rsv_handle;
461         }
462
463         err = start_this_handle(journal, handle, gfp_mask);
464         if (err < 0) {
465                 if (handle->h_rsv_handle)
466                         jbd2_free_handle(handle->h_rsv_handle);
467                 jbd2_free_handle(handle);
468                 return ERR_PTR(err);
469         }
470         handle->h_type = type;
471         handle->h_line_no = line_no;
472         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
473                                 handle->h_transaction->t_tid, type,
474                                 line_no, nblocks);
475
476         return handle;
477 }
478 EXPORT_SYMBOL(jbd2__journal_start);
479
480
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489         journal_t *journal = handle->h_journal;
490
491         WARN_ON(!handle->h_reserved);
492         sub_reserved_credits(journal, handle->h_buffer_credits);
493         jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
499  * @handle: handle to start
500  *
501  * Start handle that has been previously reserved with jbd2_journal_reserve().
502  * This attaches @handle to the running transaction (or creates one if there's
503  * not transaction running). Unlike jbd2_journal_start() this function cannot
504  * block on journal commit, checkpointing, or similar stuff. It can block on
505  * memory allocation or frozen journal though.
506  *
507  * Return 0 on success, non-zero on error - handle is freed in that case.
508  */
509 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
510                                 unsigned int line_no)
511 {
512         journal_t *journal = handle->h_journal;
513         int ret = -EIO;
514
515         if (WARN_ON(!handle->h_reserved)) {
516                 /* Someone passed in normal handle? Just stop it. */
517                 jbd2_journal_stop(handle);
518                 return ret;
519         }
520         /*
521          * Usefulness of mixing of reserved and unreserved handles is
522          * questionable. So far nobody seems to need it so just error out.
523          */
524         if (WARN_ON(current->journal_info)) {
525                 jbd2_journal_free_reserved(handle);
526                 return ret;
527         }
528
529         handle->h_journal = NULL;
530         /*
531          * GFP_NOFS is here because callers are likely from writeback or
532          * similarly constrained call sites
533          */
534         ret = start_this_handle(journal, handle, GFP_NOFS);
535         if (ret < 0) {
536                 jbd2_journal_free_reserved(handle);
537                 return ret;
538         }
539         handle->h_type = type;
540         handle->h_line_no = line_no;
541         return 0;
542 }
543 EXPORT_SYMBOL(jbd2_journal_start_reserved);
544
545 /**
546  * int jbd2_journal_extend() - extend buffer credits.
547  * @handle:  handle to 'extend'
548  * @nblocks: nr blocks to try to extend by.
549  *
550  * Some transactions, such as large extends and truncates, can be done
551  * atomically all at once or in several stages.  The operation requests
552  * a credit for a number of buffer modifications in advance, but can
553  * extend its credit if it needs more.
554  *
555  * jbd2_journal_extend tries to give the running handle more buffer credits.
556  * It does not guarantee that allocation - this is a best-effort only.
557  * The calling process MUST be able to deal cleanly with a failure to
558  * extend here.
559  *
560  * Return 0 on success, non-zero on failure.
561  *
562  * return code < 0 implies an error
563  * return code > 0 implies normal transaction-full status.
564  */
565 int jbd2_journal_extend(handle_t *handle, int nblocks)
566 {
567         transaction_t *transaction = handle->h_transaction;
568         journal_t *journal;
569         int result;
570         int wanted;
571
572         if (is_handle_aborted(handle))
573                 return -EROFS;
574         journal = transaction->t_journal;
575
576         result = 1;
577
578         read_lock(&journal->j_state_lock);
579
580         /* Don't extend a locked-down transaction! */
581         if (transaction->t_state != T_RUNNING) {
582                 jbd_debug(3, "denied handle %p %d blocks: "
583                           "transaction not running\n", handle, nblocks);
584                 goto error_out;
585         }
586
587         spin_lock(&transaction->t_handle_lock);
588         wanted = atomic_add_return(nblocks,
589                                    &transaction->t_outstanding_credits);
590
591         if (wanted > journal->j_max_transaction_buffers) {
592                 jbd_debug(3, "denied handle %p %d blocks: "
593                           "transaction too large\n", handle, nblocks);
594                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
595                 goto unlock;
596         }
597
598         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
599             jbd2_log_space_left(journal)) {
600                 jbd_debug(3, "denied handle %p %d blocks: "
601                           "insufficient log space\n", handle, nblocks);
602                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
603                 goto unlock;
604         }
605
606         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
607                                  transaction->t_tid,
608                                  handle->h_type, handle->h_line_no,
609                                  handle->h_buffer_credits,
610                                  nblocks);
611
612         handle->h_buffer_credits += nblocks;
613         handle->h_requested_credits += nblocks;
614         result = 0;
615
616         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
617 unlock:
618         spin_unlock(&transaction->t_handle_lock);
619 error_out:
620         read_unlock(&journal->j_state_lock);
621         return result;
622 }
623
624
625 /**
626  * int jbd2_journal_restart() - restart a handle .
627  * @handle:  handle to restart
628  * @nblocks: nr credits requested
629  *
630  * Restart a handle for a multi-transaction filesystem
631  * operation.
632  *
633  * If the jbd2_journal_extend() call above fails to grant new buffer credits
634  * to a running handle, a call to jbd2_journal_restart will commit the
635  * handle's transaction so far and reattach the handle to a new
636  * transaction capable of guaranteeing the requested number of
637  * credits. We preserve reserved handle if there's any attached to the
638  * passed in handle.
639  */
640 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
641 {
642         transaction_t *transaction = handle->h_transaction;
643         journal_t *journal;
644         tid_t           tid;
645         int             need_to_start, ret;
646
647         /* If we've had an abort of any type, don't even think about
648          * actually doing the restart! */
649         if (is_handle_aborted(handle))
650                 return 0;
651         journal = transaction->t_journal;
652
653         /*
654          * First unlink the handle from its current transaction, and start the
655          * commit on that.
656          */
657         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
658         J_ASSERT(journal_current_handle() == handle);
659
660         read_lock(&journal->j_state_lock);
661         spin_lock(&transaction->t_handle_lock);
662         atomic_sub(handle->h_buffer_credits,
663                    &transaction->t_outstanding_credits);
664         if (handle->h_rsv_handle) {
665                 sub_reserved_credits(journal,
666                                      handle->h_rsv_handle->h_buffer_credits);
667         }
668         if (atomic_dec_and_test(&transaction->t_updates))
669                 wake_up(&journal->j_wait_updates);
670         tid = transaction->t_tid;
671         spin_unlock(&transaction->t_handle_lock);
672         handle->h_transaction = NULL;
673         current->journal_info = NULL;
674
675         jbd_debug(2, "restarting handle %p\n", handle);
676         need_to_start = !tid_geq(journal->j_commit_request, tid);
677         read_unlock(&journal->j_state_lock);
678         if (need_to_start)
679                 jbd2_log_start_commit(journal, tid);
680
681         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
682         handle->h_buffer_credits = nblocks;
683         ret = start_this_handle(journal, handle, gfp_mask);
684         return ret;
685 }
686 EXPORT_SYMBOL(jbd2__journal_restart);
687
688
689 int jbd2_journal_restart(handle_t *handle, int nblocks)
690 {
691         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
692 }
693 EXPORT_SYMBOL(jbd2_journal_restart);
694
695 /**
696  * void jbd2_journal_lock_updates () - establish a transaction barrier.
697  * @journal:  Journal to establish a barrier on.
698  *
699  * This locks out any further updates from being started, and blocks
700  * until all existing updates have completed, returning only once the
701  * journal is in a quiescent state with no updates running.
702  *
703  * The journal lock should not be held on entry.
704  */
705 void jbd2_journal_lock_updates(journal_t *journal)
706 {
707         DEFINE_WAIT(wait);
708
709         jbd2_might_wait_for_commit(journal);
710
711         write_lock(&journal->j_state_lock);
712         ++journal->j_barrier_count;
713
714         /* Wait until there are no reserved handles */
715         if (atomic_read(&journal->j_reserved_credits)) {
716                 write_unlock(&journal->j_state_lock);
717                 wait_event(journal->j_wait_reserved,
718                            atomic_read(&journal->j_reserved_credits) == 0);
719                 write_lock(&journal->j_state_lock);
720         }
721
722         /* Wait until there are no running updates */
723         while (1) {
724                 transaction_t *transaction = journal->j_running_transaction;
725
726                 if (!transaction)
727                         break;
728
729                 spin_lock(&transaction->t_handle_lock);
730                 prepare_to_wait(&journal->j_wait_updates, &wait,
731                                 TASK_UNINTERRUPTIBLE);
732                 if (!atomic_read(&transaction->t_updates)) {
733                         spin_unlock(&transaction->t_handle_lock);
734                         finish_wait(&journal->j_wait_updates, &wait);
735                         break;
736                 }
737                 spin_unlock(&transaction->t_handle_lock);
738                 write_unlock(&journal->j_state_lock);
739                 schedule();
740                 finish_wait(&journal->j_wait_updates, &wait);
741                 write_lock(&journal->j_state_lock);
742         }
743         write_unlock(&journal->j_state_lock);
744
745         /*
746          * We have now established a barrier against other normal updates, but
747          * we also need to barrier against other jbd2_journal_lock_updates() calls
748          * to make sure that we serialise special journal-locked operations
749          * too.
750          */
751         mutex_lock(&journal->j_barrier);
752 }
753
754 /**
755  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
756  * @journal:  Journal to release the barrier on.
757  *
758  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
759  *
760  * Should be called without the journal lock held.
761  */
762 void jbd2_journal_unlock_updates (journal_t *journal)
763 {
764         J_ASSERT(journal->j_barrier_count != 0);
765
766         mutex_unlock(&journal->j_barrier);
767         write_lock(&journal->j_state_lock);
768         --journal->j_barrier_count;
769         write_unlock(&journal->j_state_lock);
770         wake_up(&journal->j_wait_transaction_locked);
771 }
772
773 static void warn_dirty_buffer(struct buffer_head *bh)
774 {
775         printk(KERN_WARNING
776                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
777                "There's a risk of filesystem corruption in case of system "
778                "crash.\n",
779                bh->b_bdev, (unsigned long long)bh->b_blocknr);
780 }
781
782 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
783 static void jbd2_freeze_jh_data(struct journal_head *jh)
784 {
785         struct page *page;
786         int offset;
787         char *source;
788         struct buffer_head *bh = jh2bh(jh);
789
790         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
791         page = bh->b_page;
792         offset = offset_in_page(bh->b_data);
793         source = kmap_atomic(page);
794         /* Fire data frozen trigger just before we copy the data */
795         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
796         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
797         kunmap_atomic(source);
798
799         /*
800          * Now that the frozen data is saved off, we need to store any matching
801          * triggers.
802          */
803         jh->b_frozen_triggers = jh->b_triggers;
804 }
805
806 /*
807  * If the buffer is already part of the current transaction, then there
808  * is nothing we need to do.  If it is already part of a prior
809  * transaction which we are still committing to disk, then we need to
810  * make sure that we do not overwrite the old copy: we do copy-out to
811  * preserve the copy going to disk.  We also account the buffer against
812  * the handle's metadata buffer credits (unless the buffer is already
813  * part of the transaction, that is).
814  *
815  */
816 static int
817 do_get_write_access(handle_t *handle, struct journal_head *jh,
818                         int force_copy)
819 {
820         struct buffer_head *bh;
821         transaction_t *transaction = handle->h_transaction;
822         journal_t *journal;
823         int error;
824         char *frozen_buffer = NULL;
825         unsigned long start_lock, time_lock;
826
827         if (is_handle_aborted(handle))
828                 return -EROFS;
829         journal = transaction->t_journal;
830
831         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
832
833         JBUFFER_TRACE(jh, "entry");
834 repeat:
835         bh = jh2bh(jh);
836
837         /* @@@ Need to check for errors here at some point. */
838
839         start_lock = jiffies;
840         lock_buffer(bh);
841         jbd_lock_bh_state(bh);
842
843         /* If it takes too long to lock the buffer, trace it */
844         time_lock = jbd2_time_diff(start_lock, jiffies);
845         if (time_lock > HZ/10)
846                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
847                         jiffies_to_msecs(time_lock));
848
849         /* We now hold the buffer lock so it is safe to query the buffer
850          * state.  Is the buffer dirty?
851          *
852          * If so, there are two possibilities.  The buffer may be
853          * non-journaled, and undergoing a quite legitimate writeback.
854          * Otherwise, it is journaled, and we don't expect dirty buffers
855          * in that state (the buffers should be marked JBD_Dirty
856          * instead.)  So either the IO is being done under our own
857          * control and this is a bug, or it's a third party IO such as
858          * dump(8) (which may leave the buffer scheduled for read ---
859          * ie. locked but not dirty) or tune2fs (which may actually have
860          * the buffer dirtied, ugh.)  */
861
862         if (buffer_dirty(bh)) {
863                 /*
864                  * First question: is this buffer already part of the current
865                  * transaction or the existing committing transaction?
866                  */
867                 if (jh->b_transaction) {
868                         J_ASSERT_JH(jh,
869                                 jh->b_transaction == transaction ||
870                                 jh->b_transaction ==
871                                         journal->j_committing_transaction);
872                         if (jh->b_next_transaction)
873                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
874                                                         transaction);
875                         warn_dirty_buffer(bh);
876                 }
877                 /*
878                  * In any case we need to clean the dirty flag and we must
879                  * do it under the buffer lock to be sure we don't race
880                  * with running write-out.
881                  */
882                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
883                 clear_buffer_dirty(bh);
884                 set_buffer_jbddirty(bh);
885         }
886
887         unlock_buffer(bh);
888
889         error = -EROFS;
890         if (is_handle_aborted(handle)) {
891                 jbd_unlock_bh_state(bh);
892                 goto out;
893         }
894         error = 0;
895
896         /*
897          * The buffer is already part of this transaction if b_transaction or
898          * b_next_transaction points to it
899          */
900         if (jh->b_transaction == transaction ||
901             jh->b_next_transaction == transaction)
902                 goto done;
903
904         /*
905          * this is the first time this transaction is touching this buffer,
906          * reset the modified flag
907          */
908        jh->b_modified = 0;
909
910         /*
911          * If the buffer is not journaled right now, we need to make sure it
912          * doesn't get written to disk before the caller actually commits the
913          * new data
914          */
915         if (!jh->b_transaction) {
916                 JBUFFER_TRACE(jh, "no transaction");
917                 J_ASSERT_JH(jh, !jh->b_next_transaction);
918                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
919                 /*
920                  * Make sure all stores to jh (b_modified, b_frozen_data) are
921                  * visible before attaching it to the running transaction.
922                  * Paired with barrier in jbd2_write_access_granted()
923                  */
924                 smp_wmb();
925                 spin_lock(&journal->j_list_lock);
926                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
927                 spin_unlock(&journal->j_list_lock);
928                 goto done;
929         }
930         /*
931          * If there is already a copy-out version of this buffer, then we don't
932          * need to make another one
933          */
934         if (jh->b_frozen_data) {
935                 JBUFFER_TRACE(jh, "has frozen data");
936                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937                 goto attach_next;
938         }
939
940         JBUFFER_TRACE(jh, "owned by older transaction");
941         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
943
944         /*
945          * There is one case we have to be very careful about.  If the
946          * committing transaction is currently writing this buffer out to disk
947          * and has NOT made a copy-out, then we cannot modify the buffer
948          * contents at all right now.  The essence of copy-out is that it is
949          * the extra copy, not the primary copy, which gets journaled.  If the
950          * primary copy is already going to disk then we cannot do copy-out
951          * here.
952          */
953         if (buffer_shadow(bh)) {
954                 JBUFFER_TRACE(jh, "on shadow: sleep");
955                 jbd_unlock_bh_state(bh);
956                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
957                 goto repeat;
958         }
959
960         /*
961          * Only do the copy if the currently-owning transaction still needs it.
962          * If buffer isn't on BJ_Metadata list, the committing transaction is
963          * past that stage (here we use the fact that BH_Shadow is set under
964          * bh_state lock together with refiling to BJ_Shadow list and at this
965          * point we know the buffer doesn't have BH_Shadow set).
966          *
967          * Subtle point, though: if this is a get_undo_access, then we will be
968          * relying on the frozen_data to contain the new value of the
969          * committed_data record after the transaction, so we HAVE to force the
970          * frozen_data copy in that case.
971          */
972         if (jh->b_jlist == BJ_Metadata || force_copy) {
973                 JBUFFER_TRACE(jh, "generate frozen data");
974                 if (!frozen_buffer) {
975                         JBUFFER_TRACE(jh, "allocate memory for buffer");
976                         jbd_unlock_bh_state(bh);
977                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
978                                                    GFP_NOFS | __GFP_NOFAIL);
979                         goto repeat;
980                 }
981                 jh->b_frozen_data = frozen_buffer;
982                 frozen_buffer = NULL;
983                 jbd2_freeze_jh_data(jh);
984         }
985 attach_next:
986         /*
987          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
988          * before attaching it to the running transaction. Paired with barrier
989          * in jbd2_write_access_granted()
990          */
991         smp_wmb();
992         jh->b_next_transaction = transaction;
993
994 done:
995         jbd_unlock_bh_state(bh);
996
997         /*
998          * If we are about to journal a buffer, then any revoke pending on it is
999          * no longer valid
1000          */
1001         jbd2_journal_cancel_revoke(handle, jh);
1002
1003 out:
1004         if (unlikely(frozen_buffer))    /* It's usually NULL */
1005                 jbd2_free(frozen_buffer, bh->b_size);
1006
1007         JBUFFER_TRACE(jh, "exit");
1008         return error;
1009 }
1010
1011 /* Fast check whether buffer is already attached to the required transaction */
1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1013                                                         bool undo)
1014 {
1015         struct journal_head *jh;
1016         bool ret = false;
1017
1018         /* Dirty buffers require special handling... */
1019         if (buffer_dirty(bh))
1020                 return false;
1021
1022         /*
1023          * RCU protects us from dereferencing freed pages. So the checks we do
1024          * are guaranteed not to oops. However the jh slab object can get freed
1025          * & reallocated while we work with it. So we have to be careful. When
1026          * we see jh attached to the running transaction, we know it must stay
1027          * so until the transaction is committed. Thus jh won't be freed and
1028          * will be attached to the same bh while we run.  However it can
1029          * happen jh gets freed, reallocated, and attached to the transaction
1030          * just after we get pointer to it from bh. So we have to be careful
1031          * and recheck jh still belongs to our bh before we return success.
1032          */
1033         rcu_read_lock();
1034         if (!buffer_jbd(bh))
1035                 goto out;
1036         /* This should be bh2jh() but that doesn't work with inline functions */
1037         jh = READ_ONCE(bh->b_private);
1038         if (!jh)
1039                 goto out;
1040         /* For undo access buffer must have data copied */
1041         if (undo && !jh->b_committed_data)
1042                 goto out;
1043         if (jh->b_transaction != handle->h_transaction &&
1044             jh->b_next_transaction != handle->h_transaction)
1045                 goto out;
1046         /*
1047          * There are two reasons for the barrier here:
1048          * 1) Make sure to fetch b_bh after we did previous checks so that we
1049          * detect when jh went through free, realloc, attach to transaction
1050          * while we were checking. Paired with implicit barrier in that path.
1051          * 2) So that access to bh done after jbd2_write_access_granted()
1052          * doesn't get reordered and see inconsistent state of concurrent
1053          * do_get_write_access().
1054          */
1055         smp_mb();
1056         if (unlikely(jh->b_bh != bh))
1057                 goto out;
1058         ret = true;
1059 out:
1060         rcu_read_unlock();
1061         return ret;
1062 }
1063
1064 /**
1065  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1066  * @handle: transaction to add buffer modifications to
1067  * @bh:     bh to be used for metadata writes
1068  *
1069  * Returns an error code or 0 on success.
1070  *
1071  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1072  * because we're write()ing a buffer which is also part of a shared mapping.
1073  */
1074
1075 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1076 {
1077         struct journal_head *jh;
1078         int rc;
1079
1080         if (jbd2_write_access_granted(handle, bh, false))
1081                 return 0;
1082
1083         jh = jbd2_journal_add_journal_head(bh);
1084         /* We do not want to get caught playing with fields which the
1085          * log thread also manipulates.  Make sure that the buffer
1086          * completes any outstanding IO before proceeding. */
1087         rc = do_get_write_access(handle, jh, 0);
1088         jbd2_journal_put_journal_head(jh);
1089         return rc;
1090 }
1091
1092
1093 /*
1094  * When the user wants to journal a newly created buffer_head
1095  * (ie. getblk() returned a new buffer and we are going to populate it
1096  * manually rather than reading off disk), then we need to keep the
1097  * buffer_head locked until it has been completely filled with new
1098  * data.  In this case, we should be able to make the assertion that
1099  * the bh is not already part of an existing transaction.
1100  *
1101  * The buffer should already be locked by the caller by this point.
1102  * There is no lock ranking violation: it was a newly created,
1103  * unlocked buffer beforehand. */
1104
1105 /**
1106  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1107  * @handle: transaction to new buffer to
1108  * @bh: new buffer.
1109  *
1110  * Call this if you create a new bh.
1111  */
1112 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1113 {
1114         transaction_t *transaction = handle->h_transaction;
1115         journal_t *journal;
1116         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1117         int err;
1118
1119         jbd_debug(5, "journal_head %p\n", jh);
1120         err = -EROFS;
1121         if (is_handle_aborted(handle))
1122                 goto out;
1123         journal = transaction->t_journal;
1124         err = 0;
1125
1126         JBUFFER_TRACE(jh, "entry");
1127         /*
1128          * The buffer may already belong to this transaction due to pre-zeroing
1129          * in the filesystem's new_block code.  It may also be on the previous,
1130          * committing transaction's lists, but it HAS to be in Forget state in
1131          * that case: the transaction must have deleted the buffer for it to be
1132          * reused here.
1133          */
1134         jbd_lock_bh_state(bh);
1135         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1136                 jh->b_transaction == NULL ||
1137                 (jh->b_transaction == journal->j_committing_transaction &&
1138                           jh->b_jlist == BJ_Forget)));
1139
1140         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1141         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1142
1143         if (jh->b_transaction == NULL) {
1144                 /*
1145                  * Previous jbd2_journal_forget() could have left the buffer
1146                  * with jbddirty bit set because it was being committed. When
1147                  * the commit finished, we've filed the buffer for
1148                  * checkpointing and marked it dirty. Now we are reallocating
1149                  * the buffer so the transaction freeing it must have
1150                  * committed and so it's safe to clear the dirty bit.
1151                  */
1152                 clear_buffer_dirty(jh2bh(jh));
1153                 /* first access by this transaction */
1154                 jh->b_modified = 0;
1155
1156                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1157                 spin_lock(&journal->j_list_lock);
1158                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1159                 spin_unlock(&journal->j_list_lock);
1160         } else if (jh->b_transaction == journal->j_committing_transaction) {
1161                 /* first access by this transaction */
1162                 jh->b_modified = 0;
1163
1164                 JBUFFER_TRACE(jh, "set next transaction");
1165                 spin_lock(&journal->j_list_lock);
1166                 jh->b_next_transaction = transaction;
1167                 spin_unlock(&journal->j_list_lock);
1168         }
1169         jbd_unlock_bh_state(bh);
1170
1171         /*
1172          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1173          * blocks which contain freed but then revoked metadata.  We need
1174          * to cancel the revoke in case we end up freeing it yet again
1175          * and the reallocating as data - this would cause a second revoke,
1176          * which hits an assertion error.
1177          */
1178         JBUFFER_TRACE(jh, "cancelling revoke");
1179         jbd2_journal_cancel_revoke(handle, jh);
1180 out:
1181         jbd2_journal_put_journal_head(jh);
1182         return err;
1183 }
1184
1185 /**
1186  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1187  *     non-rewindable consequences
1188  * @handle: transaction
1189  * @bh: buffer to undo
1190  *
1191  * Sometimes there is a need to distinguish between metadata which has
1192  * been committed to disk and that which has not.  The ext3fs code uses
1193  * this for freeing and allocating space, we have to make sure that we
1194  * do not reuse freed space until the deallocation has been committed,
1195  * since if we overwrote that space we would make the delete
1196  * un-rewindable in case of a crash.
1197  *
1198  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1199  * buffer for parts of non-rewindable operations such as delete
1200  * operations on the bitmaps.  The journaling code must keep a copy of
1201  * the buffer's contents prior to the undo_access call until such time
1202  * as we know that the buffer has definitely been committed to disk.
1203  *
1204  * We never need to know which transaction the committed data is part
1205  * of, buffers touched here are guaranteed to be dirtied later and so
1206  * will be committed to a new transaction in due course, at which point
1207  * we can discard the old committed data pointer.
1208  *
1209  * Returns error number or 0 on success.
1210  */
1211 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1212 {
1213         int err;
1214         struct journal_head *jh;
1215         char *committed_data = NULL;
1216
1217         JBUFFER_TRACE(jh, "entry");
1218         if (jbd2_write_access_granted(handle, bh, true))
1219                 return 0;
1220
1221         jh = jbd2_journal_add_journal_head(bh);
1222         /*
1223          * Do this first --- it can drop the journal lock, so we want to
1224          * make sure that obtaining the committed_data is done
1225          * atomically wrt. completion of any outstanding commits.
1226          */
1227         err = do_get_write_access(handle, jh, 1);
1228         if (err)
1229                 goto out;
1230
1231 repeat:
1232         if (!jh->b_committed_data)
1233                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1234                                             GFP_NOFS|__GFP_NOFAIL);
1235
1236         jbd_lock_bh_state(bh);
1237         if (!jh->b_committed_data) {
1238                 /* Copy out the current buffer contents into the
1239                  * preserved, committed copy. */
1240                 JBUFFER_TRACE(jh, "generate b_committed data");
1241                 if (!committed_data) {
1242                         jbd_unlock_bh_state(bh);
1243                         goto repeat;
1244                 }
1245
1246                 jh->b_committed_data = committed_data;
1247                 committed_data = NULL;
1248                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1249         }
1250         jbd_unlock_bh_state(bh);
1251 out:
1252         jbd2_journal_put_journal_head(jh);
1253         if (unlikely(committed_data))
1254                 jbd2_free(committed_data, bh->b_size);
1255         return err;
1256 }
1257
1258 /**
1259  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1260  * @bh: buffer to trigger on
1261  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1262  *
1263  * Set any triggers on this journal_head.  This is always safe, because
1264  * triggers for a committing buffer will be saved off, and triggers for
1265  * a running transaction will match the buffer in that transaction.
1266  *
1267  * Call with NULL to clear the triggers.
1268  */
1269 void jbd2_journal_set_triggers(struct buffer_head *bh,
1270                                struct jbd2_buffer_trigger_type *type)
1271 {
1272         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1273
1274         if (WARN_ON(!jh))
1275                 return;
1276         jh->b_triggers = type;
1277         jbd2_journal_put_journal_head(jh);
1278 }
1279
1280 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1281                                 struct jbd2_buffer_trigger_type *triggers)
1282 {
1283         struct buffer_head *bh = jh2bh(jh);
1284
1285         if (!triggers || !triggers->t_frozen)
1286                 return;
1287
1288         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1289 }
1290
1291 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1292                                struct jbd2_buffer_trigger_type *triggers)
1293 {
1294         if (!triggers || !triggers->t_abort)
1295                 return;
1296
1297         triggers->t_abort(triggers, jh2bh(jh));
1298 }
1299
1300 /**
1301  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1302  * @handle: transaction to add buffer to.
1303  * @bh: buffer to mark
1304  *
1305  * mark dirty metadata which needs to be journaled as part of the current
1306  * transaction.
1307  *
1308  * The buffer must have previously had jbd2_journal_get_write_access()
1309  * called so that it has a valid journal_head attached to the buffer
1310  * head.
1311  *
1312  * The buffer is placed on the transaction's metadata list and is marked
1313  * as belonging to the transaction.
1314  *
1315  * Returns error number or 0 on success.
1316  *
1317  * Special care needs to be taken if the buffer already belongs to the
1318  * current committing transaction (in which case we should have frozen
1319  * data present for that commit).  In that case, we don't relink the
1320  * buffer: that only gets done when the old transaction finally
1321  * completes its commit.
1322  */
1323 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1324 {
1325         transaction_t *transaction = handle->h_transaction;
1326         journal_t *journal;
1327         struct journal_head *jh;
1328         int ret = 0;
1329
1330         if (is_handle_aborted(handle))
1331                 return -EROFS;
1332         if (!buffer_jbd(bh)) {
1333                 ret = -EUCLEAN;
1334                 goto out;
1335         }
1336         /*
1337          * We don't grab jh reference here since the buffer must be part
1338          * of the running transaction.
1339          */
1340         jh = bh2jh(bh);
1341         /*
1342          * This and the following assertions are unreliable since we may see jh
1343          * in inconsistent state unless we grab bh_state lock. But this is
1344          * crucial to catch bugs so let's do a reliable check until the
1345          * lockless handling is fully proven.
1346          */
1347         if (jh->b_transaction != transaction &&
1348             jh->b_next_transaction != transaction) {
1349                 jbd_lock_bh_state(bh);
1350                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1351                                 jh->b_next_transaction == transaction);
1352                 jbd_unlock_bh_state(bh);
1353         }
1354         if (jh->b_modified == 1) {
1355                 /* If it's in our transaction it must be in BJ_Metadata list. */
1356                 if (jh->b_transaction == transaction &&
1357                     jh->b_jlist != BJ_Metadata) {
1358                         jbd_lock_bh_state(bh);
1359                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1360                                         jh->b_jlist == BJ_Metadata);
1361                         jbd_unlock_bh_state(bh);
1362                 }
1363                 goto out;
1364         }
1365
1366         journal = transaction->t_journal;
1367         jbd_debug(5, "journal_head %p\n", jh);
1368         JBUFFER_TRACE(jh, "entry");
1369
1370         jbd_lock_bh_state(bh);
1371
1372         if (jh->b_modified == 0) {
1373                 /*
1374                  * This buffer's got modified and becoming part
1375                  * of the transaction. This needs to be done
1376                  * once a transaction -bzzz
1377                  */
1378                 jh->b_modified = 1;
1379                 if (handle->h_buffer_credits <= 0) {
1380                         ret = -ENOSPC;
1381                         goto out_unlock_bh;
1382                 }
1383                 handle->h_buffer_credits--;
1384         }
1385
1386         /*
1387          * fastpath, to avoid expensive locking.  If this buffer is already
1388          * on the running transaction's metadata list there is nothing to do.
1389          * Nobody can take it off again because there is a handle open.
1390          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1391          * result in this test being false, so we go in and take the locks.
1392          */
1393         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1394                 JBUFFER_TRACE(jh, "fastpath");
1395                 if (unlikely(jh->b_transaction !=
1396                              journal->j_running_transaction)) {
1397                         printk(KERN_ERR "JBD2: %s: "
1398                                "jh->b_transaction (%llu, %p, %u) != "
1399                                "journal->j_running_transaction (%p, %u)\n",
1400                                journal->j_devname,
1401                                (unsigned long long) bh->b_blocknr,
1402                                jh->b_transaction,
1403                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1404                                journal->j_running_transaction,
1405                                journal->j_running_transaction ?
1406                                journal->j_running_transaction->t_tid : 0);
1407                         ret = -EINVAL;
1408                 }
1409                 goto out_unlock_bh;
1410         }
1411
1412         set_buffer_jbddirty(bh);
1413
1414         /*
1415          * Metadata already on the current transaction list doesn't
1416          * need to be filed.  Metadata on another transaction's list must
1417          * be committing, and will be refiled once the commit completes:
1418          * leave it alone for now.
1419          */
1420         if (jh->b_transaction != transaction) {
1421                 JBUFFER_TRACE(jh, "already on other transaction");
1422                 if (unlikely(((jh->b_transaction !=
1423                                journal->j_committing_transaction)) ||
1424                              (jh->b_next_transaction != transaction))) {
1425                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1426                                "bad jh for block %llu: "
1427                                "transaction (%p, %u), "
1428                                "jh->b_transaction (%p, %u), "
1429                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1430                                journal->j_devname,
1431                                (unsigned long long) bh->b_blocknr,
1432                                transaction, transaction->t_tid,
1433                                jh->b_transaction,
1434                                jh->b_transaction ?
1435                                jh->b_transaction->t_tid : 0,
1436                                jh->b_next_transaction,
1437                                jh->b_next_transaction ?
1438                                jh->b_next_transaction->t_tid : 0,
1439                                jh->b_jlist);
1440                         WARN_ON(1);
1441                         ret = -EINVAL;
1442                 }
1443                 /* And this case is illegal: we can't reuse another
1444                  * transaction's data buffer, ever. */
1445                 goto out_unlock_bh;
1446         }
1447
1448         /* That test should have eliminated the following case: */
1449         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1450
1451         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1452         spin_lock(&journal->j_list_lock);
1453         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1454         spin_unlock(&journal->j_list_lock);
1455 out_unlock_bh:
1456         jbd_unlock_bh_state(bh);
1457 out:
1458         JBUFFER_TRACE(jh, "exit");
1459         return ret;
1460 }
1461
1462 /**
1463  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1464  * @handle: transaction handle
1465  * @bh:     bh to 'forget'
1466  *
1467  * We can only do the bforget if there are no commits pending against the
1468  * buffer.  If the buffer is dirty in the current running transaction we
1469  * can safely unlink it.
1470  *
1471  * bh may not be a journalled buffer at all - it may be a non-JBD
1472  * buffer which came off the hashtable.  Check for this.
1473  *
1474  * Decrements bh->b_count by one.
1475  *
1476  * Allow this call even if the handle has aborted --- it may be part of
1477  * the caller's cleanup after an abort.
1478  */
1479 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1480 {
1481         transaction_t *transaction = handle->h_transaction;
1482         journal_t *journal;
1483         struct journal_head *jh;
1484         int drop_reserve = 0;
1485         int err = 0;
1486         int was_modified = 0;
1487
1488         if (is_handle_aborted(handle))
1489                 return -EROFS;
1490         journal = transaction->t_journal;
1491
1492         BUFFER_TRACE(bh, "entry");
1493
1494         jbd_lock_bh_state(bh);
1495
1496         if (!buffer_jbd(bh))
1497                 goto not_jbd;
1498         jh = bh2jh(bh);
1499
1500         /* Critical error: attempting to delete a bitmap buffer, maybe?
1501          * Don't do any jbd operations, and return an error. */
1502         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1503                          "inconsistent data on disk")) {
1504                 err = -EIO;
1505                 goto not_jbd;
1506         }
1507
1508         /* keep track of whether or not this transaction modified us */
1509         was_modified = jh->b_modified;
1510
1511         /*
1512          * The buffer's going from the transaction, we must drop
1513          * all references -bzzz
1514          */
1515         jh->b_modified = 0;
1516
1517         if (jh->b_transaction == transaction) {
1518                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1519
1520                 /* If we are forgetting a buffer which is already part
1521                  * of this transaction, then we can just drop it from
1522                  * the transaction immediately. */
1523                 clear_buffer_dirty(bh);
1524                 clear_buffer_jbddirty(bh);
1525
1526                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1527
1528                 /*
1529                  * we only want to drop a reference if this transaction
1530                  * modified the buffer
1531                  */
1532                 if (was_modified)
1533                         drop_reserve = 1;
1534
1535                 /*
1536                  * We are no longer going to journal this buffer.
1537                  * However, the commit of this transaction is still
1538                  * important to the buffer: the delete that we are now
1539                  * processing might obsolete an old log entry, so by
1540                  * committing, we can satisfy the buffer's checkpoint.
1541                  *
1542                  * So, if we have a checkpoint on the buffer, we should
1543                  * now refile the buffer on our BJ_Forget list so that
1544                  * we know to remove the checkpoint after we commit.
1545                  */
1546
1547                 spin_lock(&journal->j_list_lock);
1548                 if (jh->b_cp_transaction) {
1549                         __jbd2_journal_temp_unlink_buffer(jh);
1550                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1551                 } else {
1552                         __jbd2_journal_unfile_buffer(jh);
1553                         if (!buffer_jbd(bh)) {
1554                                 spin_unlock(&journal->j_list_lock);
1555                                 jbd_unlock_bh_state(bh);
1556                                 __bforget(bh);
1557                                 goto drop;
1558                         }
1559                 }
1560                 spin_unlock(&journal->j_list_lock);
1561         } else if (jh->b_transaction) {
1562                 J_ASSERT_JH(jh, (jh->b_transaction ==
1563                                  journal->j_committing_transaction));
1564                 /* However, if the buffer is still owned by a prior
1565                  * (committing) transaction, we can't drop it yet... */
1566                 JBUFFER_TRACE(jh, "belongs to older transaction");
1567                 /* ... but we CAN drop it from the new transaction if we
1568                  * have also modified it since the original commit. */
1569
1570                 if (jh->b_next_transaction) {
1571                         J_ASSERT(jh->b_next_transaction == transaction);
1572                         spin_lock(&journal->j_list_lock);
1573                         jh->b_next_transaction = NULL;
1574                         spin_unlock(&journal->j_list_lock);
1575
1576                         /*
1577                          * only drop a reference if this transaction modified
1578                          * the buffer
1579                          */
1580                         if (was_modified)
1581                                 drop_reserve = 1;
1582                 }
1583         }
1584
1585 not_jbd:
1586         jbd_unlock_bh_state(bh);
1587         __brelse(bh);
1588 drop:
1589         if (drop_reserve) {
1590                 /* no need to reserve log space for this block -bzzz */
1591                 handle->h_buffer_credits++;
1592         }
1593         return err;
1594 }
1595
1596 /**
1597  * int jbd2_journal_stop() - complete a transaction
1598  * @handle: transaction to complete.
1599  *
1600  * All done for a particular handle.
1601  *
1602  * There is not much action needed here.  We just return any remaining
1603  * buffer credits to the transaction and remove the handle.  The only
1604  * complication is that we need to start a commit operation if the
1605  * filesystem is marked for synchronous update.
1606  *
1607  * jbd2_journal_stop itself will not usually return an error, but it may
1608  * do so in unusual circumstances.  In particular, expect it to
1609  * return -EIO if a jbd2_journal_abort has been executed since the
1610  * transaction began.
1611  */
1612 int jbd2_journal_stop(handle_t *handle)
1613 {
1614         transaction_t *transaction = handle->h_transaction;
1615         journal_t *journal;
1616         int err = 0, wait_for_commit = 0;
1617         tid_t tid;
1618         pid_t pid;
1619
1620         if (!transaction) {
1621                 /*
1622                  * Handle is already detached from the transaction so
1623                  * there is nothing to do other than decrease a refcount,
1624                  * or free the handle if refcount drops to zero
1625                  */
1626                 if (--handle->h_ref > 0) {
1627                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1628                                                          handle->h_ref);
1629                         return err;
1630                 } else {
1631                         if (handle->h_rsv_handle)
1632                                 jbd2_free_handle(handle->h_rsv_handle);
1633                         goto free_and_exit;
1634                 }
1635         }
1636         journal = transaction->t_journal;
1637
1638         J_ASSERT(journal_current_handle() == handle);
1639
1640         if (is_handle_aborted(handle))
1641                 err = -EIO;
1642         else
1643                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1644
1645         if (--handle->h_ref > 0) {
1646                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1647                           handle->h_ref);
1648                 return err;
1649         }
1650
1651         jbd_debug(4, "Handle %p going down\n", handle);
1652         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1653                                 transaction->t_tid,
1654                                 handle->h_type, handle->h_line_no,
1655                                 jiffies - handle->h_start_jiffies,
1656                                 handle->h_sync, handle->h_requested_credits,
1657                                 (handle->h_requested_credits -
1658                                  handle->h_buffer_credits));
1659
1660         /*
1661          * Implement synchronous transaction batching.  If the handle
1662          * was synchronous, don't force a commit immediately.  Let's
1663          * yield and let another thread piggyback onto this
1664          * transaction.  Keep doing that while new threads continue to
1665          * arrive.  It doesn't cost much - we're about to run a commit
1666          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1667          * operations by 30x or more...
1668          *
1669          * We try and optimize the sleep time against what the
1670          * underlying disk can do, instead of having a static sleep
1671          * time.  This is useful for the case where our storage is so
1672          * fast that it is more optimal to go ahead and force a flush
1673          * and wait for the transaction to be committed than it is to
1674          * wait for an arbitrary amount of time for new writers to
1675          * join the transaction.  We achieve this by measuring how
1676          * long it takes to commit a transaction, and compare it with
1677          * how long this transaction has been running, and if run time
1678          * < commit time then we sleep for the delta and commit.  This
1679          * greatly helps super fast disks that would see slowdowns as
1680          * more threads started doing fsyncs.
1681          *
1682          * But don't do this if this process was the most recent one
1683          * to perform a synchronous write.  We do this to detect the
1684          * case where a single process is doing a stream of sync
1685          * writes.  No point in waiting for joiners in that case.
1686          *
1687          * Setting max_batch_time to 0 disables this completely.
1688          */
1689         pid = current->pid;
1690         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1691             journal->j_max_batch_time) {
1692                 u64 commit_time, trans_time;
1693
1694                 journal->j_last_sync_writer = pid;
1695
1696                 read_lock(&journal->j_state_lock);
1697                 commit_time = journal->j_average_commit_time;
1698                 read_unlock(&journal->j_state_lock);
1699
1700                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1701                                                    transaction->t_start_time));
1702
1703                 commit_time = max_t(u64, commit_time,
1704                                     1000*journal->j_min_batch_time);
1705                 commit_time = min_t(u64, commit_time,
1706                                     1000*journal->j_max_batch_time);
1707
1708                 if (trans_time < commit_time) {
1709                         ktime_t expires = ktime_add_ns(ktime_get(),
1710                                                        commit_time);
1711                         set_current_state(TASK_UNINTERRUPTIBLE);
1712                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1713                 }
1714         }
1715
1716         if (handle->h_sync)
1717                 transaction->t_synchronous_commit = 1;
1718         current->journal_info = NULL;
1719         atomic_sub(handle->h_buffer_credits,
1720                    &transaction->t_outstanding_credits);
1721
1722         /*
1723          * If the handle is marked SYNC, we need to set another commit
1724          * going!  We also want to force a commit if the current
1725          * transaction is occupying too much of the log, or if the
1726          * transaction is too old now.
1727          */
1728         if (handle->h_sync ||
1729             (atomic_read(&transaction->t_outstanding_credits) >
1730              journal->j_max_transaction_buffers) ||
1731             time_after_eq(jiffies, transaction->t_expires)) {
1732                 /* Do this even for aborted journals: an abort still
1733                  * completes the commit thread, it just doesn't write
1734                  * anything to disk. */
1735
1736                 jbd_debug(2, "transaction too old, requesting commit for "
1737                                         "handle %p\n", handle);
1738                 /* This is non-blocking */
1739                 jbd2_log_start_commit(journal, transaction->t_tid);
1740
1741                 /*
1742                  * Special case: JBD2_SYNC synchronous updates require us
1743                  * to wait for the commit to complete.
1744                  */
1745                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1746                         wait_for_commit = 1;
1747         }
1748
1749         /*
1750          * Once we drop t_updates, if it goes to zero the transaction
1751          * could start committing on us and eventually disappear.  So
1752          * once we do this, we must not dereference transaction
1753          * pointer again.
1754          */
1755         tid = transaction->t_tid;
1756         if (atomic_dec_and_test(&transaction->t_updates)) {
1757                 wake_up(&journal->j_wait_updates);
1758                 if (journal->j_barrier_count)
1759                         wake_up(&journal->j_wait_transaction_locked);
1760         }
1761
1762         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1763
1764         if (wait_for_commit)
1765                 err = jbd2_log_wait_commit(journal, tid);
1766
1767         if (handle->h_rsv_handle)
1768                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1769 free_and_exit:
1770         /*
1771          * Scope of the GFP_NOFS context is over here and so we can restore the
1772          * original alloc context.
1773          */
1774         memalloc_nofs_restore(handle->saved_alloc_context);
1775         jbd2_free_handle(handle);
1776         return err;
1777 }
1778
1779 /*
1780  *
1781  * List management code snippets: various functions for manipulating the
1782  * transaction buffer lists.
1783  *
1784  */
1785
1786 /*
1787  * Append a buffer to a transaction list, given the transaction's list head
1788  * pointer.
1789  *
1790  * j_list_lock is held.
1791  *
1792  * jbd_lock_bh_state(jh2bh(jh)) is held.
1793  */
1794
1795 static inline void
1796 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1797 {
1798         if (!*list) {
1799                 jh->b_tnext = jh->b_tprev = jh;
1800                 *list = jh;
1801         } else {
1802                 /* Insert at the tail of the list to preserve order */
1803                 struct journal_head *first = *list, *last = first->b_tprev;
1804                 jh->b_tprev = last;
1805                 jh->b_tnext = first;
1806                 last->b_tnext = first->b_tprev = jh;
1807         }
1808 }
1809
1810 /*
1811  * Remove a buffer from a transaction list, given the transaction's list
1812  * head pointer.
1813  *
1814  * Called with j_list_lock held, and the journal may not be locked.
1815  *
1816  * jbd_lock_bh_state(jh2bh(jh)) is held.
1817  */
1818
1819 static inline void
1820 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1821 {
1822         if (*list == jh) {
1823                 *list = jh->b_tnext;
1824                 if (*list == jh)
1825                         *list = NULL;
1826         }
1827         jh->b_tprev->b_tnext = jh->b_tnext;
1828         jh->b_tnext->b_tprev = jh->b_tprev;
1829 }
1830
1831 /*
1832  * Remove a buffer from the appropriate transaction list.
1833  *
1834  * Note that this function can *change* the value of
1835  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1836  * t_reserved_list.  If the caller is holding onto a copy of one of these
1837  * pointers, it could go bad.  Generally the caller needs to re-read the
1838  * pointer from the transaction_t.
1839  *
1840  * Called under j_list_lock.
1841  */
1842 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1843 {
1844         struct journal_head **list = NULL;
1845         transaction_t *transaction;
1846         struct buffer_head *bh = jh2bh(jh);
1847
1848         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1849         transaction = jh->b_transaction;
1850         if (transaction)
1851                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1852
1853         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1854         if (jh->b_jlist != BJ_None)
1855                 J_ASSERT_JH(jh, transaction != NULL);
1856
1857         switch (jh->b_jlist) {
1858         case BJ_None:
1859                 return;
1860         case BJ_Metadata:
1861                 transaction->t_nr_buffers--;
1862                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1863                 list = &transaction->t_buffers;
1864                 break;
1865         case BJ_Forget:
1866                 list = &transaction->t_forget;
1867                 break;
1868         case BJ_Shadow:
1869                 list = &transaction->t_shadow_list;
1870                 break;
1871         case BJ_Reserved:
1872                 list = &transaction->t_reserved_list;
1873                 break;
1874         }
1875
1876         __blist_del_buffer(list, jh);
1877         jh->b_jlist = BJ_None;
1878         if (transaction && is_journal_aborted(transaction->t_journal))
1879                 clear_buffer_jbddirty(bh);
1880         else if (test_clear_buffer_jbddirty(bh))
1881                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1882 }
1883
1884 /*
1885  * Remove buffer from all transactions.
1886  *
1887  * Called with bh_state lock and j_list_lock
1888  *
1889  * jh and bh may be already freed when this function returns.
1890  */
1891 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1892 {
1893         __jbd2_journal_temp_unlink_buffer(jh);
1894         jh->b_transaction = NULL;
1895         jbd2_journal_put_journal_head(jh);
1896 }
1897
1898 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1899 {
1900         struct buffer_head *bh = jh2bh(jh);
1901
1902         /* Get reference so that buffer cannot be freed before we unlock it */
1903         get_bh(bh);
1904         jbd_lock_bh_state(bh);
1905         spin_lock(&journal->j_list_lock);
1906         __jbd2_journal_unfile_buffer(jh);
1907         spin_unlock(&journal->j_list_lock);
1908         jbd_unlock_bh_state(bh);
1909         __brelse(bh);
1910 }
1911
1912 /*
1913  * Called from jbd2_journal_try_to_free_buffers().
1914  *
1915  * Called under jbd_lock_bh_state(bh)
1916  */
1917 static void
1918 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1919 {
1920         struct journal_head *jh;
1921
1922         jh = bh2jh(bh);
1923
1924         if (buffer_locked(bh) || buffer_dirty(bh))
1925                 goto out;
1926
1927         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1928                 goto out;
1929
1930         spin_lock(&journal->j_list_lock);
1931         if (jh->b_cp_transaction != NULL) {
1932                 /* written-back checkpointed metadata buffer */
1933                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1934                 __jbd2_journal_remove_checkpoint(jh);
1935         }
1936         spin_unlock(&journal->j_list_lock);
1937 out:
1938         return;
1939 }
1940
1941 /**
1942  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1943  * @journal: journal for operation
1944  * @page: to try and free
1945  * @gfp_mask: we use the mask to detect how hard should we try to release
1946  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1947  * code to release the buffers.
1948  *
1949  *
1950  * For all the buffers on this page,
1951  * if they are fully written out ordered data, move them onto BUF_CLEAN
1952  * so try_to_free_buffers() can reap them.
1953  *
1954  * This function returns non-zero if we wish try_to_free_buffers()
1955  * to be called. We do this if the page is releasable by try_to_free_buffers().
1956  * We also do it if the page has locked or dirty buffers and the caller wants
1957  * us to perform sync or async writeout.
1958  *
1959  * This complicates JBD locking somewhat.  We aren't protected by the
1960  * BKL here.  We wish to remove the buffer from its committing or
1961  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1962  *
1963  * This may *change* the value of transaction_t->t_datalist, so anyone
1964  * who looks at t_datalist needs to lock against this function.
1965  *
1966  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1967  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1968  * will come out of the lock with the buffer dirty, which makes it
1969  * ineligible for release here.
1970  *
1971  * Who else is affected by this?  hmm...  Really the only contender
1972  * is do_get_write_access() - it could be looking at the buffer while
1973  * journal_try_to_free_buffer() is changing its state.  But that
1974  * cannot happen because we never reallocate freed data as metadata
1975  * while the data is part of a transaction.  Yes?
1976  *
1977  * Return 0 on failure, 1 on success
1978  */
1979 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1980                                 struct page *page, gfp_t gfp_mask)
1981 {
1982         struct buffer_head *head;
1983         struct buffer_head *bh;
1984         int ret = 0;
1985
1986         J_ASSERT(PageLocked(page));
1987
1988         head = page_buffers(page);
1989         bh = head;
1990         do {
1991                 struct journal_head *jh;
1992
1993                 /*
1994                  * We take our own ref against the journal_head here to avoid
1995                  * having to add tons of locking around each instance of
1996                  * jbd2_journal_put_journal_head().
1997                  */
1998                 jh = jbd2_journal_grab_journal_head(bh);
1999                 if (!jh)
2000                         continue;
2001
2002                 jbd_lock_bh_state(bh);
2003                 __journal_try_to_free_buffer(journal, bh);
2004                 jbd2_journal_put_journal_head(jh);
2005                 jbd_unlock_bh_state(bh);
2006                 if (buffer_jbd(bh))
2007                         goto busy;
2008         } while ((bh = bh->b_this_page) != head);
2009
2010         ret = try_to_free_buffers(page);
2011
2012 busy:
2013         return ret;
2014 }
2015
2016 /*
2017  * This buffer is no longer needed.  If it is on an older transaction's
2018  * checkpoint list we need to record it on this transaction's forget list
2019  * to pin this buffer (and hence its checkpointing transaction) down until
2020  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2021  * release it.
2022  * Returns non-zero if JBD no longer has an interest in the buffer.
2023  *
2024  * Called under j_list_lock.
2025  *
2026  * Called under jbd_lock_bh_state(bh).
2027  */
2028 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2029 {
2030         int may_free = 1;
2031         struct buffer_head *bh = jh2bh(jh);
2032
2033         if (jh->b_cp_transaction) {
2034                 JBUFFER_TRACE(jh, "on running+cp transaction");
2035                 __jbd2_journal_temp_unlink_buffer(jh);
2036                 /*
2037                  * We don't want to write the buffer anymore, clear the
2038                  * bit so that we don't confuse checks in
2039                  * __journal_file_buffer
2040                  */
2041                 clear_buffer_dirty(bh);
2042                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2043                 may_free = 0;
2044         } else {
2045                 JBUFFER_TRACE(jh, "on running transaction");
2046                 __jbd2_journal_unfile_buffer(jh);
2047         }
2048         return may_free;
2049 }
2050
2051 /*
2052  * jbd2_journal_invalidatepage
2053  *
2054  * This code is tricky.  It has a number of cases to deal with.
2055  *
2056  * There are two invariants which this code relies on:
2057  *
2058  * i_size must be updated on disk before we start calling invalidatepage on the
2059  * data.
2060  *
2061  *  This is done in ext3 by defining an ext3_setattr method which
2062  *  updates i_size before truncate gets going.  By maintaining this
2063  *  invariant, we can be sure that it is safe to throw away any buffers
2064  *  attached to the current transaction: once the transaction commits,
2065  *  we know that the data will not be needed.
2066  *
2067  *  Note however that we can *not* throw away data belonging to the
2068  *  previous, committing transaction!
2069  *
2070  * Any disk blocks which *are* part of the previous, committing
2071  * transaction (and which therefore cannot be discarded immediately) are
2072  * not going to be reused in the new running transaction
2073  *
2074  *  The bitmap committed_data images guarantee this: any block which is
2075  *  allocated in one transaction and removed in the next will be marked
2076  *  as in-use in the committed_data bitmap, so cannot be reused until
2077  *  the next transaction to delete the block commits.  This means that
2078  *  leaving committing buffers dirty is quite safe: the disk blocks
2079  *  cannot be reallocated to a different file and so buffer aliasing is
2080  *  not possible.
2081  *
2082  *
2083  * The above applies mainly to ordered data mode.  In writeback mode we
2084  * don't make guarantees about the order in which data hits disk --- in
2085  * particular we don't guarantee that new dirty data is flushed before
2086  * transaction commit --- so it is always safe just to discard data
2087  * immediately in that mode.  --sct
2088  */
2089
2090 /*
2091  * The journal_unmap_buffer helper function returns zero if the buffer
2092  * concerned remains pinned as an anonymous buffer belonging to an older
2093  * transaction.
2094  *
2095  * We're outside-transaction here.  Either or both of j_running_transaction
2096  * and j_committing_transaction may be NULL.
2097  */
2098 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2099                                 int partial_page)
2100 {
2101         transaction_t *transaction;
2102         struct journal_head *jh;
2103         int may_free = 1;
2104
2105         BUFFER_TRACE(bh, "entry");
2106
2107         /*
2108          * It is safe to proceed here without the j_list_lock because the
2109          * buffers cannot be stolen by try_to_free_buffers as long as we are
2110          * holding the page lock. --sct
2111          */
2112
2113         if (!buffer_jbd(bh))
2114                 goto zap_buffer_unlocked;
2115
2116         /* OK, we have data buffer in journaled mode */
2117         write_lock(&journal->j_state_lock);
2118         jbd_lock_bh_state(bh);
2119         spin_lock(&journal->j_list_lock);
2120
2121         jh = jbd2_journal_grab_journal_head(bh);
2122         if (!jh)
2123                 goto zap_buffer_no_jh;
2124
2125         /*
2126          * We cannot remove the buffer from checkpoint lists until the
2127          * transaction adding inode to orphan list (let's call it T)
2128          * is committed.  Otherwise if the transaction changing the
2129          * buffer would be cleaned from the journal before T is
2130          * committed, a crash will cause that the correct contents of
2131          * the buffer will be lost.  On the other hand we have to
2132          * clear the buffer dirty bit at latest at the moment when the
2133          * transaction marking the buffer as freed in the filesystem
2134          * structures is committed because from that moment on the
2135          * block can be reallocated and used by a different page.
2136          * Since the block hasn't been freed yet but the inode has
2137          * already been added to orphan list, it is safe for us to add
2138          * the buffer to BJ_Forget list of the newest transaction.
2139          *
2140          * Also we have to clear buffer_mapped flag of a truncated buffer
2141          * because the buffer_head may be attached to the page straddling
2142          * i_size (can happen only when blocksize < pagesize) and thus the
2143          * buffer_head can be reused when the file is extended again. So we end
2144          * up keeping around invalidated buffers attached to transactions'
2145          * BJ_Forget list just to stop checkpointing code from cleaning up
2146          * the transaction this buffer was modified in.
2147          */
2148         transaction = jh->b_transaction;
2149         if (transaction == NULL) {
2150                 /* First case: not on any transaction.  If it
2151                  * has no checkpoint link, then we can zap it:
2152                  * it's a writeback-mode buffer so we don't care
2153                  * if it hits disk safely. */
2154                 if (!jh->b_cp_transaction) {
2155                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2156                         goto zap_buffer;
2157                 }
2158
2159                 if (!buffer_dirty(bh)) {
2160                         /* bdflush has written it.  We can drop it now */
2161                         __jbd2_journal_remove_checkpoint(jh);
2162                         goto zap_buffer;
2163                 }
2164
2165                 /* OK, it must be in the journal but still not
2166                  * written fully to disk: it's metadata or
2167                  * journaled data... */
2168
2169                 if (journal->j_running_transaction) {
2170                         /* ... and once the current transaction has
2171                          * committed, the buffer won't be needed any
2172                          * longer. */
2173                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2174                         may_free = __dispose_buffer(jh,
2175                                         journal->j_running_transaction);
2176                         goto zap_buffer;
2177                 } else {
2178                         /* There is no currently-running transaction. So the
2179                          * orphan record which we wrote for this file must have
2180                          * passed into commit.  We must attach this buffer to
2181                          * the committing transaction, if it exists. */
2182                         if (journal->j_committing_transaction) {
2183                                 JBUFFER_TRACE(jh, "give to committing trans");
2184                                 may_free = __dispose_buffer(jh,
2185                                         journal->j_committing_transaction);
2186                                 goto zap_buffer;
2187                         } else {
2188                                 /* The orphan record's transaction has
2189                                  * committed.  We can cleanse this buffer */
2190                                 clear_buffer_jbddirty(bh);
2191                                 __jbd2_journal_remove_checkpoint(jh);
2192                                 goto zap_buffer;
2193                         }
2194                 }
2195         } else if (transaction == journal->j_committing_transaction) {
2196                 JBUFFER_TRACE(jh, "on committing transaction");
2197                 /*
2198                  * The buffer is committing, we simply cannot touch
2199                  * it. If the page is straddling i_size we have to wait
2200                  * for commit and try again.
2201                  */
2202                 if (partial_page) {
2203                         jbd2_journal_put_journal_head(jh);
2204                         spin_unlock(&journal->j_list_lock);
2205                         jbd_unlock_bh_state(bh);
2206                         write_unlock(&journal->j_state_lock);
2207                         return -EBUSY;
2208                 }
2209                 /*
2210                  * OK, buffer won't be reachable after truncate. We just set
2211                  * j_next_transaction to the running transaction (if there is
2212                  * one) and mark buffer as freed so that commit code knows it
2213                  * should clear dirty bits when it is done with the buffer.
2214                  */
2215                 set_buffer_freed(bh);
2216                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2217                         jh->b_next_transaction = journal->j_running_transaction;
2218                 jbd2_journal_put_journal_head(jh);
2219                 spin_unlock(&journal->j_list_lock);
2220                 jbd_unlock_bh_state(bh);
2221                 write_unlock(&journal->j_state_lock);
2222                 return 0;
2223         } else {
2224                 /* Good, the buffer belongs to the running transaction.
2225                  * We are writing our own transaction's data, not any
2226                  * previous one's, so it is safe to throw it away
2227                  * (remember that we expect the filesystem to have set
2228                  * i_size already for this truncate so recovery will not
2229                  * expose the disk blocks we are discarding here.) */
2230                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2231                 JBUFFER_TRACE(jh, "on running transaction");
2232                 may_free = __dispose_buffer(jh, transaction);
2233         }
2234
2235 zap_buffer:
2236         /*
2237          * This is tricky. Although the buffer is truncated, it may be reused
2238          * if blocksize < pagesize and it is attached to the page straddling
2239          * EOF. Since the buffer might have been added to BJ_Forget list of the
2240          * running transaction, journal_get_write_access() won't clear
2241          * b_modified and credit accounting gets confused. So clear b_modified
2242          * here.
2243          */
2244         jh->b_modified = 0;
2245         jbd2_journal_put_journal_head(jh);
2246 zap_buffer_no_jh:
2247         spin_unlock(&journal->j_list_lock);
2248         jbd_unlock_bh_state(bh);
2249         write_unlock(&journal->j_state_lock);
2250 zap_buffer_unlocked:
2251         clear_buffer_dirty(bh);
2252         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2253         clear_buffer_mapped(bh);
2254         clear_buffer_req(bh);
2255         clear_buffer_new(bh);
2256         clear_buffer_delay(bh);
2257         clear_buffer_unwritten(bh);
2258         bh->b_bdev = NULL;
2259         return may_free;
2260 }
2261
2262 /**
2263  * void jbd2_journal_invalidatepage()
2264  * @journal: journal to use for flush...
2265  * @page:    page to flush
2266  * @offset:  start of the range to invalidate
2267  * @length:  length of the range to invalidate
2268  *
2269  * Reap page buffers containing data after in the specified range in page.
2270  * Can return -EBUSY if buffers are part of the committing transaction and
2271  * the page is straddling i_size. Caller then has to wait for current commit
2272  * and try again.
2273  */
2274 int jbd2_journal_invalidatepage(journal_t *journal,
2275                                 struct page *page,
2276                                 unsigned int offset,
2277                                 unsigned int length)
2278 {
2279         struct buffer_head *head, *bh, *next;
2280         unsigned int stop = offset + length;
2281         unsigned int curr_off = 0;
2282         int partial_page = (offset || length < PAGE_SIZE);
2283         int may_free = 1;
2284         int ret = 0;
2285
2286         if (!PageLocked(page))
2287                 BUG();
2288         if (!page_has_buffers(page))
2289                 return 0;
2290
2291         BUG_ON(stop > PAGE_SIZE || stop < length);
2292
2293         /* We will potentially be playing with lists other than just the
2294          * data lists (especially for journaled data mode), so be
2295          * cautious in our locking. */
2296
2297         head = bh = page_buffers(page);
2298         do {
2299                 unsigned int next_off = curr_off + bh->b_size;
2300                 next = bh->b_this_page;
2301
2302                 if (next_off > stop)
2303                         return 0;
2304
2305                 if (offset <= curr_off) {
2306                         /* This block is wholly outside the truncation point */
2307                         lock_buffer(bh);
2308                         ret = journal_unmap_buffer(journal, bh, partial_page);
2309                         unlock_buffer(bh);
2310                         if (ret < 0)
2311                                 return ret;
2312                         may_free &= ret;
2313                 }
2314                 curr_off = next_off;
2315                 bh = next;
2316
2317         } while (bh != head);
2318
2319         if (!partial_page) {
2320                 if (may_free && try_to_free_buffers(page))
2321                         J_ASSERT(!page_has_buffers(page));
2322         }
2323         return 0;
2324 }
2325
2326 /*
2327  * File a buffer on the given transaction list.
2328  */
2329 void __jbd2_journal_file_buffer(struct journal_head *jh,
2330                         transaction_t *transaction, int jlist)
2331 {
2332         struct journal_head **list = NULL;
2333         int was_dirty = 0;
2334         struct buffer_head *bh = jh2bh(jh);
2335
2336         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2337         assert_spin_locked(&transaction->t_journal->j_list_lock);
2338
2339         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2340         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2341                                 jh->b_transaction == NULL);
2342
2343         if (jh->b_transaction && jh->b_jlist == jlist)
2344                 return;
2345
2346         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2347             jlist == BJ_Shadow || jlist == BJ_Forget) {
2348                 /*
2349                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2350                  * instead of buffer_dirty. We should not see a dirty bit set
2351                  * here because we clear it in do_get_write_access but e.g.
2352                  * tune2fs can modify the sb and set the dirty bit at any time
2353                  * so we try to gracefully handle that.
2354                  */
2355                 if (buffer_dirty(bh))
2356                         warn_dirty_buffer(bh);
2357                 if (test_clear_buffer_dirty(bh) ||
2358                     test_clear_buffer_jbddirty(bh))
2359                         was_dirty = 1;
2360         }
2361
2362         if (jh->b_transaction)
2363                 __jbd2_journal_temp_unlink_buffer(jh);
2364         else
2365                 jbd2_journal_grab_journal_head(bh);
2366         jh->b_transaction = transaction;
2367
2368         switch (jlist) {
2369         case BJ_None:
2370                 J_ASSERT_JH(jh, !jh->b_committed_data);
2371                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2372                 return;
2373         case BJ_Metadata:
2374                 transaction->t_nr_buffers++;
2375                 list = &transaction->t_buffers;
2376                 break;
2377         case BJ_Forget:
2378                 list = &transaction->t_forget;
2379                 break;
2380         case BJ_Shadow:
2381                 list = &transaction->t_shadow_list;
2382                 break;
2383         case BJ_Reserved:
2384                 list = &transaction->t_reserved_list;
2385                 break;
2386         }
2387
2388         __blist_add_buffer(list, jh);
2389         jh->b_jlist = jlist;
2390
2391         if (was_dirty)
2392                 set_buffer_jbddirty(bh);
2393 }
2394
2395 void jbd2_journal_file_buffer(struct journal_head *jh,
2396                                 transaction_t *transaction, int jlist)
2397 {
2398         jbd_lock_bh_state(jh2bh(jh));
2399         spin_lock(&transaction->t_journal->j_list_lock);
2400         __jbd2_journal_file_buffer(jh, transaction, jlist);
2401         spin_unlock(&transaction->t_journal->j_list_lock);
2402         jbd_unlock_bh_state(jh2bh(jh));
2403 }
2404
2405 /*
2406  * Remove a buffer from its current buffer list in preparation for
2407  * dropping it from its current transaction entirely.  If the buffer has
2408  * already started to be used by a subsequent transaction, refile the
2409  * buffer on that transaction's metadata list.
2410  *
2411  * Called under j_list_lock
2412  * Called under jbd_lock_bh_state(jh2bh(jh))
2413  *
2414  * jh and bh may be already free when this function returns
2415  */
2416 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2417 {
2418         int was_dirty, jlist;
2419         struct buffer_head *bh = jh2bh(jh);
2420
2421         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2422         if (jh->b_transaction)
2423                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2424
2425         /* If the buffer is now unused, just drop it. */
2426         if (jh->b_next_transaction == NULL) {
2427                 __jbd2_journal_unfile_buffer(jh);
2428                 return;
2429         }
2430
2431         /*
2432          * It has been modified by a later transaction: add it to the new
2433          * transaction's metadata list.
2434          */
2435
2436         was_dirty = test_clear_buffer_jbddirty(bh);
2437         __jbd2_journal_temp_unlink_buffer(jh);
2438         /*
2439          * We set b_transaction here because b_next_transaction will inherit
2440          * our jh reference and thus __jbd2_journal_file_buffer() must not
2441          * take a new one.
2442          */
2443         jh->b_transaction = jh->b_next_transaction;
2444         jh->b_next_transaction = NULL;
2445         if (buffer_freed(bh))
2446                 jlist = BJ_Forget;
2447         else if (jh->b_modified)
2448                 jlist = BJ_Metadata;
2449         else
2450                 jlist = BJ_Reserved;
2451         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2452         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2453
2454         if (was_dirty)
2455                 set_buffer_jbddirty(bh);
2456 }
2457
2458 /*
2459  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2460  * bh reference so that we can safely unlock bh.
2461  *
2462  * The jh and bh may be freed by this call.
2463  */
2464 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2465 {
2466         struct buffer_head *bh = jh2bh(jh);
2467
2468         /* Get reference so that buffer cannot be freed before we unlock it */
2469         get_bh(bh);
2470         jbd_lock_bh_state(bh);
2471         spin_lock(&journal->j_list_lock);
2472         __jbd2_journal_refile_buffer(jh);
2473         jbd_unlock_bh_state(bh);
2474         spin_unlock(&journal->j_list_lock);
2475         __brelse(bh);
2476 }
2477
2478 /*
2479  * File inode in the inode list of the handle's transaction
2480  */
2481 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2482                                    unsigned long flags)
2483 {
2484         transaction_t *transaction = handle->h_transaction;
2485         journal_t *journal;
2486
2487         if (is_handle_aborted(handle))
2488                 return -EROFS;
2489         journal = transaction->t_journal;
2490
2491         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2492                         transaction->t_tid);
2493
2494         /*
2495          * First check whether inode isn't already on the transaction's
2496          * lists without taking the lock. Note that this check is safe
2497          * without the lock as we cannot race with somebody removing inode
2498          * from the transaction. The reason is that we remove inode from the
2499          * transaction only in journal_release_jbd_inode() and when we commit
2500          * the transaction. We are guarded from the first case by holding
2501          * a reference to the inode. We are safe against the second case
2502          * because if jinode->i_transaction == transaction, commit code
2503          * cannot touch the transaction because we hold reference to it,
2504          * and if jinode->i_next_transaction == transaction, commit code
2505          * will only file the inode where we want it.
2506          */
2507         if ((jinode->i_transaction == transaction ||
2508             jinode->i_next_transaction == transaction) &&
2509             (jinode->i_flags & flags) == flags)
2510                 return 0;
2511
2512         spin_lock(&journal->j_list_lock);
2513         jinode->i_flags |= flags;
2514         /* Is inode already attached where we need it? */
2515         if (jinode->i_transaction == transaction ||
2516             jinode->i_next_transaction == transaction)
2517                 goto done;
2518
2519         /*
2520          * We only ever set this variable to 1 so the test is safe. Since
2521          * t_need_data_flush is likely to be set, we do the test to save some
2522          * cacheline bouncing
2523          */
2524         if (!transaction->t_need_data_flush)
2525                 transaction->t_need_data_flush = 1;
2526         /* On some different transaction's list - should be
2527          * the committing one */
2528         if (jinode->i_transaction) {
2529                 J_ASSERT(jinode->i_next_transaction == NULL);
2530                 J_ASSERT(jinode->i_transaction ==
2531                                         journal->j_committing_transaction);
2532                 jinode->i_next_transaction = transaction;
2533                 goto done;
2534         }
2535         /* Not on any transaction list... */
2536         J_ASSERT(!jinode->i_next_transaction);
2537         jinode->i_transaction = transaction;
2538         list_add(&jinode->i_list, &transaction->t_inode_list);
2539 done:
2540         spin_unlock(&journal->j_list_lock);
2541
2542         return 0;
2543 }
2544
2545 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2546 {
2547         return jbd2_journal_file_inode(handle, jinode,
2548                                        JI_WRITE_DATA | JI_WAIT_DATA);
2549 }
2550
2551 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2552 {
2553         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2554 }
2555
2556 /*
2557  * File truncate and transaction commit interact with each other in a
2558  * non-trivial way.  If a transaction writing data block A is
2559  * committing, we cannot discard the data by truncate until we have
2560  * written them.  Otherwise if we crashed after the transaction with
2561  * write has committed but before the transaction with truncate has
2562  * committed, we could see stale data in block A.  This function is a
2563  * helper to solve this problem.  It starts writeout of the truncated
2564  * part in case it is in the committing transaction.
2565  *
2566  * Filesystem code must call this function when inode is journaled in
2567  * ordered mode before truncation happens and after the inode has been
2568  * placed on orphan list with the new inode size. The second condition
2569  * avoids the race that someone writes new data and we start
2570  * committing the transaction after this function has been called but
2571  * before a transaction for truncate is started (and furthermore it
2572  * allows us to optimize the case where the addition to orphan list
2573  * happens in the same transaction as write --- we don't have to write
2574  * any data in such case).
2575  */
2576 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2577                                         struct jbd2_inode *jinode,
2578                                         loff_t new_size)
2579 {
2580         transaction_t *inode_trans, *commit_trans;
2581         int ret = 0;
2582
2583         /* This is a quick check to avoid locking if not necessary */
2584         if (!jinode->i_transaction)
2585                 goto out;
2586         /* Locks are here just to force reading of recent values, it is
2587          * enough that the transaction was not committing before we started
2588          * a transaction adding the inode to orphan list */
2589         read_lock(&journal->j_state_lock);
2590         commit_trans = journal->j_committing_transaction;
2591         read_unlock(&journal->j_state_lock);
2592         spin_lock(&journal->j_list_lock);
2593         inode_trans = jinode->i_transaction;
2594         spin_unlock(&journal->j_list_lock);
2595         if (inode_trans == commit_trans) {
2596                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2597                         new_size, LLONG_MAX);
2598                 if (ret)
2599                         jbd2_journal_abort(journal, ret);
2600         }
2601 out:
2602         return ret;
2603 }