]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/kernfs/dir.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[karo-tx-linux.git] / fs / kernfs / dir.c
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);     /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29         lockdep_assert_held(&kernfs_mutex);
30         return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36         return kn->flags & KERNFS_LOCKDEP;
37 #else
38         return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44         return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49 {
50         size_t depth = 0;
51
52         while (to->parent && to != from) {
53                 depth++;
54                 to = to->parent;
55         }
56         return depth;
57 }
58
59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60                                                   struct kernfs_node *b)
61 {
62         size_t da, db;
63         struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64
65         if (ra != rb)
66                 return NULL;
67
68         da = kernfs_depth(ra->kn, a);
69         db = kernfs_depth(rb->kn, b);
70
71         while (da > db) {
72                 a = a->parent;
73                 da--;
74         }
75         while (db > da) {
76                 b = b->parent;
77                 db--;
78         }
79
80         /* worst case b and a will be the same at root */
81         while (b != a) {
82                 b = b->parent;
83                 a = a->parent;
84         }
85
86         return a;
87 }
88
89 /**
90  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91  * where kn_from is treated as root of the path.
92  * @kn_from: kernfs node which should be treated as root for the path
93  * @kn_to: kernfs node to which path is needed
94  * @buf: buffer to copy the path into
95  * @buflen: size of @buf
96  *
97  * We need to handle couple of scenarios here:
98  * [1] when @kn_from is an ancestor of @kn_to at some level
99  * kn_from: /n1/n2/n3
100  * kn_to:   /n1/n2/n3/n4/n5
101  * result:  /n4/n5
102  *
103  * [2] when @kn_from is on a different hierarchy and we need to find common
104  * ancestor between @kn_from and @kn_to.
105  * kn_from: /n1/n2/n3/n4
106  * kn_to:   /n1/n2/n5
107  * result:  /../../n5
108  * OR
109  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
110  * kn_to:   /n1/n2/n3         [depth=3]
111  * result:  /../..
112  *
113  * Returns the length of the full path.  If the full length is equal to or
114  * greater than @buflen, @buf contains the truncated path with the trailing
115  * '\0'.  On error, -errno is returned.
116  */
117 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
118                                         struct kernfs_node *kn_from,
119                                         char *buf, size_t buflen)
120 {
121         struct kernfs_node *kn, *common;
122         const char parent_str[] = "/..";
123         size_t depth_from, depth_to, len = 0;
124         int i, j;
125
126         if (!kn_from)
127                 kn_from = kernfs_root(kn_to)->kn;
128
129         if (kn_from == kn_to)
130                 return strlcpy(buf, "/", buflen);
131
132         common = kernfs_common_ancestor(kn_from, kn_to);
133         if (WARN_ON(!common))
134                 return -EINVAL;
135
136         depth_to = kernfs_depth(common, kn_to);
137         depth_from = kernfs_depth(common, kn_from);
138
139         if (buf)
140                 buf[0] = '\0';
141
142         for (i = 0; i < depth_from; i++)
143                 len += strlcpy(buf + len, parent_str,
144                                len < buflen ? buflen - len : 0);
145
146         /* Calculate how many bytes we need for the rest */
147         for (i = depth_to - 1; i >= 0; i--) {
148                 for (kn = kn_to, j = 0; j < i; j++)
149                         kn = kn->parent;
150                 len += strlcpy(buf + len, "/",
151                                len < buflen ? buflen - len : 0);
152                 len += strlcpy(buf + len, kn->name,
153                                len < buflen ? buflen - len : 0);
154         }
155
156         return len;
157 }
158
159 /**
160  * kernfs_name - obtain the name of a given node
161  * @kn: kernfs_node of interest
162  * @buf: buffer to copy @kn's name into
163  * @buflen: size of @buf
164  *
165  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
166  * similar to strlcpy().  It returns the length of @kn's name and if @buf
167  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
168  *
169  * This function can be called from any context.
170  */
171 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
172 {
173         unsigned long flags;
174         int ret;
175
176         spin_lock_irqsave(&kernfs_rename_lock, flags);
177         ret = kernfs_name_locked(kn, buf, buflen);
178         spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179         return ret;
180 }
181
182 /**
183  * kernfs_path_from_node - build path of node @to relative to @from.
184  * @from: parent kernfs_node relative to which we need to build the path
185  * @to: kernfs_node of interest
186  * @buf: buffer to copy @to's path into
187  * @buflen: size of @buf
188  *
189  * Builds @to's path relative to @from in @buf. @from and @to must
190  * be on the same kernfs-root. If @from is not parent of @to, then a relative
191  * path (which includes '..'s) as needed to reach from @from to @to is
192  * returned.
193  *
194  * Returns the length of the full path.  If the full length is equal to or
195  * greater than @buflen, @buf contains the truncated path with the trailing
196  * '\0'.  On error, -errno is returned.
197  */
198 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
199                           char *buf, size_t buflen)
200 {
201         unsigned long flags;
202         int ret;
203
204         spin_lock_irqsave(&kernfs_rename_lock, flags);
205         ret = kernfs_path_from_node_locked(to, from, buf, buflen);
206         spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207         return ret;
208 }
209 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
210
211 /**
212  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
213  * @kn: kernfs_node of interest
214  *
215  * This function can be called from any context.
216  */
217 void pr_cont_kernfs_name(struct kernfs_node *kn)
218 {
219         unsigned long flags;
220
221         spin_lock_irqsave(&kernfs_rename_lock, flags);
222
223         kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
224         pr_cont("%s", kernfs_pr_cont_buf);
225
226         spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 }
228
229 /**
230  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
231  * @kn: kernfs_node of interest
232  *
233  * This function can be called from any context.
234  */
235 void pr_cont_kernfs_path(struct kernfs_node *kn)
236 {
237         unsigned long flags;
238         int sz;
239
240         spin_lock_irqsave(&kernfs_rename_lock, flags);
241
242         sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
243                                           sizeof(kernfs_pr_cont_buf));
244         if (sz < 0) {
245                 pr_cont("(error)");
246                 goto out;
247         }
248
249         if (sz >= sizeof(kernfs_pr_cont_buf)) {
250                 pr_cont("(name too long)");
251                 goto out;
252         }
253
254         pr_cont("%s", kernfs_pr_cont_buf);
255
256 out:
257         spin_unlock_irqrestore(&kernfs_rename_lock, flags);
258 }
259
260 /**
261  * kernfs_get_parent - determine the parent node and pin it
262  * @kn: kernfs_node of interest
263  *
264  * Determines @kn's parent, pins and returns it.  This function can be
265  * called from any context.
266  */
267 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
268 {
269         struct kernfs_node *parent;
270         unsigned long flags;
271
272         spin_lock_irqsave(&kernfs_rename_lock, flags);
273         parent = kn->parent;
274         kernfs_get(parent);
275         spin_unlock_irqrestore(&kernfs_rename_lock, flags);
276
277         return parent;
278 }
279
280 /**
281  *      kernfs_name_hash
282  *      @name: Null terminated string to hash
283  *      @ns:   Namespace tag to hash
284  *
285  *      Returns 31 bit hash of ns + name (so it fits in an off_t )
286  */
287 static unsigned int kernfs_name_hash(const char *name, const void *ns)
288 {
289         unsigned long hash = init_name_hash(ns);
290         unsigned int len = strlen(name);
291         while (len--)
292                 hash = partial_name_hash(*name++, hash);
293         hash = end_name_hash(hash);
294         hash &= 0x7fffffffU;
295         /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
296         if (hash < 2)
297                 hash += 2;
298         if (hash >= INT_MAX)
299                 hash = INT_MAX - 1;
300         return hash;
301 }
302
303 static int kernfs_name_compare(unsigned int hash, const char *name,
304                                const void *ns, const struct kernfs_node *kn)
305 {
306         if (hash < kn->hash)
307                 return -1;
308         if (hash > kn->hash)
309                 return 1;
310         if (ns < kn->ns)
311                 return -1;
312         if (ns > kn->ns)
313                 return 1;
314         return strcmp(name, kn->name);
315 }
316
317 static int kernfs_sd_compare(const struct kernfs_node *left,
318                              const struct kernfs_node *right)
319 {
320         return kernfs_name_compare(left->hash, left->name, left->ns, right);
321 }
322
323 /**
324  *      kernfs_link_sibling - link kernfs_node into sibling rbtree
325  *      @kn: kernfs_node of interest
326  *
327  *      Link @kn into its sibling rbtree which starts from
328  *      @kn->parent->dir.children.
329  *
330  *      Locking:
331  *      mutex_lock(kernfs_mutex)
332  *
333  *      RETURNS:
334  *      0 on susccess -EEXIST on failure.
335  */
336 static int kernfs_link_sibling(struct kernfs_node *kn)
337 {
338         struct rb_node **node = &kn->parent->dir.children.rb_node;
339         struct rb_node *parent = NULL;
340
341         while (*node) {
342                 struct kernfs_node *pos;
343                 int result;
344
345                 pos = rb_to_kn(*node);
346                 parent = *node;
347                 result = kernfs_sd_compare(kn, pos);
348                 if (result < 0)
349                         node = &pos->rb.rb_left;
350                 else if (result > 0)
351                         node = &pos->rb.rb_right;
352                 else
353                         return -EEXIST;
354         }
355
356         /* add new node and rebalance the tree */
357         rb_link_node(&kn->rb, parent, node);
358         rb_insert_color(&kn->rb, &kn->parent->dir.children);
359
360         /* successfully added, account subdir number */
361         if (kernfs_type(kn) == KERNFS_DIR)
362                 kn->parent->dir.subdirs++;
363
364         return 0;
365 }
366
367 /**
368  *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
369  *      @kn: kernfs_node of interest
370  *
371  *      Try to unlink @kn from its sibling rbtree which starts from
372  *      kn->parent->dir.children.  Returns %true if @kn was actually
373  *      removed, %false if @kn wasn't on the rbtree.
374  *
375  *      Locking:
376  *      mutex_lock(kernfs_mutex)
377  */
378 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
379 {
380         if (RB_EMPTY_NODE(&kn->rb))
381                 return false;
382
383         if (kernfs_type(kn) == KERNFS_DIR)
384                 kn->parent->dir.subdirs--;
385
386         rb_erase(&kn->rb, &kn->parent->dir.children);
387         RB_CLEAR_NODE(&kn->rb);
388         return true;
389 }
390
391 /**
392  *      kernfs_get_active - get an active reference to kernfs_node
393  *      @kn: kernfs_node to get an active reference to
394  *
395  *      Get an active reference of @kn.  This function is noop if @kn
396  *      is NULL.
397  *
398  *      RETURNS:
399  *      Pointer to @kn on success, NULL on failure.
400  */
401 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
402 {
403         if (unlikely(!kn))
404                 return NULL;
405
406         if (!atomic_inc_unless_negative(&kn->active))
407                 return NULL;
408
409         if (kernfs_lockdep(kn))
410                 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
411         return kn;
412 }
413
414 /**
415  *      kernfs_put_active - put an active reference to kernfs_node
416  *      @kn: kernfs_node to put an active reference to
417  *
418  *      Put an active reference to @kn.  This function is noop if @kn
419  *      is NULL.
420  */
421 void kernfs_put_active(struct kernfs_node *kn)
422 {
423         struct kernfs_root *root = kernfs_root(kn);
424         int v;
425
426         if (unlikely(!kn))
427                 return;
428
429         if (kernfs_lockdep(kn))
430                 rwsem_release(&kn->dep_map, 1, _RET_IP_);
431         v = atomic_dec_return(&kn->active);
432         if (likely(v != KN_DEACTIVATED_BIAS))
433                 return;
434
435         wake_up_all(&root->deactivate_waitq);
436 }
437
438 /**
439  * kernfs_drain - drain kernfs_node
440  * @kn: kernfs_node to drain
441  *
442  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
443  * removers may invoke this function concurrently on @kn and all will
444  * return after draining is complete.
445  */
446 static void kernfs_drain(struct kernfs_node *kn)
447         __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
448 {
449         struct kernfs_root *root = kernfs_root(kn);
450
451         lockdep_assert_held(&kernfs_mutex);
452         WARN_ON_ONCE(kernfs_active(kn));
453
454         mutex_unlock(&kernfs_mutex);
455
456         if (kernfs_lockdep(kn)) {
457                 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
458                 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
459                         lock_contended(&kn->dep_map, _RET_IP_);
460         }
461
462         /* but everyone should wait for draining */
463         wait_event(root->deactivate_waitq,
464                    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
465
466         if (kernfs_lockdep(kn)) {
467                 lock_acquired(&kn->dep_map, _RET_IP_);
468                 rwsem_release(&kn->dep_map, 1, _RET_IP_);
469         }
470
471         kernfs_unmap_bin_file(kn);
472
473         mutex_lock(&kernfs_mutex);
474 }
475
476 /**
477  * kernfs_get - get a reference count on a kernfs_node
478  * @kn: the target kernfs_node
479  */
480 void kernfs_get(struct kernfs_node *kn)
481 {
482         if (kn) {
483                 WARN_ON(!atomic_read(&kn->count));
484                 atomic_inc(&kn->count);
485         }
486 }
487 EXPORT_SYMBOL_GPL(kernfs_get);
488
489 /**
490  * kernfs_put - put a reference count on a kernfs_node
491  * @kn: the target kernfs_node
492  *
493  * Put a reference count of @kn and destroy it if it reached zero.
494  */
495 void kernfs_put(struct kernfs_node *kn)
496 {
497         struct kernfs_node *parent;
498         struct kernfs_root *root;
499
500         if (!kn || !atomic_dec_and_test(&kn->count))
501                 return;
502         root = kernfs_root(kn);
503  repeat:
504         /*
505          * Moving/renaming is always done while holding reference.
506          * kn->parent won't change beneath us.
507          */
508         parent = kn->parent;
509
510         WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
511                   "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
512                   parent ? parent->name : "", kn->name, atomic_read(&kn->active));
513
514         if (kernfs_type(kn) == KERNFS_LINK)
515                 kernfs_put(kn->symlink.target_kn);
516
517         kfree_const(kn->name);
518
519         if (kn->iattr) {
520                 if (kn->iattr->ia_secdata)
521                         security_release_secctx(kn->iattr->ia_secdata,
522                                                 kn->iattr->ia_secdata_len);
523                 simple_xattrs_free(&kn->iattr->xattrs);
524         }
525         kfree(kn->iattr);
526         ida_simple_remove(&root->ino_ida, kn->ino);
527         kmem_cache_free(kernfs_node_cache, kn);
528
529         kn = parent;
530         if (kn) {
531                 if (atomic_dec_and_test(&kn->count))
532                         goto repeat;
533         } else {
534                 /* just released the root kn, free @root too */
535                 ida_destroy(&root->ino_ida);
536                 kfree(root);
537         }
538 }
539 EXPORT_SYMBOL_GPL(kernfs_put);
540
541 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
542 {
543         struct kernfs_node *kn;
544
545         if (flags & LOOKUP_RCU)
546                 return -ECHILD;
547
548         /* Always perform fresh lookup for negatives */
549         if (d_really_is_negative(dentry))
550                 goto out_bad_unlocked;
551
552         kn = dentry->d_fsdata;
553         mutex_lock(&kernfs_mutex);
554
555         /* The kernfs node has been deactivated */
556         if (!kernfs_active(kn))
557                 goto out_bad;
558
559         /* The kernfs node has been moved? */
560         if (dentry->d_parent->d_fsdata != kn->parent)
561                 goto out_bad;
562
563         /* The kernfs node has been renamed */
564         if (strcmp(dentry->d_name.name, kn->name) != 0)
565                 goto out_bad;
566
567         /* The kernfs node has been moved to a different namespace */
568         if (kn->parent && kernfs_ns_enabled(kn->parent) &&
569             kernfs_info(dentry->d_sb)->ns != kn->ns)
570                 goto out_bad;
571
572         mutex_unlock(&kernfs_mutex);
573         return 1;
574 out_bad:
575         mutex_unlock(&kernfs_mutex);
576 out_bad_unlocked:
577         return 0;
578 }
579
580 static void kernfs_dop_release(struct dentry *dentry)
581 {
582         kernfs_put(dentry->d_fsdata);
583 }
584
585 const struct dentry_operations kernfs_dops = {
586         .d_revalidate   = kernfs_dop_revalidate,
587         .d_release      = kernfs_dop_release,
588 };
589
590 /**
591  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
592  * @dentry: the dentry in question
593  *
594  * Return the kernfs_node associated with @dentry.  If @dentry is not a
595  * kernfs one, %NULL is returned.
596  *
597  * While the returned kernfs_node will stay accessible as long as @dentry
598  * is accessible, the returned node can be in any state and the caller is
599  * fully responsible for determining what's accessible.
600  */
601 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
602 {
603         if (dentry->d_sb->s_op == &kernfs_sops)
604                 return dentry->d_fsdata;
605         return NULL;
606 }
607
608 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
609                                              const char *name, umode_t mode,
610                                              unsigned flags)
611 {
612         struct kernfs_node *kn;
613         int ret;
614
615         name = kstrdup_const(name, GFP_KERNEL);
616         if (!name)
617                 return NULL;
618
619         kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
620         if (!kn)
621                 goto err_out1;
622
623         ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
624         if (ret < 0)
625                 goto err_out2;
626         kn->ino = ret;
627
628         atomic_set(&kn->count, 1);
629         atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
630         RB_CLEAR_NODE(&kn->rb);
631
632         kn->name = name;
633         kn->mode = mode;
634         kn->flags = flags;
635
636         return kn;
637
638  err_out2:
639         kmem_cache_free(kernfs_node_cache, kn);
640  err_out1:
641         kfree_const(name);
642         return NULL;
643 }
644
645 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
646                                     const char *name, umode_t mode,
647                                     unsigned flags)
648 {
649         struct kernfs_node *kn;
650
651         kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
652         if (kn) {
653                 kernfs_get(parent);
654                 kn->parent = parent;
655         }
656         return kn;
657 }
658
659 /**
660  *      kernfs_add_one - add kernfs_node to parent without warning
661  *      @kn: kernfs_node to be added
662  *
663  *      The caller must already have initialized @kn->parent.  This
664  *      function increments nlink of the parent's inode if @kn is a
665  *      directory and link into the children list of the parent.
666  *
667  *      RETURNS:
668  *      0 on success, -EEXIST if entry with the given name already
669  *      exists.
670  */
671 int kernfs_add_one(struct kernfs_node *kn)
672 {
673         struct kernfs_node *parent = kn->parent;
674         struct kernfs_iattrs *ps_iattr;
675         bool has_ns;
676         int ret;
677
678         mutex_lock(&kernfs_mutex);
679
680         ret = -EINVAL;
681         has_ns = kernfs_ns_enabled(parent);
682         if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
683                  has_ns ? "required" : "invalid", parent->name, kn->name))
684                 goto out_unlock;
685
686         if (kernfs_type(parent) != KERNFS_DIR)
687                 goto out_unlock;
688
689         ret = -ENOENT;
690         if (parent->flags & KERNFS_EMPTY_DIR)
691                 goto out_unlock;
692
693         if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
694                 goto out_unlock;
695
696         kn->hash = kernfs_name_hash(kn->name, kn->ns);
697
698         ret = kernfs_link_sibling(kn);
699         if (ret)
700                 goto out_unlock;
701
702         /* Update timestamps on the parent */
703         ps_iattr = parent->iattr;
704         if (ps_iattr) {
705                 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
706                 ktime_get_real_ts(&ps_iattrs->ia_ctime);
707                 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
708         }
709
710         mutex_unlock(&kernfs_mutex);
711
712         /*
713          * Activate the new node unless CREATE_DEACTIVATED is requested.
714          * If not activated here, the kernfs user is responsible for
715          * activating the node with kernfs_activate().  A node which hasn't
716          * been activated is not visible to userland and its removal won't
717          * trigger deactivation.
718          */
719         if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
720                 kernfs_activate(kn);
721         return 0;
722
723 out_unlock:
724         mutex_unlock(&kernfs_mutex);
725         return ret;
726 }
727
728 /**
729  * kernfs_find_ns - find kernfs_node with the given name
730  * @parent: kernfs_node to search under
731  * @name: name to look for
732  * @ns: the namespace tag to use
733  *
734  * Look for kernfs_node with name @name under @parent.  Returns pointer to
735  * the found kernfs_node on success, %NULL on failure.
736  */
737 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
738                                           const unsigned char *name,
739                                           const void *ns)
740 {
741         struct rb_node *node = parent->dir.children.rb_node;
742         bool has_ns = kernfs_ns_enabled(parent);
743         unsigned int hash;
744
745         lockdep_assert_held(&kernfs_mutex);
746
747         if (has_ns != (bool)ns) {
748                 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
749                      has_ns ? "required" : "invalid", parent->name, name);
750                 return NULL;
751         }
752
753         hash = kernfs_name_hash(name, ns);
754         while (node) {
755                 struct kernfs_node *kn;
756                 int result;
757
758                 kn = rb_to_kn(node);
759                 result = kernfs_name_compare(hash, name, ns, kn);
760                 if (result < 0)
761                         node = node->rb_left;
762                 else if (result > 0)
763                         node = node->rb_right;
764                 else
765                         return kn;
766         }
767         return NULL;
768 }
769
770 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
771                                           const unsigned char *path,
772                                           const void *ns)
773 {
774         size_t len;
775         char *p, *name;
776
777         lockdep_assert_held(&kernfs_mutex);
778
779         /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
780         spin_lock_irq(&kernfs_rename_lock);
781
782         len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
783
784         if (len >= sizeof(kernfs_pr_cont_buf)) {
785                 spin_unlock_irq(&kernfs_rename_lock);
786                 return NULL;
787         }
788
789         p = kernfs_pr_cont_buf;
790
791         while ((name = strsep(&p, "/")) && parent) {
792                 if (*name == '\0')
793                         continue;
794                 parent = kernfs_find_ns(parent, name, ns);
795         }
796
797         spin_unlock_irq(&kernfs_rename_lock);
798
799         return parent;
800 }
801
802 /**
803  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
804  * @parent: kernfs_node to search under
805  * @name: name to look for
806  * @ns: the namespace tag to use
807  *
808  * Look for kernfs_node with name @name under @parent and get a reference
809  * if found.  This function may sleep and returns pointer to the found
810  * kernfs_node on success, %NULL on failure.
811  */
812 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
813                                            const char *name, const void *ns)
814 {
815         struct kernfs_node *kn;
816
817         mutex_lock(&kernfs_mutex);
818         kn = kernfs_find_ns(parent, name, ns);
819         kernfs_get(kn);
820         mutex_unlock(&kernfs_mutex);
821
822         return kn;
823 }
824 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
825
826 /**
827  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
828  * @parent: kernfs_node to search under
829  * @path: path to look for
830  * @ns: the namespace tag to use
831  *
832  * Look for kernfs_node with path @path under @parent and get a reference
833  * if found.  This function may sleep and returns pointer to the found
834  * kernfs_node on success, %NULL on failure.
835  */
836 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
837                                            const char *path, const void *ns)
838 {
839         struct kernfs_node *kn;
840
841         mutex_lock(&kernfs_mutex);
842         kn = kernfs_walk_ns(parent, path, ns);
843         kernfs_get(kn);
844         mutex_unlock(&kernfs_mutex);
845
846         return kn;
847 }
848
849 /**
850  * kernfs_create_root - create a new kernfs hierarchy
851  * @scops: optional syscall operations for the hierarchy
852  * @flags: KERNFS_ROOT_* flags
853  * @priv: opaque data associated with the new directory
854  *
855  * Returns the root of the new hierarchy on success, ERR_PTR() value on
856  * failure.
857  */
858 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
859                                        unsigned int flags, void *priv)
860 {
861         struct kernfs_root *root;
862         struct kernfs_node *kn;
863
864         root = kzalloc(sizeof(*root), GFP_KERNEL);
865         if (!root)
866                 return ERR_PTR(-ENOMEM);
867
868         ida_init(&root->ino_ida);
869         INIT_LIST_HEAD(&root->supers);
870
871         kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
872                                KERNFS_DIR);
873         if (!kn) {
874                 ida_destroy(&root->ino_ida);
875                 kfree(root);
876                 return ERR_PTR(-ENOMEM);
877         }
878
879         kn->priv = priv;
880         kn->dir.root = root;
881
882         root->syscall_ops = scops;
883         root->flags = flags;
884         root->kn = kn;
885         init_waitqueue_head(&root->deactivate_waitq);
886
887         if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
888                 kernfs_activate(kn);
889
890         return root;
891 }
892
893 /**
894  * kernfs_destroy_root - destroy a kernfs hierarchy
895  * @root: root of the hierarchy to destroy
896  *
897  * Destroy the hierarchy anchored at @root by removing all existing
898  * directories and destroying @root.
899  */
900 void kernfs_destroy_root(struct kernfs_root *root)
901 {
902         kernfs_remove(root->kn);        /* will also free @root */
903 }
904
905 /**
906  * kernfs_create_dir_ns - create a directory
907  * @parent: parent in which to create a new directory
908  * @name: name of the new directory
909  * @mode: mode of the new directory
910  * @priv: opaque data associated with the new directory
911  * @ns: optional namespace tag of the directory
912  *
913  * Returns the created node on success, ERR_PTR() value on failure.
914  */
915 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
916                                          const char *name, umode_t mode,
917                                          void *priv, const void *ns)
918 {
919         struct kernfs_node *kn;
920         int rc;
921
922         /* allocate */
923         kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
924         if (!kn)
925                 return ERR_PTR(-ENOMEM);
926
927         kn->dir.root = parent->dir.root;
928         kn->ns = ns;
929         kn->priv = priv;
930
931         /* link in */
932         rc = kernfs_add_one(kn);
933         if (!rc)
934                 return kn;
935
936         kernfs_put(kn);
937         return ERR_PTR(rc);
938 }
939
940 /**
941  * kernfs_create_empty_dir - create an always empty directory
942  * @parent: parent in which to create a new directory
943  * @name: name of the new directory
944  *
945  * Returns the created node on success, ERR_PTR() value on failure.
946  */
947 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
948                                             const char *name)
949 {
950         struct kernfs_node *kn;
951         int rc;
952
953         /* allocate */
954         kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
955         if (!kn)
956                 return ERR_PTR(-ENOMEM);
957
958         kn->flags |= KERNFS_EMPTY_DIR;
959         kn->dir.root = parent->dir.root;
960         kn->ns = NULL;
961         kn->priv = NULL;
962
963         /* link in */
964         rc = kernfs_add_one(kn);
965         if (!rc)
966                 return kn;
967
968         kernfs_put(kn);
969         return ERR_PTR(rc);
970 }
971
972 static struct dentry *kernfs_iop_lookup(struct inode *dir,
973                                         struct dentry *dentry,
974                                         unsigned int flags)
975 {
976         struct dentry *ret;
977         struct kernfs_node *parent = dentry->d_parent->d_fsdata;
978         struct kernfs_node *kn;
979         struct inode *inode;
980         const void *ns = NULL;
981
982         mutex_lock(&kernfs_mutex);
983
984         if (kernfs_ns_enabled(parent))
985                 ns = kernfs_info(dir->i_sb)->ns;
986
987         kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
988
989         /* no such entry */
990         if (!kn || !kernfs_active(kn)) {
991                 ret = NULL;
992                 goto out_unlock;
993         }
994         kernfs_get(kn);
995         dentry->d_fsdata = kn;
996
997         /* attach dentry and inode */
998         inode = kernfs_get_inode(dir->i_sb, kn);
999         if (!inode) {
1000                 ret = ERR_PTR(-ENOMEM);
1001                 goto out_unlock;
1002         }
1003
1004         /* instantiate and hash dentry */
1005         ret = d_splice_alias(inode, dentry);
1006  out_unlock:
1007         mutex_unlock(&kernfs_mutex);
1008         return ret;
1009 }
1010
1011 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1012                             umode_t mode)
1013 {
1014         struct kernfs_node *parent = dir->i_private;
1015         struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1016         int ret;
1017
1018         if (!scops || !scops->mkdir)
1019                 return -EPERM;
1020
1021         if (!kernfs_get_active(parent))
1022                 return -ENODEV;
1023
1024         ret = scops->mkdir(parent, dentry->d_name.name, mode);
1025
1026         kernfs_put_active(parent);
1027         return ret;
1028 }
1029
1030 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1031 {
1032         struct kernfs_node *kn  = dentry->d_fsdata;
1033         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1034         int ret;
1035
1036         if (!scops || !scops->rmdir)
1037                 return -EPERM;
1038
1039         if (!kernfs_get_active(kn))
1040                 return -ENODEV;
1041
1042         ret = scops->rmdir(kn);
1043
1044         kernfs_put_active(kn);
1045         return ret;
1046 }
1047
1048 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1049                              struct inode *new_dir, struct dentry *new_dentry,
1050                              unsigned int flags)
1051 {
1052         struct kernfs_node *kn  = old_dentry->d_fsdata;
1053         struct kernfs_node *new_parent = new_dir->i_private;
1054         struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1055         int ret;
1056
1057         if (flags)
1058                 return -EINVAL;
1059
1060         if (!scops || !scops->rename)
1061                 return -EPERM;
1062
1063         if (!kernfs_get_active(kn))
1064                 return -ENODEV;
1065
1066         if (!kernfs_get_active(new_parent)) {
1067                 kernfs_put_active(kn);
1068                 return -ENODEV;
1069         }
1070
1071         ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1072
1073         kernfs_put_active(new_parent);
1074         kernfs_put_active(kn);
1075         return ret;
1076 }
1077
1078 const struct inode_operations kernfs_dir_iops = {
1079         .lookup         = kernfs_iop_lookup,
1080         .permission     = kernfs_iop_permission,
1081         .setattr        = kernfs_iop_setattr,
1082         .getattr        = kernfs_iop_getattr,
1083         .listxattr      = kernfs_iop_listxattr,
1084
1085         .mkdir          = kernfs_iop_mkdir,
1086         .rmdir          = kernfs_iop_rmdir,
1087         .rename         = kernfs_iop_rename,
1088 };
1089
1090 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1091 {
1092         struct kernfs_node *last;
1093
1094         while (true) {
1095                 struct rb_node *rbn;
1096
1097                 last = pos;
1098
1099                 if (kernfs_type(pos) != KERNFS_DIR)
1100                         break;
1101
1102                 rbn = rb_first(&pos->dir.children);
1103                 if (!rbn)
1104                         break;
1105
1106                 pos = rb_to_kn(rbn);
1107         }
1108
1109         return last;
1110 }
1111
1112 /**
1113  * kernfs_next_descendant_post - find the next descendant for post-order walk
1114  * @pos: the current position (%NULL to initiate traversal)
1115  * @root: kernfs_node whose descendants to walk
1116  *
1117  * Find the next descendant to visit for post-order traversal of @root's
1118  * descendants.  @root is included in the iteration and the last node to be
1119  * visited.
1120  */
1121 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1122                                                        struct kernfs_node *root)
1123 {
1124         struct rb_node *rbn;
1125
1126         lockdep_assert_held(&kernfs_mutex);
1127
1128         /* if first iteration, visit leftmost descendant which may be root */
1129         if (!pos)
1130                 return kernfs_leftmost_descendant(root);
1131
1132         /* if we visited @root, we're done */
1133         if (pos == root)
1134                 return NULL;
1135
1136         /* if there's an unvisited sibling, visit its leftmost descendant */
1137         rbn = rb_next(&pos->rb);
1138         if (rbn)
1139                 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1140
1141         /* no sibling left, visit parent */
1142         return pos->parent;
1143 }
1144
1145 /**
1146  * kernfs_activate - activate a node which started deactivated
1147  * @kn: kernfs_node whose subtree is to be activated
1148  *
1149  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150  * needs to be explicitly activated.  A node which hasn't been activated
1151  * isn't visible to userland and deactivation is skipped during its
1152  * removal.  This is useful to construct atomic init sequences where
1153  * creation of multiple nodes should either succeed or fail atomically.
1154  *
1155  * The caller is responsible for ensuring that this function is not called
1156  * after kernfs_remove*() is invoked on @kn.
1157  */
1158 void kernfs_activate(struct kernfs_node *kn)
1159 {
1160         struct kernfs_node *pos;
1161
1162         mutex_lock(&kernfs_mutex);
1163
1164         pos = NULL;
1165         while ((pos = kernfs_next_descendant_post(pos, kn))) {
1166                 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1167                         continue;
1168
1169                 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1170                 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1171
1172                 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1173                 pos->flags |= KERNFS_ACTIVATED;
1174         }
1175
1176         mutex_unlock(&kernfs_mutex);
1177 }
1178
1179 static void __kernfs_remove(struct kernfs_node *kn)
1180 {
1181         struct kernfs_node *pos;
1182
1183         lockdep_assert_held(&kernfs_mutex);
1184
1185         /*
1186          * Short-circuit if non-root @kn has already finished removal.
1187          * This is for kernfs_remove_self() which plays with active ref
1188          * after removal.
1189          */
1190         if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1191                 return;
1192
1193         pr_debug("kernfs %s: removing\n", kn->name);
1194
1195         /* prevent any new usage under @kn by deactivating all nodes */
1196         pos = NULL;
1197         while ((pos = kernfs_next_descendant_post(pos, kn)))
1198                 if (kernfs_active(pos))
1199                         atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1200
1201         /* deactivate and unlink the subtree node-by-node */
1202         do {
1203                 pos = kernfs_leftmost_descendant(kn);
1204
1205                 /*
1206                  * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207                  * base ref could have been put by someone else by the time
1208                  * the function returns.  Make sure it doesn't go away
1209                  * underneath us.
1210                  */
1211                 kernfs_get(pos);
1212
1213                 /*
1214                  * Drain iff @kn was activated.  This avoids draining and
1215                  * its lockdep annotations for nodes which have never been
1216                  * activated and allows embedding kernfs_remove() in create
1217                  * error paths without worrying about draining.
1218                  */
1219                 if (kn->flags & KERNFS_ACTIVATED)
1220                         kernfs_drain(pos);
1221                 else
1222                         WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1223
1224                 /*
1225                  * kernfs_unlink_sibling() succeeds once per node.  Use it
1226                  * to decide who's responsible for cleanups.
1227                  */
1228                 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1229                         struct kernfs_iattrs *ps_iattr =
1230                                 pos->parent ? pos->parent->iattr : NULL;
1231
1232                         /* update timestamps on the parent */
1233                         if (ps_iattr) {
1234                                 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1235                                 ps_iattr->ia_iattr.ia_mtime =
1236                                         ps_iattr->ia_iattr.ia_ctime;
1237                         }
1238
1239                         kernfs_put(pos);
1240                 }
1241
1242                 kernfs_put(pos);
1243         } while (pos != kn);
1244 }
1245
1246 /**
1247  * kernfs_remove - remove a kernfs_node recursively
1248  * @kn: the kernfs_node to remove
1249  *
1250  * Remove @kn along with all its subdirectories and files.
1251  */
1252 void kernfs_remove(struct kernfs_node *kn)
1253 {
1254         mutex_lock(&kernfs_mutex);
1255         __kernfs_remove(kn);
1256         mutex_unlock(&kernfs_mutex);
1257 }
1258
1259 /**
1260  * kernfs_break_active_protection - break out of active protection
1261  * @kn: the self kernfs_node
1262  *
1263  * The caller must be running off of a kernfs operation which is invoked
1264  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1265  * this function must also be matched with an invocation of
1266  * kernfs_unbreak_active_protection().
1267  *
1268  * This function releases the active reference of @kn the caller is
1269  * holding.  Once this function is called, @kn may be removed at any point
1270  * and the caller is solely responsible for ensuring that the objects it
1271  * dereferences are accessible.
1272  */
1273 void kernfs_break_active_protection(struct kernfs_node *kn)
1274 {
1275         /*
1276          * Take out ourself out of the active ref dependency chain.  If
1277          * we're called without an active ref, lockdep will complain.
1278          */
1279         kernfs_put_active(kn);
1280 }
1281
1282 /**
1283  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284  * @kn: the self kernfs_node
1285  *
1286  * If kernfs_break_active_protection() was called, this function must be
1287  * invoked before finishing the kernfs operation.  Note that while this
1288  * function restores the active reference, it doesn't and can't actually
1289  * restore the active protection - @kn may already or be in the process of
1290  * being removed.  Once kernfs_break_active_protection() is invoked, that
1291  * protection is irreversibly gone for the kernfs operation instance.
1292  *
1293  * While this function may be called at any point after
1294  * kernfs_break_active_protection() is invoked, its most useful location
1295  * would be right before the enclosing kernfs operation returns.
1296  */
1297 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1298 {
1299         /*
1300          * @kn->active could be in any state; however, the increment we do
1301          * here will be undone as soon as the enclosing kernfs operation
1302          * finishes and this temporary bump can't break anything.  If @kn
1303          * is alive, nothing changes.  If @kn is being deactivated, the
1304          * soon-to-follow put will either finish deactivation or restore
1305          * deactivated state.  If @kn is already removed, the temporary
1306          * bump is guaranteed to be gone before @kn is released.
1307          */
1308         atomic_inc(&kn->active);
1309         if (kernfs_lockdep(kn))
1310                 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1311 }
1312
1313 /**
1314  * kernfs_remove_self - remove a kernfs_node from its own method
1315  * @kn: the self kernfs_node to remove
1316  *
1317  * The caller must be running off of a kernfs operation which is invoked
1318  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1319  * implement a file operation which deletes itself.
1320  *
1321  * For example, the "delete" file for a sysfs device directory can be
1322  * implemented by invoking kernfs_remove_self() on the "delete" file
1323  * itself.  This function breaks the circular dependency of trying to
1324  * deactivate self while holding an active ref itself.  It isn't necessary
1325  * to modify the usual removal path to use kernfs_remove_self().  The
1326  * "delete" implementation can simply invoke kernfs_remove_self() on self
1327  * before proceeding with the usual removal path.  kernfs will ignore later
1328  * kernfs_remove() on self.
1329  *
1330  * kernfs_remove_self() can be called multiple times concurrently on the
1331  * same kernfs_node.  Only the first one actually performs removal and
1332  * returns %true.  All others will wait until the kernfs operation which
1333  * won self-removal finishes and return %false.  Note that the losers wait
1334  * for the completion of not only the winning kernfs_remove_self() but also
1335  * the whole kernfs_ops which won the arbitration.  This can be used to
1336  * guarantee, for example, all concurrent writes to a "delete" file to
1337  * finish only after the whole operation is complete.
1338  */
1339 bool kernfs_remove_self(struct kernfs_node *kn)
1340 {
1341         bool ret;
1342
1343         mutex_lock(&kernfs_mutex);
1344         kernfs_break_active_protection(kn);
1345
1346         /*
1347          * SUICIDAL is used to arbitrate among competing invocations.  Only
1348          * the first one will actually perform removal.  When the removal
1349          * is complete, SUICIDED is set and the active ref is restored
1350          * while holding kernfs_mutex.  The ones which lost arbitration
1351          * waits for SUICDED && drained which can happen only after the
1352          * enclosing kernfs operation which executed the winning instance
1353          * of kernfs_remove_self() finished.
1354          */
1355         if (!(kn->flags & KERNFS_SUICIDAL)) {
1356                 kn->flags |= KERNFS_SUICIDAL;
1357                 __kernfs_remove(kn);
1358                 kn->flags |= KERNFS_SUICIDED;
1359                 ret = true;
1360         } else {
1361                 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1362                 DEFINE_WAIT(wait);
1363
1364                 while (true) {
1365                         prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1366
1367                         if ((kn->flags & KERNFS_SUICIDED) &&
1368                             atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1369                                 break;
1370
1371                         mutex_unlock(&kernfs_mutex);
1372                         schedule();
1373                         mutex_lock(&kernfs_mutex);
1374                 }
1375                 finish_wait(waitq, &wait);
1376                 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1377                 ret = false;
1378         }
1379
1380         /*
1381          * This must be done while holding kernfs_mutex; otherwise, waiting
1382          * for SUICIDED && deactivated could finish prematurely.
1383          */
1384         kernfs_unbreak_active_protection(kn);
1385
1386         mutex_unlock(&kernfs_mutex);
1387         return ret;
1388 }
1389
1390 /**
1391  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392  * @parent: parent of the target
1393  * @name: name of the kernfs_node to remove
1394  * @ns: namespace tag of the kernfs_node to remove
1395  *
1396  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1398  */
1399 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1400                              const void *ns)
1401 {
1402         struct kernfs_node *kn;
1403
1404         if (!parent) {
1405                 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1406                         name);
1407                 return -ENOENT;
1408         }
1409
1410         mutex_lock(&kernfs_mutex);
1411
1412         kn = kernfs_find_ns(parent, name, ns);
1413         if (kn)
1414                 __kernfs_remove(kn);
1415
1416         mutex_unlock(&kernfs_mutex);
1417
1418         if (kn)
1419                 return 0;
1420         else
1421                 return -ENOENT;
1422 }
1423
1424 /**
1425  * kernfs_rename_ns - move and rename a kernfs_node
1426  * @kn: target node
1427  * @new_parent: new parent to put @sd under
1428  * @new_name: new name
1429  * @new_ns: new namespace tag
1430  */
1431 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1432                      const char *new_name, const void *new_ns)
1433 {
1434         struct kernfs_node *old_parent;
1435         const char *old_name = NULL;
1436         int error;
1437
1438         /* can't move or rename root */
1439         if (!kn->parent)
1440                 return -EINVAL;
1441
1442         mutex_lock(&kernfs_mutex);
1443
1444         error = -ENOENT;
1445         if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1446             (new_parent->flags & KERNFS_EMPTY_DIR))
1447                 goto out;
1448
1449         error = 0;
1450         if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1451             (strcmp(kn->name, new_name) == 0))
1452                 goto out;       /* nothing to rename */
1453
1454         error = -EEXIST;
1455         if (kernfs_find_ns(new_parent, new_name, new_ns))
1456                 goto out;
1457
1458         /* rename kernfs_node */
1459         if (strcmp(kn->name, new_name) != 0) {
1460                 error = -ENOMEM;
1461                 new_name = kstrdup_const(new_name, GFP_KERNEL);
1462                 if (!new_name)
1463                         goto out;
1464         } else {
1465                 new_name = NULL;
1466         }
1467
1468         /*
1469          * Move to the appropriate place in the appropriate directories rbtree.
1470          */
1471         kernfs_unlink_sibling(kn);
1472         kernfs_get(new_parent);
1473
1474         /* rename_lock protects ->parent and ->name accessors */
1475         spin_lock_irq(&kernfs_rename_lock);
1476
1477         old_parent = kn->parent;
1478         kn->parent = new_parent;
1479
1480         kn->ns = new_ns;
1481         if (new_name) {
1482                 old_name = kn->name;
1483                 kn->name = new_name;
1484         }
1485
1486         spin_unlock_irq(&kernfs_rename_lock);
1487
1488         kn->hash = kernfs_name_hash(kn->name, kn->ns);
1489         kernfs_link_sibling(kn);
1490
1491         kernfs_put(old_parent);
1492         kfree_const(old_name);
1493
1494         error = 0;
1495  out:
1496         mutex_unlock(&kernfs_mutex);
1497         return error;
1498 }
1499
1500 /* Relationship between s_mode and the DT_xxx types */
1501 static inline unsigned char dt_type(struct kernfs_node *kn)
1502 {
1503         return (kn->mode >> 12) & 15;
1504 }
1505
1506 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1507 {
1508         kernfs_put(filp->private_data);
1509         return 0;
1510 }
1511
1512 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1513         struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1514 {
1515         if (pos) {
1516                 int valid = kernfs_active(pos) &&
1517                         pos->parent == parent && hash == pos->hash;
1518                 kernfs_put(pos);
1519                 if (!valid)
1520                         pos = NULL;
1521         }
1522         if (!pos && (hash > 1) && (hash < INT_MAX)) {
1523                 struct rb_node *node = parent->dir.children.rb_node;
1524                 while (node) {
1525                         pos = rb_to_kn(node);
1526
1527                         if (hash < pos->hash)
1528                                 node = node->rb_left;
1529                         else if (hash > pos->hash)
1530                                 node = node->rb_right;
1531                         else
1532                                 break;
1533                 }
1534         }
1535         /* Skip over entries which are dying/dead or in the wrong namespace */
1536         while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1537                 struct rb_node *node = rb_next(&pos->rb);
1538                 if (!node)
1539                         pos = NULL;
1540                 else
1541                         pos = rb_to_kn(node);
1542         }
1543         return pos;
1544 }
1545
1546 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1547         struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1548 {
1549         pos = kernfs_dir_pos(ns, parent, ino, pos);
1550         if (pos) {
1551                 do {
1552                         struct rb_node *node = rb_next(&pos->rb);
1553                         if (!node)
1554                                 pos = NULL;
1555                         else
1556                                 pos = rb_to_kn(node);
1557                 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1558         }
1559         return pos;
1560 }
1561
1562 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1563 {
1564         struct dentry *dentry = file->f_path.dentry;
1565         struct kernfs_node *parent = dentry->d_fsdata;
1566         struct kernfs_node *pos = file->private_data;
1567         const void *ns = NULL;
1568
1569         if (!dir_emit_dots(file, ctx))
1570                 return 0;
1571         mutex_lock(&kernfs_mutex);
1572
1573         if (kernfs_ns_enabled(parent))
1574                 ns = kernfs_info(dentry->d_sb)->ns;
1575
1576         for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1577              pos;
1578              pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1579                 const char *name = pos->name;
1580                 unsigned int type = dt_type(pos);
1581                 int len = strlen(name);
1582                 ino_t ino = pos->ino;
1583
1584                 ctx->pos = pos->hash;
1585                 file->private_data = pos;
1586                 kernfs_get(pos);
1587
1588                 mutex_unlock(&kernfs_mutex);
1589                 if (!dir_emit(ctx, name, len, ino, type))
1590                         return 0;
1591                 mutex_lock(&kernfs_mutex);
1592         }
1593         mutex_unlock(&kernfs_mutex);
1594         file->private_data = NULL;
1595         ctx->pos = INT_MAX;
1596         return 0;
1597 }
1598
1599 const struct file_operations kernfs_dir_fops = {
1600         .read           = generic_read_dir,
1601         .iterate_shared = kernfs_fop_readdir,
1602         .release        = kernfs_dir_fop_release,
1603         .llseek         = generic_file_llseek,
1604 };