]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd2/transaction.c
jbd2: use gfp_t instead of int
[karo-tx-linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
34
35 /*
36  * jbd2_get_transaction: obtain a new transaction_t object.
37  *
38  * Simply allocate and initialise a new transaction.  Create it in
39  * RUNNING state and add it to the current journal (which should not
40  * have an existing running transaction: we only make a new transaction
41  * once we have started to commit the old one).
42  *
43  * Preconditions:
44  *      The journal MUST be locked.  We don't perform atomic mallocs on the
45  *      new transaction and we can't block without protecting against other
46  *      processes trying to touch the journal while it is in transition.
47  *
48  */
49
50 static transaction_t *
51 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
52 {
53         transaction->t_journal = journal;
54         transaction->t_state = T_RUNNING;
55         transaction->t_start_time = ktime_get();
56         transaction->t_tid = journal->j_transaction_sequence++;
57         transaction->t_expires = jiffies + journal->j_commit_interval;
58         spin_lock_init(&transaction->t_handle_lock);
59         atomic_set(&transaction->t_updates, 0);
60         atomic_set(&transaction->t_outstanding_credits, 0);
61         atomic_set(&transaction->t_handle_count, 0);
62         INIT_LIST_HEAD(&transaction->t_inode_list);
63         INIT_LIST_HEAD(&transaction->t_private_list);
64
65         /* Set up the commit timer for the new transaction. */
66         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
67         add_timer(&journal->j_commit_timer);
68
69         J_ASSERT(journal->j_running_transaction == NULL);
70         journal->j_running_transaction = transaction;
71         transaction->t_max_wait = 0;
72         transaction->t_start = jiffies;
73
74         return transaction;
75 }
76
77 /*
78  * Handle management.
79  *
80  * A handle_t is an object which represents a single atomic update to a
81  * filesystem, and which tracks all of the modifications which form part
82  * of that one update.
83  */
84
85 /*
86  * Update transaction's maximum wait time, if debugging is enabled.
87  *
88  * In order for t_max_wait to be reliable, it must be protected by a
89  * lock.  But doing so will mean that start_this_handle() can not be
90  * run in parallel on SMP systems, which limits our scalability.  So
91  * unless debugging is enabled, we no longer update t_max_wait, which
92  * means that maximum wait time reported by the jbd2_run_stats
93  * tracepoint will always be zero.
94  */
95 static inline void update_t_max_wait(transaction_t *transaction,
96                                      unsigned long ts)
97 {
98 #ifdef CONFIG_JBD2_DEBUG
99         if (jbd2_journal_enable_debug &&
100             time_after(transaction->t_start, ts)) {
101                 ts = jbd2_time_diff(ts, transaction->t_start);
102                 spin_lock(&transaction->t_handle_lock);
103                 if (ts > transaction->t_max_wait)
104                         transaction->t_max_wait = ts;
105                 spin_unlock(&transaction->t_handle_lock);
106         }
107 #endif
108 }
109
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118                              gfp_t gfp_mask)
119 {
120         transaction_t   *transaction, *new_transaction = NULL;
121         tid_t           tid;
122         int             needed, need_to_start;
123         int             nblocks = handle->h_buffer_credits;
124         unsigned long ts = jiffies;
125
126         if (nblocks > journal->j_max_transaction_buffers) {
127                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
128                        current->comm, nblocks,
129                        journal->j_max_transaction_buffers);
130                 return -ENOSPC;
131         }
132
133 alloc_transaction:
134         if (!journal->j_running_transaction) {
135                 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
136                 if (!new_transaction) {
137                         /*
138                          * If __GFP_FS is not present, then we may be
139                          * being called from inside the fs writeback
140                          * layer, so we MUST NOT fail.  Since
141                          * __GFP_NOFAIL is going away, we will arrange
142                          * to retry the allocation ourselves.
143                          */
144                         if ((gfp_mask & __GFP_FS) == 0) {
145                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
146                                 goto alloc_transaction;
147                         }
148                         return -ENOMEM;
149                 }
150         }
151
152         jbd_debug(3, "New handle %p going live.\n", handle);
153
154         /*
155          * We need to hold j_state_lock until t_updates has been incremented,
156          * for proper journal barrier handling
157          */
158 repeat:
159         read_lock(&journal->j_state_lock);
160         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
161         if (is_journal_aborted(journal) ||
162             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
163                 read_unlock(&journal->j_state_lock);
164                 kfree(new_transaction);
165                 return -EROFS;
166         }
167
168         /* Wait on the journal's transaction barrier if necessary */
169         if (journal->j_barrier_count) {
170                 read_unlock(&journal->j_state_lock);
171                 wait_event(journal->j_wait_transaction_locked,
172                                 journal->j_barrier_count == 0);
173                 goto repeat;
174         }
175
176         if (!journal->j_running_transaction) {
177                 read_unlock(&journal->j_state_lock);
178                 if (!new_transaction)
179                         goto alloc_transaction;
180                 write_lock(&journal->j_state_lock);
181                 if (!journal->j_running_transaction) {
182                         jbd2_get_transaction(journal, new_transaction);
183                         new_transaction = NULL;
184                 }
185                 write_unlock(&journal->j_state_lock);
186                 goto repeat;
187         }
188
189         transaction = journal->j_running_transaction;
190
191         /*
192          * If the current transaction is locked down for commit, wait for the
193          * lock to be released.
194          */
195         if (transaction->t_state == T_LOCKED) {
196                 DEFINE_WAIT(wait);
197
198                 prepare_to_wait(&journal->j_wait_transaction_locked,
199                                         &wait, TASK_UNINTERRUPTIBLE);
200                 read_unlock(&journal->j_state_lock);
201                 schedule();
202                 finish_wait(&journal->j_wait_transaction_locked, &wait);
203                 goto repeat;
204         }
205
206         /*
207          * If there is not enough space left in the log to write all potential
208          * buffers requested by this operation, we need to stall pending a log
209          * checkpoint to free some more log space.
210          */
211         needed = atomic_add_return(nblocks,
212                                    &transaction->t_outstanding_credits);
213
214         if (needed > journal->j_max_transaction_buffers) {
215                 /*
216                  * If the current transaction is already too large, then start
217                  * to commit it: we can then go back and attach this handle to
218                  * a new transaction.
219                  */
220                 DEFINE_WAIT(wait);
221
222                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
223                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
224                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
225                                 TASK_UNINTERRUPTIBLE);
226                 tid = transaction->t_tid;
227                 need_to_start = !tid_geq(journal->j_commit_request, tid);
228                 read_unlock(&journal->j_state_lock);
229                 if (need_to_start)
230                         jbd2_log_start_commit(journal, tid);
231                 schedule();
232                 finish_wait(&journal->j_wait_transaction_locked, &wait);
233                 goto repeat;
234         }
235
236         /*
237          * The commit code assumes that it can get enough log space
238          * without forcing a checkpoint.  This is *critical* for
239          * correctness: a checkpoint of a buffer which is also
240          * associated with a committing transaction creates a deadlock,
241          * so commit simply cannot force through checkpoints.
242          *
243          * We must therefore ensure the necessary space in the journal
244          * *before* starting to dirty potentially checkpointed buffers
245          * in the new transaction.
246          *
247          * The worst part is, any transaction currently committing can
248          * reduce the free space arbitrarily.  Be careful to account for
249          * those buffers when checkpointing.
250          */
251
252         /*
253          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
254          * a _lot_ of headroom: 1/4 of the journal plus the size of
255          * the committing transaction.  Really, we only need to give it
256          * committing_transaction->t_outstanding_credits plus "enough" for
257          * the log control blocks.
258          * Also, this test is inconsistent with the matching one in
259          * jbd2_journal_extend().
260          */
261         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
262                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
263                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
264                 read_unlock(&journal->j_state_lock);
265                 write_lock(&journal->j_state_lock);
266                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
267                         __jbd2_log_wait_for_space(journal);
268                 write_unlock(&journal->j_state_lock);
269                 goto repeat;
270         }
271
272         /* OK, account for the buffers that this operation expects to
273          * use and add the handle to the running transaction. 
274          */
275         update_t_max_wait(transaction, ts);
276         handle->h_transaction = transaction;
277         atomic_inc(&transaction->t_updates);
278         atomic_inc(&transaction->t_handle_count);
279         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
280                   handle, nblocks,
281                   atomic_read(&transaction->t_outstanding_credits),
282                   __jbd2_log_space_left(journal));
283         read_unlock(&journal->j_state_lock);
284
285         lock_map_acquire(&handle->h_lockdep_map);
286         kfree(new_transaction);
287         return 0;
288 }
289
290 static struct lock_class_key jbd2_handle_key;
291
292 /* Allocate a new handle.  This should probably be in a slab... */
293 static handle_t *new_handle(int nblocks)
294 {
295         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
296         if (!handle)
297                 return NULL;
298         memset(handle, 0, sizeof(*handle));
299         handle->h_buffer_credits = nblocks;
300         handle->h_ref = 1;
301
302         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
303                                                 &jbd2_handle_key, 0);
304
305         return handle;
306 }
307
308 /**
309  * handle_t *jbd2_journal_start() - Obtain a new handle.
310  * @journal: Journal to start transaction on.
311  * @nblocks: number of block buffer we might modify
312  *
313  * We make sure that the transaction can guarantee at least nblocks of
314  * modified buffers in the log.  We block until the log can guarantee
315  * that much space.
316  *
317  * This function is visible to journal users (like ext3fs), so is not
318  * called with the journal already locked.
319  *
320  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
321  * on failure.
322  */
323 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
324 {
325         handle_t *handle = journal_current_handle();
326         int err;
327
328         if (!journal)
329                 return ERR_PTR(-EROFS);
330
331         if (handle) {
332                 J_ASSERT(handle->h_transaction->t_journal == journal);
333                 handle->h_ref++;
334                 return handle;
335         }
336
337         handle = new_handle(nblocks);
338         if (!handle)
339                 return ERR_PTR(-ENOMEM);
340
341         current->journal_info = handle;
342
343         err = start_this_handle(journal, handle, gfp_mask);
344         if (err < 0) {
345                 jbd2_free_handle(handle);
346                 current->journal_info = NULL;
347                 handle = ERR_PTR(err);
348         }
349         return handle;
350 }
351 EXPORT_SYMBOL(jbd2__journal_start);
352
353
354 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
355 {
356         return jbd2__journal_start(journal, nblocks, GFP_NOFS);
357 }
358 EXPORT_SYMBOL(jbd2_journal_start);
359
360
361 /**
362  * int jbd2_journal_extend() - extend buffer credits.
363  * @handle:  handle to 'extend'
364  * @nblocks: nr blocks to try to extend by.
365  *
366  * Some transactions, such as large extends and truncates, can be done
367  * atomically all at once or in several stages.  The operation requests
368  * a credit for a number of buffer modications in advance, but can
369  * extend its credit if it needs more.
370  *
371  * jbd2_journal_extend tries to give the running handle more buffer credits.
372  * It does not guarantee that allocation - this is a best-effort only.
373  * The calling process MUST be able to deal cleanly with a failure to
374  * extend here.
375  *
376  * Return 0 on success, non-zero on failure.
377  *
378  * return code < 0 implies an error
379  * return code > 0 implies normal transaction-full status.
380  */
381 int jbd2_journal_extend(handle_t *handle, int nblocks)
382 {
383         transaction_t *transaction = handle->h_transaction;
384         journal_t *journal = transaction->t_journal;
385         int result;
386         int wanted;
387
388         result = -EIO;
389         if (is_handle_aborted(handle))
390                 goto out;
391
392         result = 1;
393
394         read_lock(&journal->j_state_lock);
395
396         /* Don't extend a locked-down transaction! */
397         if (handle->h_transaction->t_state != T_RUNNING) {
398                 jbd_debug(3, "denied handle %p %d blocks: "
399                           "transaction not running\n", handle, nblocks);
400                 goto error_out;
401         }
402
403         spin_lock(&transaction->t_handle_lock);
404         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
405
406         if (wanted > journal->j_max_transaction_buffers) {
407                 jbd_debug(3, "denied handle %p %d blocks: "
408                           "transaction too large\n", handle, nblocks);
409                 goto unlock;
410         }
411
412         if (wanted > __jbd2_log_space_left(journal)) {
413                 jbd_debug(3, "denied handle %p %d blocks: "
414                           "insufficient log space\n", handle, nblocks);
415                 goto unlock;
416         }
417
418         handle->h_buffer_credits += nblocks;
419         atomic_add(nblocks, &transaction->t_outstanding_credits);
420         result = 0;
421
422         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
423 unlock:
424         spin_unlock(&transaction->t_handle_lock);
425 error_out:
426         read_unlock(&journal->j_state_lock);
427 out:
428         return result;
429 }
430
431
432 /**
433  * int jbd2_journal_restart() - restart a handle .
434  * @handle:  handle to restart
435  * @nblocks: nr credits requested
436  *
437  * Restart a handle for a multi-transaction filesystem
438  * operation.
439  *
440  * If the jbd2_journal_extend() call above fails to grant new buffer credits
441  * to a running handle, a call to jbd2_journal_restart will commit the
442  * handle's transaction so far and reattach the handle to a new
443  * transaction capabable of guaranteeing the requested number of
444  * credits.
445  */
446 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
447 {
448         transaction_t *transaction = handle->h_transaction;
449         journal_t *journal = transaction->t_journal;
450         tid_t           tid;
451         int             need_to_start, ret;
452
453         /* If we've had an abort of any type, don't even think about
454          * actually doing the restart! */
455         if (is_handle_aborted(handle))
456                 return 0;
457
458         /*
459          * First unlink the handle from its current transaction, and start the
460          * commit on that.
461          */
462         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
463         J_ASSERT(journal_current_handle() == handle);
464
465         read_lock(&journal->j_state_lock);
466         spin_lock(&transaction->t_handle_lock);
467         atomic_sub(handle->h_buffer_credits,
468                    &transaction->t_outstanding_credits);
469         if (atomic_dec_and_test(&transaction->t_updates))
470                 wake_up(&journal->j_wait_updates);
471         spin_unlock(&transaction->t_handle_lock);
472
473         jbd_debug(2, "restarting handle %p\n", handle);
474         tid = transaction->t_tid;
475         need_to_start = !tid_geq(journal->j_commit_request, tid);
476         read_unlock(&journal->j_state_lock);
477         if (need_to_start)
478                 jbd2_log_start_commit(journal, tid);
479
480         lock_map_release(&handle->h_lockdep_map);
481         handle->h_buffer_credits = nblocks;
482         ret = start_this_handle(journal, handle, gfp_mask);
483         return ret;
484 }
485 EXPORT_SYMBOL(jbd2__journal_restart);
486
487
488 int jbd2_journal_restart(handle_t *handle, int nblocks)
489 {
490         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
491 }
492 EXPORT_SYMBOL(jbd2_journal_restart);
493
494 /**
495  * void jbd2_journal_lock_updates () - establish a transaction barrier.
496  * @journal:  Journal to establish a barrier on.
497  *
498  * This locks out any further updates from being started, and blocks
499  * until all existing updates have completed, returning only once the
500  * journal is in a quiescent state with no updates running.
501  *
502  * The journal lock should not be held on entry.
503  */
504 void jbd2_journal_lock_updates(journal_t *journal)
505 {
506         DEFINE_WAIT(wait);
507
508         write_lock(&journal->j_state_lock);
509         ++journal->j_barrier_count;
510
511         /* Wait until there are no running updates */
512         while (1) {
513                 transaction_t *transaction = journal->j_running_transaction;
514
515                 if (!transaction)
516                         break;
517
518                 spin_lock(&transaction->t_handle_lock);
519                 if (!atomic_read(&transaction->t_updates)) {
520                         spin_unlock(&transaction->t_handle_lock);
521                         break;
522                 }
523                 prepare_to_wait(&journal->j_wait_updates, &wait,
524                                 TASK_UNINTERRUPTIBLE);
525                 spin_unlock(&transaction->t_handle_lock);
526                 write_unlock(&journal->j_state_lock);
527                 schedule();
528                 finish_wait(&journal->j_wait_updates, &wait);
529                 write_lock(&journal->j_state_lock);
530         }
531         write_unlock(&journal->j_state_lock);
532
533         /*
534          * We have now established a barrier against other normal updates, but
535          * we also need to barrier against other jbd2_journal_lock_updates() calls
536          * to make sure that we serialise special journal-locked operations
537          * too.
538          */
539         mutex_lock(&journal->j_barrier);
540 }
541
542 /**
543  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
544  * @journal:  Journal to release the barrier on.
545  *
546  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
547  *
548  * Should be called without the journal lock held.
549  */
550 void jbd2_journal_unlock_updates (journal_t *journal)
551 {
552         J_ASSERT(journal->j_barrier_count != 0);
553
554         mutex_unlock(&journal->j_barrier);
555         write_lock(&journal->j_state_lock);
556         --journal->j_barrier_count;
557         write_unlock(&journal->j_state_lock);
558         wake_up(&journal->j_wait_transaction_locked);
559 }
560
561 static void warn_dirty_buffer(struct buffer_head *bh)
562 {
563         char b[BDEVNAME_SIZE];
564
565         printk(KERN_WARNING
566                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
567                "There's a risk of filesystem corruption in case of system "
568                "crash.\n",
569                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
570 }
571
572 /*
573  * If the buffer is already part of the current transaction, then there
574  * is nothing we need to do.  If it is already part of a prior
575  * transaction which we are still committing to disk, then we need to
576  * make sure that we do not overwrite the old copy: we do copy-out to
577  * preserve the copy going to disk.  We also account the buffer against
578  * the handle's metadata buffer credits (unless the buffer is already
579  * part of the transaction, that is).
580  *
581  */
582 static int
583 do_get_write_access(handle_t *handle, struct journal_head *jh,
584                         int force_copy)
585 {
586         struct buffer_head *bh;
587         transaction_t *transaction;
588         journal_t *journal;
589         int error;
590         char *frozen_buffer = NULL;
591         int need_copy = 0;
592
593         if (is_handle_aborted(handle))
594                 return -EROFS;
595
596         transaction = handle->h_transaction;
597         journal = transaction->t_journal;
598
599         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
600
601         JBUFFER_TRACE(jh, "entry");
602 repeat:
603         bh = jh2bh(jh);
604
605         /* @@@ Need to check for errors here at some point. */
606
607         lock_buffer(bh);
608         jbd_lock_bh_state(bh);
609
610         /* We now hold the buffer lock so it is safe to query the buffer
611          * state.  Is the buffer dirty?
612          *
613          * If so, there are two possibilities.  The buffer may be
614          * non-journaled, and undergoing a quite legitimate writeback.
615          * Otherwise, it is journaled, and we don't expect dirty buffers
616          * in that state (the buffers should be marked JBD_Dirty
617          * instead.)  So either the IO is being done under our own
618          * control and this is a bug, or it's a third party IO such as
619          * dump(8) (which may leave the buffer scheduled for read ---
620          * ie. locked but not dirty) or tune2fs (which may actually have
621          * the buffer dirtied, ugh.)  */
622
623         if (buffer_dirty(bh)) {
624                 /*
625                  * First question: is this buffer already part of the current
626                  * transaction or the existing committing transaction?
627                  */
628                 if (jh->b_transaction) {
629                         J_ASSERT_JH(jh,
630                                 jh->b_transaction == transaction ||
631                                 jh->b_transaction ==
632                                         journal->j_committing_transaction);
633                         if (jh->b_next_transaction)
634                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
635                                                         transaction);
636                         warn_dirty_buffer(bh);
637                 }
638                 /*
639                  * In any case we need to clean the dirty flag and we must
640                  * do it under the buffer lock to be sure we don't race
641                  * with running write-out.
642                  */
643                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
644                 clear_buffer_dirty(bh);
645                 set_buffer_jbddirty(bh);
646         }
647
648         unlock_buffer(bh);
649
650         error = -EROFS;
651         if (is_handle_aborted(handle)) {
652                 jbd_unlock_bh_state(bh);
653                 goto out;
654         }
655         error = 0;
656
657         /*
658          * The buffer is already part of this transaction if b_transaction or
659          * b_next_transaction points to it
660          */
661         if (jh->b_transaction == transaction ||
662             jh->b_next_transaction == transaction)
663                 goto done;
664
665         /*
666          * this is the first time this transaction is touching this buffer,
667          * reset the modified flag
668          */
669        jh->b_modified = 0;
670
671         /*
672          * If there is already a copy-out version of this buffer, then we don't
673          * need to make another one
674          */
675         if (jh->b_frozen_data) {
676                 JBUFFER_TRACE(jh, "has frozen data");
677                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
678                 jh->b_next_transaction = transaction;
679                 goto done;
680         }
681
682         /* Is there data here we need to preserve? */
683
684         if (jh->b_transaction && jh->b_transaction != transaction) {
685                 JBUFFER_TRACE(jh, "owned by older transaction");
686                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
687                 J_ASSERT_JH(jh, jh->b_transaction ==
688                                         journal->j_committing_transaction);
689
690                 /* There is one case we have to be very careful about.
691                  * If the committing transaction is currently writing
692                  * this buffer out to disk and has NOT made a copy-out,
693                  * then we cannot modify the buffer contents at all
694                  * right now.  The essence of copy-out is that it is the
695                  * extra copy, not the primary copy, which gets
696                  * journaled.  If the primary copy is already going to
697                  * disk then we cannot do copy-out here. */
698
699                 if (jh->b_jlist == BJ_Shadow) {
700                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
701                         wait_queue_head_t *wqh;
702
703                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
704
705                         JBUFFER_TRACE(jh, "on shadow: sleep");
706                         jbd_unlock_bh_state(bh);
707                         /* commit wakes up all shadow buffers after IO */
708                         for ( ; ; ) {
709                                 prepare_to_wait(wqh, &wait.wait,
710                                                 TASK_UNINTERRUPTIBLE);
711                                 if (jh->b_jlist != BJ_Shadow)
712                                         break;
713                                 schedule();
714                         }
715                         finish_wait(wqh, &wait.wait);
716                         goto repeat;
717                 }
718
719                 /* Only do the copy if the currently-owning transaction
720                  * still needs it.  If it is on the Forget list, the
721                  * committing transaction is past that stage.  The
722                  * buffer had better remain locked during the kmalloc,
723                  * but that should be true --- we hold the journal lock
724                  * still and the buffer is already on the BUF_JOURNAL
725                  * list so won't be flushed.
726                  *
727                  * Subtle point, though: if this is a get_undo_access,
728                  * then we will be relying on the frozen_data to contain
729                  * the new value of the committed_data record after the
730                  * transaction, so we HAVE to force the frozen_data copy
731                  * in that case. */
732
733                 if (jh->b_jlist != BJ_Forget || force_copy) {
734                         JBUFFER_TRACE(jh, "generate frozen data");
735                         if (!frozen_buffer) {
736                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
737                                 jbd_unlock_bh_state(bh);
738                                 frozen_buffer =
739                                         jbd2_alloc(jh2bh(jh)->b_size,
740                                                          GFP_NOFS);
741                                 if (!frozen_buffer) {
742                                         printk(KERN_EMERG
743                                                "%s: OOM for frozen_buffer\n",
744                                                __func__);
745                                         JBUFFER_TRACE(jh, "oom!");
746                                         error = -ENOMEM;
747                                         jbd_lock_bh_state(bh);
748                                         goto done;
749                                 }
750                                 goto repeat;
751                         }
752                         jh->b_frozen_data = frozen_buffer;
753                         frozen_buffer = NULL;
754                         need_copy = 1;
755                 }
756                 jh->b_next_transaction = transaction;
757         }
758
759
760         /*
761          * Finally, if the buffer is not journaled right now, we need to make
762          * sure it doesn't get written to disk before the caller actually
763          * commits the new data
764          */
765         if (!jh->b_transaction) {
766                 JBUFFER_TRACE(jh, "no transaction");
767                 J_ASSERT_JH(jh, !jh->b_next_transaction);
768                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
769                 spin_lock(&journal->j_list_lock);
770                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
771                 spin_unlock(&journal->j_list_lock);
772         }
773
774 done:
775         if (need_copy) {
776                 struct page *page;
777                 int offset;
778                 char *source;
779
780                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
781                             "Possible IO failure.\n");
782                 page = jh2bh(jh)->b_page;
783                 offset = offset_in_page(jh2bh(jh)->b_data);
784                 source = kmap_atomic(page, KM_USER0);
785                 /* Fire data frozen trigger just before we copy the data */
786                 jbd2_buffer_frozen_trigger(jh, source + offset,
787                                            jh->b_triggers);
788                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
789                 kunmap_atomic(source, KM_USER0);
790
791                 /*
792                  * Now that the frozen data is saved off, we need to store
793                  * any matching triggers.
794                  */
795                 jh->b_frozen_triggers = jh->b_triggers;
796         }
797         jbd_unlock_bh_state(bh);
798
799         /*
800          * If we are about to journal a buffer, then any revoke pending on it is
801          * no longer valid
802          */
803         jbd2_journal_cancel_revoke(handle, jh);
804
805 out:
806         if (unlikely(frozen_buffer))    /* It's usually NULL */
807                 jbd2_free(frozen_buffer, bh->b_size);
808
809         JBUFFER_TRACE(jh, "exit");
810         return error;
811 }
812
813 /**
814  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
815  * @handle: transaction to add buffer modifications to
816  * @bh:     bh to be used for metadata writes
817  *
818  * Returns an error code or 0 on success.
819  *
820  * In full data journalling mode the buffer may be of type BJ_AsyncData,
821  * because we're write()ing a buffer which is also part of a shared mapping.
822  */
823
824 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
825 {
826         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
827         int rc;
828
829         /* We do not want to get caught playing with fields which the
830          * log thread also manipulates.  Make sure that the buffer
831          * completes any outstanding IO before proceeding. */
832         rc = do_get_write_access(handle, jh, 0);
833         jbd2_journal_put_journal_head(jh);
834         return rc;
835 }
836
837
838 /*
839  * When the user wants to journal a newly created buffer_head
840  * (ie. getblk() returned a new buffer and we are going to populate it
841  * manually rather than reading off disk), then we need to keep the
842  * buffer_head locked until it has been completely filled with new
843  * data.  In this case, we should be able to make the assertion that
844  * the bh is not already part of an existing transaction.
845  *
846  * The buffer should already be locked by the caller by this point.
847  * There is no lock ranking violation: it was a newly created,
848  * unlocked buffer beforehand. */
849
850 /**
851  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
852  * @handle: transaction to new buffer to
853  * @bh: new buffer.
854  *
855  * Call this if you create a new bh.
856  */
857 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
858 {
859         transaction_t *transaction = handle->h_transaction;
860         journal_t *journal = transaction->t_journal;
861         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
862         int err;
863
864         jbd_debug(5, "journal_head %p\n", jh);
865         err = -EROFS;
866         if (is_handle_aborted(handle))
867                 goto out;
868         err = 0;
869
870         JBUFFER_TRACE(jh, "entry");
871         /*
872          * The buffer may already belong to this transaction due to pre-zeroing
873          * in the filesystem's new_block code.  It may also be on the previous,
874          * committing transaction's lists, but it HAS to be in Forget state in
875          * that case: the transaction must have deleted the buffer for it to be
876          * reused here.
877          */
878         jbd_lock_bh_state(bh);
879         spin_lock(&journal->j_list_lock);
880         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
881                 jh->b_transaction == NULL ||
882                 (jh->b_transaction == journal->j_committing_transaction &&
883                           jh->b_jlist == BJ_Forget)));
884
885         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
886         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
887
888         if (jh->b_transaction == NULL) {
889                 /*
890                  * Previous jbd2_journal_forget() could have left the buffer
891                  * with jbddirty bit set because it was being committed. When
892                  * the commit finished, we've filed the buffer for
893                  * checkpointing and marked it dirty. Now we are reallocating
894                  * the buffer so the transaction freeing it must have
895                  * committed and so it's safe to clear the dirty bit.
896                  */
897                 clear_buffer_dirty(jh2bh(jh));
898                 /* first access by this transaction */
899                 jh->b_modified = 0;
900
901                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
902                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903         } else if (jh->b_transaction == journal->j_committing_transaction) {
904                 /* first access by this transaction */
905                 jh->b_modified = 0;
906
907                 JBUFFER_TRACE(jh, "set next transaction");
908                 jh->b_next_transaction = transaction;
909         }
910         spin_unlock(&journal->j_list_lock);
911         jbd_unlock_bh_state(bh);
912
913         /*
914          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
915          * blocks which contain freed but then revoked metadata.  We need
916          * to cancel the revoke in case we end up freeing it yet again
917          * and the reallocating as data - this would cause a second revoke,
918          * which hits an assertion error.
919          */
920         JBUFFER_TRACE(jh, "cancelling revoke");
921         jbd2_journal_cancel_revoke(handle, jh);
922 out:
923         jbd2_journal_put_journal_head(jh);
924         return err;
925 }
926
927 /**
928  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
929  *     non-rewindable consequences
930  * @handle: transaction
931  * @bh: buffer to undo
932  *
933  * Sometimes there is a need to distinguish between metadata which has
934  * been committed to disk and that which has not.  The ext3fs code uses
935  * this for freeing and allocating space, we have to make sure that we
936  * do not reuse freed space until the deallocation has been committed,
937  * since if we overwrote that space we would make the delete
938  * un-rewindable in case of a crash.
939  *
940  * To deal with that, jbd2_journal_get_undo_access requests write access to a
941  * buffer for parts of non-rewindable operations such as delete
942  * operations on the bitmaps.  The journaling code must keep a copy of
943  * the buffer's contents prior to the undo_access call until such time
944  * as we know that the buffer has definitely been committed to disk.
945  *
946  * We never need to know which transaction the committed data is part
947  * of, buffers touched here are guaranteed to be dirtied later and so
948  * will be committed to a new transaction in due course, at which point
949  * we can discard the old committed data pointer.
950  *
951  * Returns error number or 0 on success.
952  */
953 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
954 {
955         int err;
956         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
957         char *committed_data = NULL;
958
959         JBUFFER_TRACE(jh, "entry");
960
961         /*
962          * Do this first --- it can drop the journal lock, so we want to
963          * make sure that obtaining the committed_data is done
964          * atomically wrt. completion of any outstanding commits.
965          */
966         err = do_get_write_access(handle, jh, 1);
967         if (err)
968                 goto out;
969
970 repeat:
971         if (!jh->b_committed_data) {
972                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
973                 if (!committed_data) {
974                         printk(KERN_EMERG "%s: No memory for committed data\n",
975                                 __func__);
976                         err = -ENOMEM;
977                         goto out;
978                 }
979         }
980
981         jbd_lock_bh_state(bh);
982         if (!jh->b_committed_data) {
983                 /* Copy out the current buffer contents into the
984                  * preserved, committed copy. */
985                 JBUFFER_TRACE(jh, "generate b_committed data");
986                 if (!committed_data) {
987                         jbd_unlock_bh_state(bh);
988                         goto repeat;
989                 }
990
991                 jh->b_committed_data = committed_data;
992                 committed_data = NULL;
993                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
994         }
995         jbd_unlock_bh_state(bh);
996 out:
997         jbd2_journal_put_journal_head(jh);
998         if (unlikely(committed_data))
999                 jbd2_free(committed_data, bh->b_size);
1000         return err;
1001 }
1002
1003 /**
1004  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1005  * @bh: buffer to trigger on
1006  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1007  *
1008  * Set any triggers on this journal_head.  This is always safe, because
1009  * triggers for a committing buffer will be saved off, and triggers for
1010  * a running transaction will match the buffer in that transaction.
1011  *
1012  * Call with NULL to clear the triggers.
1013  */
1014 void jbd2_journal_set_triggers(struct buffer_head *bh,
1015                                struct jbd2_buffer_trigger_type *type)
1016 {
1017         struct journal_head *jh = bh2jh(bh);
1018
1019         jh->b_triggers = type;
1020 }
1021
1022 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1023                                 struct jbd2_buffer_trigger_type *triggers)
1024 {
1025         struct buffer_head *bh = jh2bh(jh);
1026
1027         if (!triggers || !triggers->t_frozen)
1028                 return;
1029
1030         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1031 }
1032
1033 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1034                                struct jbd2_buffer_trigger_type *triggers)
1035 {
1036         if (!triggers || !triggers->t_abort)
1037                 return;
1038
1039         triggers->t_abort(triggers, jh2bh(jh));
1040 }
1041
1042
1043
1044 /**
1045  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1046  * @handle: transaction to add buffer to.
1047  * @bh: buffer to mark
1048  *
1049  * mark dirty metadata which needs to be journaled as part of the current
1050  * transaction.
1051  *
1052  * The buffer must have previously had jbd2_journal_get_write_access()
1053  * called so that it has a valid journal_head attached to the buffer
1054  * head.
1055  *
1056  * The buffer is placed on the transaction's metadata list and is marked
1057  * as belonging to the transaction.
1058  *
1059  * Returns error number or 0 on success.
1060  *
1061  * Special care needs to be taken if the buffer already belongs to the
1062  * current committing transaction (in which case we should have frozen
1063  * data present for that commit).  In that case, we don't relink the
1064  * buffer: that only gets done when the old transaction finally
1065  * completes its commit.
1066  */
1067 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1068 {
1069         transaction_t *transaction = handle->h_transaction;
1070         journal_t *journal = transaction->t_journal;
1071         struct journal_head *jh = bh2jh(bh);
1072         int ret = 0;
1073
1074         jbd_debug(5, "journal_head %p\n", jh);
1075         JBUFFER_TRACE(jh, "entry");
1076         if (is_handle_aborted(handle))
1077                 goto out;
1078         if (!buffer_jbd(bh)) {
1079                 ret = -EUCLEAN;
1080                 goto out;
1081         }
1082
1083         jbd_lock_bh_state(bh);
1084
1085         if (jh->b_modified == 0) {
1086                 /*
1087                  * This buffer's got modified and becoming part
1088                  * of the transaction. This needs to be done
1089                  * once a transaction -bzzz
1090                  */
1091                 jh->b_modified = 1;
1092                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1093                 handle->h_buffer_credits--;
1094         }
1095
1096         /*
1097          * fastpath, to avoid expensive locking.  If this buffer is already
1098          * on the running transaction's metadata list there is nothing to do.
1099          * Nobody can take it off again because there is a handle open.
1100          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1101          * result in this test being false, so we go in and take the locks.
1102          */
1103         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1104                 JBUFFER_TRACE(jh, "fastpath");
1105                 if (unlikely(jh->b_transaction !=
1106                              journal->j_running_transaction)) {
1107                         printk(KERN_EMERG "JBD: %s: "
1108                                "jh->b_transaction (%llu, %p, %u) != "
1109                                "journal->j_running_transaction (%p, %u)",
1110                                journal->j_devname,
1111                                (unsigned long long) bh->b_blocknr,
1112                                jh->b_transaction,
1113                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1114                                journal->j_running_transaction,
1115                                journal->j_running_transaction ?
1116                                journal->j_running_transaction->t_tid : 0);
1117                         ret = -EINVAL;
1118                 }
1119                 goto out_unlock_bh;
1120         }
1121
1122         set_buffer_jbddirty(bh);
1123
1124         /*
1125          * Metadata already on the current transaction list doesn't
1126          * need to be filed.  Metadata on another transaction's list must
1127          * be committing, and will be refiled once the commit completes:
1128          * leave it alone for now.
1129          */
1130         if (jh->b_transaction != transaction) {
1131                 JBUFFER_TRACE(jh, "already on other transaction");
1132                 if (unlikely(jh->b_transaction !=
1133                              journal->j_committing_transaction)) {
1134                         printk(KERN_EMERG "JBD: %s: "
1135                                "jh->b_transaction (%llu, %p, %u) != "
1136                                "journal->j_committing_transaction (%p, %u)",
1137                                journal->j_devname,
1138                                (unsigned long long) bh->b_blocknr,
1139                                jh->b_transaction,
1140                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1141                                journal->j_committing_transaction,
1142                                journal->j_committing_transaction ?
1143                                journal->j_committing_transaction->t_tid : 0);
1144                         ret = -EINVAL;
1145                 }
1146                 if (unlikely(jh->b_next_transaction != transaction)) {
1147                         printk(KERN_EMERG "JBD: %s: "
1148                                "jh->b_next_transaction (%llu, %p, %u) != "
1149                                "transaction (%p, %u)",
1150                                journal->j_devname,
1151                                (unsigned long long) bh->b_blocknr,
1152                                jh->b_next_transaction,
1153                                jh->b_next_transaction ?
1154                                jh->b_next_transaction->t_tid : 0,
1155                                transaction, transaction->t_tid);
1156                         ret = -EINVAL;
1157                 }
1158                 /* And this case is illegal: we can't reuse another
1159                  * transaction's data buffer, ever. */
1160                 goto out_unlock_bh;
1161         }
1162
1163         /* That test should have eliminated the following case: */
1164         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1165
1166         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1167         spin_lock(&journal->j_list_lock);
1168         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1169         spin_unlock(&journal->j_list_lock);
1170 out_unlock_bh:
1171         jbd_unlock_bh_state(bh);
1172 out:
1173         JBUFFER_TRACE(jh, "exit");
1174         if (ret)
1175                 __WARN();       /* All errors are bugs, so dump the stack */
1176         return ret;
1177 }
1178
1179 /*
1180  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1181  * updates, if the update decided in the end that it didn't need access.
1182  *
1183  */
1184 void
1185 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1186 {
1187         BUFFER_TRACE(bh, "entry");
1188 }
1189
1190 /**
1191  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1192  * @handle: transaction handle
1193  * @bh:     bh to 'forget'
1194  *
1195  * We can only do the bforget if there are no commits pending against the
1196  * buffer.  If the buffer is dirty in the current running transaction we
1197  * can safely unlink it.
1198  *
1199  * bh may not be a journalled buffer at all - it may be a non-JBD
1200  * buffer which came off the hashtable.  Check for this.
1201  *
1202  * Decrements bh->b_count by one.
1203  *
1204  * Allow this call even if the handle has aborted --- it may be part of
1205  * the caller's cleanup after an abort.
1206  */
1207 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1208 {
1209         transaction_t *transaction = handle->h_transaction;
1210         journal_t *journal = transaction->t_journal;
1211         struct journal_head *jh;
1212         int drop_reserve = 0;
1213         int err = 0;
1214         int was_modified = 0;
1215
1216         BUFFER_TRACE(bh, "entry");
1217
1218         jbd_lock_bh_state(bh);
1219         spin_lock(&journal->j_list_lock);
1220
1221         if (!buffer_jbd(bh))
1222                 goto not_jbd;
1223         jh = bh2jh(bh);
1224
1225         /* Critical error: attempting to delete a bitmap buffer, maybe?
1226          * Don't do any jbd operations, and return an error. */
1227         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1228                          "inconsistent data on disk")) {
1229                 err = -EIO;
1230                 goto not_jbd;
1231         }
1232
1233         /* keep track of wether or not this transaction modified us */
1234         was_modified = jh->b_modified;
1235
1236         /*
1237          * The buffer's going from the transaction, we must drop
1238          * all references -bzzz
1239          */
1240         jh->b_modified = 0;
1241
1242         if (jh->b_transaction == handle->h_transaction) {
1243                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1244
1245                 /* If we are forgetting a buffer which is already part
1246                  * of this transaction, then we can just drop it from
1247                  * the transaction immediately. */
1248                 clear_buffer_dirty(bh);
1249                 clear_buffer_jbddirty(bh);
1250
1251                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1252
1253                 /*
1254                  * we only want to drop a reference if this transaction
1255                  * modified the buffer
1256                  */
1257                 if (was_modified)
1258                         drop_reserve = 1;
1259
1260                 /*
1261                  * We are no longer going to journal this buffer.
1262                  * However, the commit of this transaction is still
1263                  * important to the buffer: the delete that we are now
1264                  * processing might obsolete an old log entry, so by
1265                  * committing, we can satisfy the buffer's checkpoint.
1266                  *
1267                  * So, if we have a checkpoint on the buffer, we should
1268                  * now refile the buffer on our BJ_Forget list so that
1269                  * we know to remove the checkpoint after we commit.
1270                  */
1271
1272                 if (jh->b_cp_transaction) {
1273                         __jbd2_journal_temp_unlink_buffer(jh);
1274                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1275                 } else {
1276                         __jbd2_journal_unfile_buffer(jh);
1277                         if (!buffer_jbd(bh)) {
1278                                 spin_unlock(&journal->j_list_lock);
1279                                 jbd_unlock_bh_state(bh);
1280                                 __bforget(bh);
1281                                 goto drop;
1282                         }
1283                 }
1284         } else if (jh->b_transaction) {
1285                 J_ASSERT_JH(jh, (jh->b_transaction ==
1286                                  journal->j_committing_transaction));
1287                 /* However, if the buffer is still owned by a prior
1288                  * (committing) transaction, we can't drop it yet... */
1289                 JBUFFER_TRACE(jh, "belongs to older transaction");
1290                 /* ... but we CAN drop it from the new transaction if we
1291                  * have also modified it since the original commit. */
1292
1293                 if (jh->b_next_transaction) {
1294                         J_ASSERT(jh->b_next_transaction == transaction);
1295                         jh->b_next_transaction = NULL;
1296
1297                         /*
1298                          * only drop a reference if this transaction modified
1299                          * the buffer
1300                          */
1301                         if (was_modified)
1302                                 drop_reserve = 1;
1303                 }
1304         }
1305
1306 not_jbd:
1307         spin_unlock(&journal->j_list_lock);
1308         jbd_unlock_bh_state(bh);
1309         __brelse(bh);
1310 drop:
1311         if (drop_reserve) {
1312                 /* no need to reserve log space for this block -bzzz */
1313                 handle->h_buffer_credits++;
1314         }
1315         return err;
1316 }
1317
1318 /**
1319  * int jbd2_journal_stop() - complete a transaction
1320  * @handle: tranaction to complete.
1321  *
1322  * All done for a particular handle.
1323  *
1324  * There is not much action needed here.  We just return any remaining
1325  * buffer credits to the transaction and remove the handle.  The only
1326  * complication is that we need to start a commit operation if the
1327  * filesystem is marked for synchronous update.
1328  *
1329  * jbd2_journal_stop itself will not usually return an error, but it may
1330  * do so in unusual circumstances.  In particular, expect it to
1331  * return -EIO if a jbd2_journal_abort has been executed since the
1332  * transaction began.
1333  */
1334 int jbd2_journal_stop(handle_t *handle)
1335 {
1336         transaction_t *transaction = handle->h_transaction;
1337         journal_t *journal = transaction->t_journal;
1338         int err, wait_for_commit = 0;
1339         tid_t tid;
1340         pid_t pid;
1341
1342         J_ASSERT(journal_current_handle() == handle);
1343
1344         if (is_handle_aborted(handle))
1345                 err = -EIO;
1346         else {
1347                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1348                 err = 0;
1349         }
1350
1351         if (--handle->h_ref > 0) {
1352                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1353                           handle->h_ref);
1354                 return err;
1355         }
1356
1357         jbd_debug(4, "Handle %p going down\n", handle);
1358
1359         /*
1360          * Implement synchronous transaction batching.  If the handle
1361          * was synchronous, don't force a commit immediately.  Let's
1362          * yield and let another thread piggyback onto this
1363          * transaction.  Keep doing that while new threads continue to
1364          * arrive.  It doesn't cost much - we're about to run a commit
1365          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1366          * operations by 30x or more...
1367          *
1368          * We try and optimize the sleep time against what the
1369          * underlying disk can do, instead of having a static sleep
1370          * time.  This is useful for the case where our storage is so
1371          * fast that it is more optimal to go ahead and force a flush
1372          * and wait for the transaction to be committed than it is to
1373          * wait for an arbitrary amount of time for new writers to
1374          * join the transaction.  We achieve this by measuring how
1375          * long it takes to commit a transaction, and compare it with
1376          * how long this transaction has been running, and if run time
1377          * < commit time then we sleep for the delta and commit.  This
1378          * greatly helps super fast disks that would see slowdowns as
1379          * more threads started doing fsyncs.
1380          *
1381          * But don't do this if this process was the most recent one
1382          * to perform a synchronous write.  We do this to detect the
1383          * case where a single process is doing a stream of sync
1384          * writes.  No point in waiting for joiners in that case.
1385          */
1386         pid = current->pid;
1387         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1388                 u64 commit_time, trans_time;
1389
1390                 journal->j_last_sync_writer = pid;
1391
1392                 read_lock(&journal->j_state_lock);
1393                 commit_time = journal->j_average_commit_time;
1394                 read_unlock(&journal->j_state_lock);
1395
1396                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1397                                                    transaction->t_start_time));
1398
1399                 commit_time = max_t(u64, commit_time,
1400                                     1000*journal->j_min_batch_time);
1401                 commit_time = min_t(u64, commit_time,
1402                                     1000*journal->j_max_batch_time);
1403
1404                 if (trans_time < commit_time) {
1405                         ktime_t expires = ktime_add_ns(ktime_get(),
1406                                                        commit_time);
1407                         set_current_state(TASK_UNINTERRUPTIBLE);
1408                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1409                 }
1410         }
1411
1412         if (handle->h_sync)
1413                 transaction->t_synchronous_commit = 1;
1414         current->journal_info = NULL;
1415         atomic_sub(handle->h_buffer_credits,
1416                    &transaction->t_outstanding_credits);
1417
1418         /*
1419          * If the handle is marked SYNC, we need to set another commit
1420          * going!  We also want to force a commit if the current
1421          * transaction is occupying too much of the log, or if the
1422          * transaction is too old now.
1423          */
1424         if (handle->h_sync ||
1425             (atomic_read(&transaction->t_outstanding_credits) >
1426              journal->j_max_transaction_buffers) ||
1427             time_after_eq(jiffies, transaction->t_expires)) {
1428                 /* Do this even for aborted journals: an abort still
1429                  * completes the commit thread, it just doesn't write
1430                  * anything to disk. */
1431
1432                 jbd_debug(2, "transaction too old, requesting commit for "
1433                                         "handle %p\n", handle);
1434                 /* This is non-blocking */
1435                 jbd2_log_start_commit(journal, transaction->t_tid);
1436
1437                 /*
1438                  * Special case: JBD2_SYNC synchronous updates require us
1439                  * to wait for the commit to complete.
1440                  */
1441                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1442                         wait_for_commit = 1;
1443         }
1444
1445         /*
1446          * Once we drop t_updates, if it goes to zero the transaction
1447          * could start committing on us and eventually disappear.  So
1448          * once we do this, we must not dereference transaction
1449          * pointer again.
1450          */
1451         tid = transaction->t_tid;
1452         if (atomic_dec_and_test(&transaction->t_updates)) {
1453                 wake_up(&journal->j_wait_updates);
1454                 if (journal->j_barrier_count)
1455                         wake_up(&journal->j_wait_transaction_locked);
1456         }
1457
1458         if (wait_for_commit)
1459                 err = jbd2_log_wait_commit(journal, tid);
1460
1461         lock_map_release(&handle->h_lockdep_map);
1462
1463         jbd2_free_handle(handle);
1464         return err;
1465 }
1466
1467 /**
1468  * int jbd2_journal_force_commit() - force any uncommitted transactions
1469  * @journal: journal to force
1470  *
1471  * For synchronous operations: force any uncommitted transactions
1472  * to disk.  May seem kludgy, but it reuses all the handle batching
1473  * code in a very simple manner.
1474  */
1475 int jbd2_journal_force_commit(journal_t *journal)
1476 {
1477         handle_t *handle;
1478         int ret;
1479
1480         handle = jbd2_journal_start(journal, 1);
1481         if (IS_ERR(handle)) {
1482                 ret = PTR_ERR(handle);
1483         } else {
1484                 handle->h_sync = 1;
1485                 ret = jbd2_journal_stop(handle);
1486         }
1487         return ret;
1488 }
1489
1490 /*
1491  *
1492  * List management code snippets: various functions for manipulating the
1493  * transaction buffer lists.
1494  *
1495  */
1496
1497 /*
1498  * Append a buffer to a transaction list, given the transaction's list head
1499  * pointer.
1500  *
1501  * j_list_lock is held.
1502  *
1503  * jbd_lock_bh_state(jh2bh(jh)) is held.
1504  */
1505
1506 static inline void
1507 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1508 {
1509         if (!*list) {
1510                 jh->b_tnext = jh->b_tprev = jh;
1511                 *list = jh;
1512         } else {
1513                 /* Insert at the tail of the list to preserve order */
1514                 struct journal_head *first = *list, *last = first->b_tprev;
1515                 jh->b_tprev = last;
1516                 jh->b_tnext = first;
1517                 last->b_tnext = first->b_tprev = jh;
1518         }
1519 }
1520
1521 /*
1522  * Remove a buffer from a transaction list, given the transaction's list
1523  * head pointer.
1524  *
1525  * Called with j_list_lock held, and the journal may not be locked.
1526  *
1527  * jbd_lock_bh_state(jh2bh(jh)) is held.
1528  */
1529
1530 static inline void
1531 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1532 {
1533         if (*list == jh) {
1534                 *list = jh->b_tnext;
1535                 if (*list == jh)
1536                         *list = NULL;
1537         }
1538         jh->b_tprev->b_tnext = jh->b_tnext;
1539         jh->b_tnext->b_tprev = jh->b_tprev;
1540 }
1541
1542 /*
1543  * Remove a buffer from the appropriate transaction list.
1544  *
1545  * Note that this function can *change* the value of
1546  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1547  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1548  * of these pointers, it could go bad.  Generally the caller needs to re-read
1549  * the pointer from the transaction_t.
1550  *
1551  * Called under j_list_lock.  The journal may not be locked.
1552  */
1553 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1554 {
1555         struct journal_head **list = NULL;
1556         transaction_t *transaction;
1557         struct buffer_head *bh = jh2bh(jh);
1558
1559         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1560         transaction = jh->b_transaction;
1561         if (transaction)
1562                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1563
1564         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1565         if (jh->b_jlist != BJ_None)
1566                 J_ASSERT_JH(jh, transaction != NULL);
1567
1568         switch (jh->b_jlist) {
1569         case BJ_None:
1570                 return;
1571         case BJ_Metadata:
1572                 transaction->t_nr_buffers--;
1573                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1574                 list = &transaction->t_buffers;
1575                 break;
1576         case BJ_Forget:
1577                 list = &transaction->t_forget;
1578                 break;
1579         case BJ_IO:
1580                 list = &transaction->t_iobuf_list;
1581                 break;
1582         case BJ_Shadow:
1583                 list = &transaction->t_shadow_list;
1584                 break;
1585         case BJ_LogCtl:
1586                 list = &transaction->t_log_list;
1587                 break;
1588         case BJ_Reserved:
1589                 list = &transaction->t_reserved_list;
1590                 break;
1591         }
1592
1593         __blist_del_buffer(list, jh);
1594         jh->b_jlist = BJ_None;
1595         if (test_clear_buffer_jbddirty(bh))
1596                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1597 }
1598
1599 /*
1600  * Remove buffer from all transactions.
1601  *
1602  * Called with bh_state lock and j_list_lock
1603  *
1604  * jh and bh may be already freed when this function returns.
1605  */
1606 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1607 {
1608         __jbd2_journal_temp_unlink_buffer(jh);
1609         jh->b_transaction = NULL;
1610         jbd2_journal_put_journal_head(jh);
1611 }
1612
1613 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1614 {
1615         struct buffer_head *bh = jh2bh(jh);
1616
1617         /* Get reference so that buffer cannot be freed before we unlock it */
1618         get_bh(bh);
1619         jbd_lock_bh_state(bh);
1620         spin_lock(&journal->j_list_lock);
1621         __jbd2_journal_unfile_buffer(jh);
1622         spin_unlock(&journal->j_list_lock);
1623         jbd_unlock_bh_state(bh);
1624         __brelse(bh);
1625 }
1626
1627 /*
1628  * Called from jbd2_journal_try_to_free_buffers().
1629  *
1630  * Called under jbd_lock_bh_state(bh)
1631  */
1632 static void
1633 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1634 {
1635         struct journal_head *jh;
1636
1637         jh = bh2jh(bh);
1638
1639         if (buffer_locked(bh) || buffer_dirty(bh))
1640                 goto out;
1641
1642         if (jh->b_next_transaction != NULL)
1643                 goto out;
1644
1645         spin_lock(&journal->j_list_lock);
1646         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1647                 /* written-back checkpointed metadata buffer */
1648                 if (jh->b_jlist == BJ_None) {
1649                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1650                         __jbd2_journal_remove_checkpoint(jh);
1651                 }
1652         }
1653         spin_unlock(&journal->j_list_lock);
1654 out:
1655         return;
1656 }
1657
1658 /**
1659  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1660  * @journal: journal for operation
1661  * @page: to try and free
1662  * @gfp_mask: we use the mask to detect how hard should we try to release
1663  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1664  * release the buffers.
1665  *
1666  *
1667  * For all the buffers on this page,
1668  * if they are fully written out ordered data, move them onto BUF_CLEAN
1669  * so try_to_free_buffers() can reap them.
1670  *
1671  * This function returns non-zero if we wish try_to_free_buffers()
1672  * to be called. We do this if the page is releasable by try_to_free_buffers().
1673  * We also do it if the page has locked or dirty buffers and the caller wants
1674  * us to perform sync or async writeout.
1675  *
1676  * This complicates JBD locking somewhat.  We aren't protected by the
1677  * BKL here.  We wish to remove the buffer from its committing or
1678  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1679  *
1680  * This may *change* the value of transaction_t->t_datalist, so anyone
1681  * who looks at t_datalist needs to lock against this function.
1682  *
1683  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1684  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1685  * will come out of the lock with the buffer dirty, which makes it
1686  * ineligible for release here.
1687  *
1688  * Who else is affected by this?  hmm...  Really the only contender
1689  * is do_get_write_access() - it could be looking at the buffer while
1690  * journal_try_to_free_buffer() is changing its state.  But that
1691  * cannot happen because we never reallocate freed data as metadata
1692  * while the data is part of a transaction.  Yes?
1693  *
1694  * Return 0 on failure, 1 on success
1695  */
1696 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1697                                 struct page *page, gfp_t gfp_mask)
1698 {
1699         struct buffer_head *head;
1700         struct buffer_head *bh;
1701         int ret = 0;
1702
1703         J_ASSERT(PageLocked(page));
1704
1705         head = page_buffers(page);
1706         bh = head;
1707         do {
1708                 struct journal_head *jh;
1709
1710                 /*
1711                  * We take our own ref against the journal_head here to avoid
1712                  * having to add tons of locking around each instance of
1713                  * jbd2_journal_put_journal_head().
1714                  */
1715                 jh = jbd2_journal_grab_journal_head(bh);
1716                 if (!jh)
1717                         continue;
1718
1719                 jbd_lock_bh_state(bh);
1720                 __journal_try_to_free_buffer(journal, bh);
1721                 jbd2_journal_put_journal_head(jh);
1722                 jbd_unlock_bh_state(bh);
1723                 if (buffer_jbd(bh))
1724                         goto busy;
1725         } while ((bh = bh->b_this_page) != head);
1726
1727         ret = try_to_free_buffers(page);
1728
1729 busy:
1730         return ret;
1731 }
1732
1733 /*
1734  * This buffer is no longer needed.  If it is on an older transaction's
1735  * checkpoint list we need to record it on this transaction's forget list
1736  * to pin this buffer (and hence its checkpointing transaction) down until
1737  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1738  * release it.
1739  * Returns non-zero if JBD no longer has an interest in the buffer.
1740  *
1741  * Called under j_list_lock.
1742  *
1743  * Called under jbd_lock_bh_state(bh).
1744  */
1745 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1746 {
1747         int may_free = 1;
1748         struct buffer_head *bh = jh2bh(jh);
1749
1750         if (jh->b_cp_transaction) {
1751                 JBUFFER_TRACE(jh, "on running+cp transaction");
1752                 __jbd2_journal_temp_unlink_buffer(jh);
1753                 /*
1754                  * We don't want to write the buffer anymore, clear the
1755                  * bit so that we don't confuse checks in
1756                  * __journal_file_buffer
1757                  */
1758                 clear_buffer_dirty(bh);
1759                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1760                 may_free = 0;
1761         } else {
1762                 JBUFFER_TRACE(jh, "on running transaction");
1763                 __jbd2_journal_unfile_buffer(jh);
1764         }
1765         return may_free;
1766 }
1767
1768 /*
1769  * jbd2_journal_invalidatepage
1770  *
1771  * This code is tricky.  It has a number of cases to deal with.
1772  *
1773  * There are two invariants which this code relies on:
1774  *
1775  * i_size must be updated on disk before we start calling invalidatepage on the
1776  * data.
1777  *
1778  *  This is done in ext3 by defining an ext3_setattr method which
1779  *  updates i_size before truncate gets going.  By maintaining this
1780  *  invariant, we can be sure that it is safe to throw away any buffers
1781  *  attached to the current transaction: once the transaction commits,
1782  *  we know that the data will not be needed.
1783  *
1784  *  Note however that we can *not* throw away data belonging to the
1785  *  previous, committing transaction!
1786  *
1787  * Any disk blocks which *are* part of the previous, committing
1788  * transaction (and which therefore cannot be discarded immediately) are
1789  * not going to be reused in the new running transaction
1790  *
1791  *  The bitmap committed_data images guarantee this: any block which is
1792  *  allocated in one transaction and removed in the next will be marked
1793  *  as in-use in the committed_data bitmap, so cannot be reused until
1794  *  the next transaction to delete the block commits.  This means that
1795  *  leaving committing buffers dirty is quite safe: the disk blocks
1796  *  cannot be reallocated to a different file and so buffer aliasing is
1797  *  not possible.
1798  *
1799  *
1800  * The above applies mainly to ordered data mode.  In writeback mode we
1801  * don't make guarantees about the order in which data hits disk --- in
1802  * particular we don't guarantee that new dirty data is flushed before
1803  * transaction commit --- so it is always safe just to discard data
1804  * immediately in that mode.  --sct
1805  */
1806
1807 /*
1808  * The journal_unmap_buffer helper function returns zero if the buffer
1809  * concerned remains pinned as an anonymous buffer belonging to an older
1810  * transaction.
1811  *
1812  * We're outside-transaction here.  Either or both of j_running_transaction
1813  * and j_committing_transaction may be NULL.
1814  */
1815 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1816 {
1817         transaction_t *transaction;
1818         struct journal_head *jh;
1819         int may_free = 1;
1820         int ret;
1821
1822         BUFFER_TRACE(bh, "entry");
1823
1824         /*
1825          * It is safe to proceed here without the j_list_lock because the
1826          * buffers cannot be stolen by try_to_free_buffers as long as we are
1827          * holding the page lock. --sct
1828          */
1829
1830         if (!buffer_jbd(bh))
1831                 goto zap_buffer_unlocked;
1832
1833         /* OK, we have data buffer in journaled mode */
1834         write_lock(&journal->j_state_lock);
1835         jbd_lock_bh_state(bh);
1836         spin_lock(&journal->j_list_lock);
1837
1838         jh = jbd2_journal_grab_journal_head(bh);
1839         if (!jh)
1840                 goto zap_buffer_no_jh;
1841
1842         /*
1843          * We cannot remove the buffer from checkpoint lists until the
1844          * transaction adding inode to orphan list (let's call it T)
1845          * is committed.  Otherwise if the transaction changing the
1846          * buffer would be cleaned from the journal before T is
1847          * committed, a crash will cause that the correct contents of
1848          * the buffer will be lost.  On the other hand we have to
1849          * clear the buffer dirty bit at latest at the moment when the
1850          * transaction marking the buffer as freed in the filesystem
1851          * structures is committed because from that moment on the
1852          * buffer can be reallocated and used by a different page.
1853          * Since the block hasn't been freed yet but the inode has
1854          * already been added to orphan list, it is safe for us to add
1855          * the buffer to BJ_Forget list of the newest transaction.
1856          */
1857         transaction = jh->b_transaction;
1858         if (transaction == NULL) {
1859                 /* First case: not on any transaction.  If it
1860                  * has no checkpoint link, then we can zap it:
1861                  * it's a writeback-mode buffer so we don't care
1862                  * if it hits disk safely. */
1863                 if (!jh->b_cp_transaction) {
1864                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1865                         goto zap_buffer;
1866                 }
1867
1868                 if (!buffer_dirty(bh)) {
1869                         /* bdflush has written it.  We can drop it now */
1870                         goto zap_buffer;
1871                 }
1872
1873                 /* OK, it must be in the journal but still not
1874                  * written fully to disk: it's metadata or
1875                  * journaled data... */
1876
1877                 if (journal->j_running_transaction) {
1878                         /* ... and once the current transaction has
1879                          * committed, the buffer won't be needed any
1880                          * longer. */
1881                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1882                         ret = __dispose_buffer(jh,
1883                                         journal->j_running_transaction);
1884                         jbd2_journal_put_journal_head(jh);
1885                         spin_unlock(&journal->j_list_lock);
1886                         jbd_unlock_bh_state(bh);
1887                         write_unlock(&journal->j_state_lock);
1888                         return ret;
1889                 } else {
1890                         /* There is no currently-running transaction. So the
1891                          * orphan record which we wrote for this file must have
1892                          * passed into commit.  We must attach this buffer to
1893                          * the committing transaction, if it exists. */
1894                         if (journal->j_committing_transaction) {
1895                                 JBUFFER_TRACE(jh, "give to committing trans");
1896                                 ret = __dispose_buffer(jh,
1897                                         journal->j_committing_transaction);
1898                                 jbd2_journal_put_journal_head(jh);
1899                                 spin_unlock(&journal->j_list_lock);
1900                                 jbd_unlock_bh_state(bh);
1901                                 write_unlock(&journal->j_state_lock);
1902                                 return ret;
1903                         } else {
1904                                 /* The orphan record's transaction has
1905                                  * committed.  We can cleanse this buffer */
1906                                 clear_buffer_jbddirty(bh);
1907                                 goto zap_buffer;
1908                         }
1909                 }
1910         } else if (transaction == journal->j_committing_transaction) {
1911                 JBUFFER_TRACE(jh, "on committing transaction");
1912                 /*
1913                  * The buffer is committing, we simply cannot touch
1914                  * it. So we just set j_next_transaction to the
1915                  * running transaction (if there is one) and mark
1916                  * buffer as freed so that commit code knows it should
1917                  * clear dirty bits when it is done with the buffer.
1918                  */
1919                 set_buffer_freed(bh);
1920                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1921                         jh->b_next_transaction = journal->j_running_transaction;
1922                 jbd2_journal_put_journal_head(jh);
1923                 spin_unlock(&journal->j_list_lock);
1924                 jbd_unlock_bh_state(bh);
1925                 write_unlock(&journal->j_state_lock);
1926                 return 0;
1927         } else {
1928                 /* Good, the buffer belongs to the running transaction.
1929                  * We are writing our own transaction's data, not any
1930                  * previous one's, so it is safe to throw it away
1931                  * (remember that we expect the filesystem to have set
1932                  * i_size already for this truncate so recovery will not
1933                  * expose the disk blocks we are discarding here.) */
1934                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1935                 JBUFFER_TRACE(jh, "on running transaction");
1936                 may_free = __dispose_buffer(jh, transaction);
1937         }
1938
1939 zap_buffer:
1940         jbd2_journal_put_journal_head(jh);
1941 zap_buffer_no_jh:
1942         spin_unlock(&journal->j_list_lock);
1943         jbd_unlock_bh_state(bh);
1944         write_unlock(&journal->j_state_lock);
1945 zap_buffer_unlocked:
1946         clear_buffer_dirty(bh);
1947         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1948         clear_buffer_mapped(bh);
1949         clear_buffer_req(bh);
1950         clear_buffer_new(bh);
1951         bh->b_bdev = NULL;
1952         return may_free;
1953 }
1954
1955 /**
1956  * void jbd2_journal_invalidatepage()
1957  * @journal: journal to use for flush...
1958  * @page:    page to flush
1959  * @offset:  length of page to invalidate.
1960  *
1961  * Reap page buffers containing data after offset in page.
1962  *
1963  */
1964 void jbd2_journal_invalidatepage(journal_t *journal,
1965                       struct page *page,
1966                       unsigned long offset)
1967 {
1968         struct buffer_head *head, *bh, *next;
1969         unsigned int curr_off = 0;
1970         int may_free = 1;
1971
1972         if (!PageLocked(page))
1973                 BUG();
1974         if (!page_has_buffers(page))
1975                 return;
1976
1977         /* We will potentially be playing with lists other than just the
1978          * data lists (especially for journaled data mode), so be
1979          * cautious in our locking. */
1980
1981         head = bh = page_buffers(page);
1982         do {
1983                 unsigned int next_off = curr_off + bh->b_size;
1984                 next = bh->b_this_page;
1985
1986                 if (offset <= curr_off) {
1987                         /* This block is wholly outside the truncation point */
1988                         lock_buffer(bh);
1989                         may_free &= journal_unmap_buffer(journal, bh);
1990                         unlock_buffer(bh);
1991                 }
1992                 curr_off = next_off;
1993                 bh = next;
1994
1995         } while (bh != head);
1996
1997         if (!offset) {
1998                 if (may_free && try_to_free_buffers(page))
1999                         J_ASSERT(!page_has_buffers(page));
2000         }
2001 }
2002
2003 /*
2004  * File a buffer on the given transaction list.
2005  */
2006 void __jbd2_journal_file_buffer(struct journal_head *jh,
2007                         transaction_t *transaction, int jlist)
2008 {
2009         struct journal_head **list = NULL;
2010         int was_dirty = 0;
2011         struct buffer_head *bh = jh2bh(jh);
2012
2013         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2014         assert_spin_locked(&transaction->t_journal->j_list_lock);
2015
2016         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2018                                 jh->b_transaction == NULL);
2019
2020         if (jh->b_transaction && jh->b_jlist == jlist)
2021                 return;
2022
2023         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2024             jlist == BJ_Shadow || jlist == BJ_Forget) {
2025                 /*
2026                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2027                  * instead of buffer_dirty. We should not see a dirty bit set
2028                  * here because we clear it in do_get_write_access but e.g.
2029                  * tune2fs can modify the sb and set the dirty bit at any time
2030                  * so we try to gracefully handle that.
2031                  */
2032                 if (buffer_dirty(bh))
2033                         warn_dirty_buffer(bh);
2034                 if (test_clear_buffer_dirty(bh) ||
2035                     test_clear_buffer_jbddirty(bh))
2036                         was_dirty = 1;
2037         }
2038
2039         if (jh->b_transaction)
2040                 __jbd2_journal_temp_unlink_buffer(jh);
2041         else
2042                 jbd2_journal_grab_journal_head(bh);
2043         jh->b_transaction = transaction;
2044
2045         switch (jlist) {
2046         case BJ_None:
2047                 J_ASSERT_JH(jh, !jh->b_committed_data);
2048                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2049                 return;
2050         case BJ_Metadata:
2051                 transaction->t_nr_buffers++;
2052                 list = &transaction->t_buffers;
2053                 break;
2054         case BJ_Forget:
2055                 list = &transaction->t_forget;
2056                 break;
2057         case BJ_IO:
2058                 list = &transaction->t_iobuf_list;
2059                 break;
2060         case BJ_Shadow:
2061                 list = &transaction->t_shadow_list;
2062                 break;
2063         case BJ_LogCtl:
2064                 list = &transaction->t_log_list;
2065                 break;
2066         case BJ_Reserved:
2067                 list = &transaction->t_reserved_list;
2068                 break;
2069         }
2070
2071         __blist_add_buffer(list, jh);
2072         jh->b_jlist = jlist;
2073
2074         if (was_dirty)
2075                 set_buffer_jbddirty(bh);
2076 }
2077
2078 void jbd2_journal_file_buffer(struct journal_head *jh,
2079                                 transaction_t *transaction, int jlist)
2080 {
2081         jbd_lock_bh_state(jh2bh(jh));
2082         spin_lock(&transaction->t_journal->j_list_lock);
2083         __jbd2_journal_file_buffer(jh, transaction, jlist);
2084         spin_unlock(&transaction->t_journal->j_list_lock);
2085         jbd_unlock_bh_state(jh2bh(jh));
2086 }
2087
2088 /*
2089  * Remove a buffer from its current buffer list in preparation for
2090  * dropping it from its current transaction entirely.  If the buffer has
2091  * already started to be used by a subsequent transaction, refile the
2092  * buffer on that transaction's metadata list.
2093  *
2094  * Called under j_list_lock
2095  * Called under jbd_lock_bh_state(jh2bh(jh))
2096  *
2097  * jh and bh may be already free when this function returns
2098  */
2099 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2100 {
2101         int was_dirty, jlist;
2102         struct buffer_head *bh = jh2bh(jh);
2103
2104         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2105         if (jh->b_transaction)
2106                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2107
2108         /* If the buffer is now unused, just drop it. */
2109         if (jh->b_next_transaction == NULL) {
2110                 __jbd2_journal_unfile_buffer(jh);
2111                 return;
2112         }
2113
2114         /*
2115          * It has been modified by a later transaction: add it to the new
2116          * transaction's metadata list.
2117          */
2118
2119         was_dirty = test_clear_buffer_jbddirty(bh);
2120         __jbd2_journal_temp_unlink_buffer(jh);
2121         /*
2122          * We set b_transaction here because b_next_transaction will inherit
2123          * our jh reference and thus __jbd2_journal_file_buffer() must not
2124          * take a new one.
2125          */
2126         jh->b_transaction = jh->b_next_transaction;
2127         jh->b_next_transaction = NULL;
2128         if (buffer_freed(bh))
2129                 jlist = BJ_Forget;
2130         else if (jh->b_modified)
2131                 jlist = BJ_Metadata;
2132         else
2133                 jlist = BJ_Reserved;
2134         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2135         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2136
2137         if (was_dirty)
2138                 set_buffer_jbddirty(bh);
2139 }
2140
2141 /*
2142  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2143  * bh reference so that we can safely unlock bh.
2144  *
2145  * The jh and bh may be freed by this call.
2146  */
2147 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2148 {
2149         struct buffer_head *bh = jh2bh(jh);
2150
2151         /* Get reference so that buffer cannot be freed before we unlock it */
2152         get_bh(bh);
2153         jbd_lock_bh_state(bh);
2154         spin_lock(&journal->j_list_lock);
2155         __jbd2_journal_refile_buffer(jh);
2156         jbd_unlock_bh_state(bh);
2157         spin_unlock(&journal->j_list_lock);
2158         __brelse(bh);
2159 }
2160
2161 /*
2162  * File inode in the inode list of the handle's transaction
2163  */
2164 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2165 {
2166         transaction_t *transaction = handle->h_transaction;
2167         journal_t *journal = transaction->t_journal;
2168
2169         if (is_handle_aborted(handle))
2170                 return -EIO;
2171
2172         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2173                         transaction->t_tid);
2174
2175         /*
2176          * First check whether inode isn't already on the transaction's
2177          * lists without taking the lock. Note that this check is safe
2178          * without the lock as we cannot race with somebody removing inode
2179          * from the transaction. The reason is that we remove inode from the
2180          * transaction only in journal_release_jbd_inode() and when we commit
2181          * the transaction. We are guarded from the first case by holding
2182          * a reference to the inode. We are safe against the second case
2183          * because if jinode->i_transaction == transaction, commit code
2184          * cannot touch the transaction because we hold reference to it,
2185          * and if jinode->i_next_transaction == transaction, commit code
2186          * will only file the inode where we want it.
2187          */
2188         if (jinode->i_transaction == transaction ||
2189             jinode->i_next_transaction == transaction)
2190                 return 0;
2191
2192         spin_lock(&journal->j_list_lock);
2193
2194         if (jinode->i_transaction == transaction ||
2195             jinode->i_next_transaction == transaction)
2196                 goto done;
2197
2198         /*
2199          * We only ever set this variable to 1 so the test is safe. Since
2200          * t_need_data_flush is likely to be set, we do the test to save some
2201          * cacheline bouncing
2202          */
2203         if (!transaction->t_need_data_flush)
2204                 transaction->t_need_data_flush = 1;
2205         /* On some different transaction's list - should be
2206          * the committing one */
2207         if (jinode->i_transaction) {
2208                 J_ASSERT(jinode->i_next_transaction == NULL);
2209                 J_ASSERT(jinode->i_transaction ==
2210                                         journal->j_committing_transaction);
2211                 jinode->i_next_transaction = transaction;
2212                 goto done;
2213         }
2214         /* Not on any transaction list... */
2215         J_ASSERT(!jinode->i_next_transaction);
2216         jinode->i_transaction = transaction;
2217         list_add(&jinode->i_list, &transaction->t_inode_list);
2218 done:
2219         spin_unlock(&journal->j_list_lock);
2220
2221         return 0;
2222 }
2223
2224 /*
2225  * File truncate and transaction commit interact with each other in a
2226  * non-trivial way.  If a transaction writing data block A is
2227  * committing, we cannot discard the data by truncate until we have
2228  * written them.  Otherwise if we crashed after the transaction with
2229  * write has committed but before the transaction with truncate has
2230  * committed, we could see stale data in block A.  This function is a
2231  * helper to solve this problem.  It starts writeout of the truncated
2232  * part in case it is in the committing transaction.
2233  *
2234  * Filesystem code must call this function when inode is journaled in
2235  * ordered mode before truncation happens and after the inode has been
2236  * placed on orphan list with the new inode size. The second condition
2237  * avoids the race that someone writes new data and we start
2238  * committing the transaction after this function has been called but
2239  * before a transaction for truncate is started (and furthermore it
2240  * allows us to optimize the case where the addition to orphan list
2241  * happens in the same transaction as write --- we don't have to write
2242  * any data in such case).
2243  */
2244 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2245                                         struct jbd2_inode *jinode,
2246                                         loff_t new_size)
2247 {
2248         transaction_t *inode_trans, *commit_trans;
2249         int ret = 0;
2250
2251         /* This is a quick check to avoid locking if not necessary */
2252         if (!jinode->i_transaction)
2253                 goto out;
2254         /* Locks are here just to force reading of recent values, it is
2255          * enough that the transaction was not committing before we started
2256          * a transaction adding the inode to orphan list */
2257         read_lock(&journal->j_state_lock);
2258         commit_trans = journal->j_committing_transaction;
2259         read_unlock(&journal->j_state_lock);
2260         spin_lock(&journal->j_list_lock);
2261         inode_trans = jinode->i_transaction;
2262         spin_unlock(&journal->j_list_lock);
2263         if (inode_trans == commit_trans) {
2264                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2265                         new_size, LLONG_MAX);
2266                 if (ret)
2267                         jbd2_journal_abort(journal, ret);
2268         }
2269 out:
2270         return ret;
2271 }