]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/mpage.c
mxc: vpu: fix build errors with CONFIG_PM_SLEEP/CONFIG_PM_RUNTIME disabled
[karo-tx-linux.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    Andrew Morton
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31
32 /*
33  * I/O completion handler for multipage BIOs.
34  *
35  * The mpage code never puts partial pages into a BIO (except for end-of-file).
36  * If a page does not map to a contiguous run of blocks then it simply falls
37  * back to block_read_full_page().
38  *
39  * Why is this?  If a page's completion depends on a number of different BIOs
40  * which can complete in any order (or at the same time) then determining the
41  * status of that page is hard.  See end_buffer_async_read() for the details.
42  * There is no point in duplicating all that complexity.
43  */
44 static void mpage_end_io(struct bio *bio, int err)
45 {
46         struct bio_vec *bv;
47         int i;
48
49         bio_for_each_segment_all(bv, bio, i) {
50                 struct page *page = bv->bv_page;
51                 page_endio(page, bio_data_dir(bio), err);
52         }
53
54         bio_put(bio);
55 }
56
57 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
58 {
59         bio->bi_end_io = mpage_end_io;
60         submit_bio(rw, bio);
61         return NULL;
62 }
63
64 static struct bio *
65 mpage_alloc(struct block_device *bdev,
66                 sector_t first_sector, int nr_vecs,
67                 gfp_t gfp_flags)
68 {
69         struct bio *bio;
70
71         bio = bio_alloc(gfp_flags, nr_vecs);
72
73         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
74                 while (!bio && (nr_vecs /= 2))
75                         bio = bio_alloc(gfp_flags, nr_vecs);
76         }
77
78         if (bio) {
79                 bio->bi_bdev = bdev;
80                 bio->bi_iter.bi_sector = first_sector;
81         }
82         return bio;
83 }
84
85 /*
86  * support function for mpage_readpages.  The fs supplied get_block might
87  * return an up to date buffer.  This is used to map that buffer into
88  * the page, which allows readpage to avoid triggering a duplicate call
89  * to get_block.
90  *
91  * The idea is to avoid adding buffers to pages that don't already have
92  * them.  So when the buffer is up to date and the page size == block size,
93  * this marks the page up to date instead of adding new buffers.
94  */
95 static void 
96 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
97 {
98         struct inode *inode = page->mapping->host;
99         struct buffer_head *page_bh, *head;
100         int block = 0;
101
102         if (!page_has_buffers(page)) {
103                 /*
104                  * don't make any buffers if there is only one buffer on
105                  * the page and the page just needs to be set up to date
106                  */
107                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
108                     buffer_uptodate(bh)) {
109                         SetPageUptodate(page);    
110                         return;
111                 }
112                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
113         }
114         head = page_buffers(page);
115         page_bh = head;
116         do {
117                 if (block == page_block) {
118                         page_bh->b_state = bh->b_state;
119                         page_bh->b_bdev = bh->b_bdev;
120                         page_bh->b_blocknr = bh->b_blocknr;
121                         break;
122                 }
123                 page_bh = page_bh->b_this_page;
124                 block++;
125         } while (page_bh != head);
126 }
127
128 /*
129  * This is the worker routine which does all the work of mapping the disk
130  * blocks and constructs largest possible bios, submits them for IO if the
131  * blocks are not contiguous on the disk.
132  *
133  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
134  * represent the validity of its disk mapping and to decide when to do the next
135  * get_block() call.
136  */
137 static struct bio *
138 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
139                 sector_t *last_block_in_bio, struct buffer_head *map_bh,
140                 unsigned long *first_logical_block, get_block_t get_block)
141 {
142         struct inode *inode = page->mapping->host;
143         const unsigned blkbits = inode->i_blkbits;
144         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
145         const unsigned blocksize = 1 << blkbits;
146         sector_t block_in_file;
147         sector_t last_block;
148         sector_t last_block_in_file;
149         sector_t blocks[MAX_BUF_PER_PAGE];
150         unsigned page_block;
151         unsigned first_hole = blocks_per_page;
152         struct block_device *bdev = NULL;
153         int length;
154         int fully_mapped = 1;
155         unsigned nblocks;
156         unsigned relative_block;
157
158         if (page_has_buffers(page))
159                 goto confused;
160
161         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
162         last_block = block_in_file + nr_pages * blocks_per_page;
163         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
164         if (last_block > last_block_in_file)
165                 last_block = last_block_in_file;
166         page_block = 0;
167
168         /*
169          * Map blocks using the result from the previous get_blocks call first.
170          */
171         nblocks = map_bh->b_size >> blkbits;
172         if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
173                         block_in_file < (*first_logical_block + nblocks)) {
174                 unsigned map_offset = block_in_file - *first_logical_block;
175                 unsigned last = nblocks - map_offset;
176
177                 for (relative_block = 0; ; relative_block++) {
178                         if (relative_block == last) {
179                                 clear_buffer_mapped(map_bh);
180                                 break;
181                         }
182                         if (page_block == blocks_per_page)
183                                 break;
184                         blocks[page_block] = map_bh->b_blocknr + map_offset +
185                                                 relative_block;
186                         page_block++;
187                         block_in_file++;
188                 }
189                 bdev = map_bh->b_bdev;
190         }
191
192         /*
193          * Then do more get_blocks calls until we are done with this page.
194          */
195         map_bh->b_page = page;
196         while (page_block < blocks_per_page) {
197                 map_bh->b_state = 0;
198                 map_bh->b_size = 0;
199
200                 if (block_in_file < last_block) {
201                         map_bh->b_size = (last_block-block_in_file) << blkbits;
202                         if (get_block(inode, block_in_file, map_bh, 0))
203                                 goto confused;
204                         *first_logical_block = block_in_file;
205                 }
206
207                 if (!buffer_mapped(map_bh)) {
208                         fully_mapped = 0;
209                         if (first_hole == blocks_per_page)
210                                 first_hole = page_block;
211                         page_block++;
212                         block_in_file++;
213                         continue;
214                 }
215
216                 /* some filesystems will copy data into the page during
217                  * the get_block call, in which case we don't want to
218                  * read it again.  map_buffer_to_page copies the data
219                  * we just collected from get_block into the page's buffers
220                  * so readpage doesn't have to repeat the get_block call
221                  */
222                 if (buffer_uptodate(map_bh)) {
223                         map_buffer_to_page(page, map_bh, page_block);
224                         goto confused;
225                 }
226         
227                 if (first_hole != blocks_per_page)
228                         goto confused;          /* hole -> non-hole */
229
230                 /* Contiguous blocks? */
231                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
232                         goto confused;
233                 nblocks = map_bh->b_size >> blkbits;
234                 for (relative_block = 0; ; relative_block++) {
235                         if (relative_block == nblocks) {
236                                 clear_buffer_mapped(map_bh);
237                                 break;
238                         } else if (page_block == blocks_per_page)
239                                 break;
240                         blocks[page_block] = map_bh->b_blocknr+relative_block;
241                         page_block++;
242                         block_in_file++;
243                 }
244                 bdev = map_bh->b_bdev;
245         }
246
247         if (first_hole != blocks_per_page) {
248                 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
249                 if (first_hole == 0) {
250                         SetPageUptodate(page);
251                         unlock_page(page);
252                         goto out;
253                 }
254         } else if (fully_mapped) {
255                 SetPageMappedToDisk(page);
256         }
257
258         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
259             cleancache_get_page(page) == 0) {
260                 SetPageUptodate(page);
261                 goto confused;
262         }
263
264         /*
265          * This page will go to BIO.  Do we need to send this BIO off first?
266          */
267         if (bio && (*last_block_in_bio != blocks[0] - 1))
268                 bio = mpage_bio_submit(READ, bio);
269
270 alloc_new:
271         if (bio == NULL) {
272                 if (first_hole == blocks_per_page) {
273                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
274                                                                 page))
275                                 goto out;
276                 }
277                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
278                                 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
279                                 GFP_KERNEL);
280                 if (bio == NULL)
281                         goto confused;
282         }
283
284         length = first_hole << blkbits;
285         if (bio_add_page(bio, page, length, 0) < length) {
286                 bio = mpage_bio_submit(READ, bio);
287                 goto alloc_new;
288         }
289
290         relative_block = block_in_file - *first_logical_block;
291         nblocks = map_bh->b_size >> blkbits;
292         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
293             (first_hole != blocks_per_page))
294                 bio = mpage_bio_submit(READ, bio);
295         else
296                 *last_block_in_bio = blocks[blocks_per_page - 1];
297 out:
298         return bio;
299
300 confused:
301         if (bio)
302                 bio = mpage_bio_submit(READ, bio);
303         if (!PageUptodate(page))
304                 block_read_full_page(page, get_block);
305         else
306                 unlock_page(page);
307         goto out;
308 }
309
310 /**
311  * mpage_readpages - populate an address space with some pages & start reads against them
312  * @mapping: the address_space
313  * @pages: The address of a list_head which contains the target pages.  These
314  *   pages have their ->index populated and are otherwise uninitialised.
315  *   The page at @pages->prev has the lowest file offset, and reads should be
316  *   issued in @pages->prev to @pages->next order.
317  * @nr_pages: The number of pages at *@pages
318  * @get_block: The filesystem's block mapper function.
319  *
320  * This function walks the pages and the blocks within each page, building and
321  * emitting large BIOs.
322  *
323  * If anything unusual happens, such as:
324  *
325  * - encountering a page which has buffers
326  * - encountering a page which has a non-hole after a hole
327  * - encountering a page with non-contiguous blocks
328  *
329  * then this code just gives up and calls the buffer_head-based read function.
330  * It does handle a page which has holes at the end - that is a common case:
331  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
332  *
333  * BH_Boundary explanation:
334  *
335  * There is a problem.  The mpage read code assembles several pages, gets all
336  * their disk mappings, and then submits them all.  That's fine, but obtaining
337  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
338  *
339  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
340  * submitted in the following order:
341  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
342  *
343  * because the indirect block has to be read to get the mappings of blocks
344  * 13,14,15,16.  Obviously, this impacts performance.
345  *
346  * So what we do it to allow the filesystem's get_block() function to set
347  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
348  * after this one will require I/O against a block which is probably close to
349  * this one.  So you should push what I/O you have currently accumulated.
350  *
351  * This all causes the disk requests to be issued in the correct order.
352  */
353 int
354 mpage_readpages(struct address_space *mapping, struct list_head *pages,
355                                 unsigned nr_pages, get_block_t get_block)
356 {
357         struct bio *bio = NULL;
358         unsigned page_idx;
359         sector_t last_block_in_bio = 0;
360         struct buffer_head map_bh;
361         unsigned long first_logical_block = 0;
362
363         map_bh.b_state = 0;
364         map_bh.b_size = 0;
365         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
366                 struct page *page = list_entry(pages->prev, struct page, lru);
367
368                 prefetchw(&page->flags);
369                 list_del(&page->lru);
370                 if (!add_to_page_cache_lru(page, mapping,
371                                         page->index, GFP_KERNEL)) {
372                         bio = do_mpage_readpage(bio, page,
373                                         nr_pages - page_idx,
374                                         &last_block_in_bio, &map_bh,
375                                         &first_logical_block,
376                                         get_block);
377                 }
378                 page_cache_release(page);
379         }
380         BUG_ON(!list_empty(pages));
381         if (bio)
382                 mpage_bio_submit(READ, bio);
383         return 0;
384 }
385 EXPORT_SYMBOL(mpage_readpages);
386
387 /*
388  * This isn't called much at all
389  */
390 int mpage_readpage(struct page *page, get_block_t get_block)
391 {
392         struct bio *bio = NULL;
393         sector_t last_block_in_bio = 0;
394         struct buffer_head map_bh;
395         unsigned long first_logical_block = 0;
396
397         map_bh.b_state = 0;
398         map_bh.b_size = 0;
399         bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
400                         &map_bh, &first_logical_block, get_block);
401         if (bio)
402                 mpage_bio_submit(READ, bio);
403         return 0;
404 }
405 EXPORT_SYMBOL(mpage_readpage);
406
407 /*
408  * Writing is not so simple.
409  *
410  * If the page has buffers then they will be used for obtaining the disk
411  * mapping.  We only support pages which are fully mapped-and-dirty, with a
412  * special case for pages which are unmapped at the end: end-of-file.
413  *
414  * If the page has no buffers (preferred) then the page is mapped here.
415  *
416  * If all blocks are found to be contiguous then the page can go into the
417  * BIO.  Otherwise fall back to the mapping's writepage().
418  * 
419  * FIXME: This code wants an estimate of how many pages are still to be
420  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
421  * just allocate full-size (16-page) BIOs.
422  */
423
424 struct mpage_data {
425         struct bio *bio;
426         sector_t last_block_in_bio;
427         get_block_t *get_block;
428         unsigned use_writepage;
429 };
430
431 /*
432  * We have our BIO, so we can now mark the buffers clean.  Make
433  * sure to only clean buffers which we know we'll be writing.
434  */
435 static void clean_buffers(struct page *page, unsigned first_unmapped)
436 {
437         unsigned buffer_counter = 0;
438         struct buffer_head *bh, *head;
439         if (!page_has_buffers(page))
440                 return;
441         head = page_buffers(page);
442         bh = head;
443
444         do {
445                 if (buffer_counter++ == first_unmapped)
446                         break;
447                 clear_buffer_dirty(bh);
448                 bh = bh->b_this_page;
449         } while (bh != head);
450
451         /*
452          * we cannot drop the bh if the page is not uptodate or a concurrent
453          * readpage would fail to serialize with the bh and it would read from
454          * disk before we reach the platter.
455          */
456         if (buffer_heads_over_limit && PageUptodate(page))
457                 try_to_free_buffers(page);
458 }
459
460 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
461                       void *data)
462 {
463         struct mpage_data *mpd = data;
464         struct bio *bio = mpd->bio;
465         struct address_space *mapping = page->mapping;
466         struct inode *inode = page->mapping->host;
467         const unsigned blkbits = inode->i_blkbits;
468         unsigned long end_index;
469         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
470         sector_t last_block;
471         sector_t block_in_file;
472         sector_t blocks[MAX_BUF_PER_PAGE];
473         unsigned page_block;
474         unsigned first_unmapped = blocks_per_page;
475         struct block_device *bdev = NULL;
476         int boundary = 0;
477         sector_t boundary_block = 0;
478         struct block_device *boundary_bdev = NULL;
479         int length;
480         struct buffer_head map_bh;
481         loff_t i_size = i_size_read(inode);
482         int ret = 0;
483
484         if (page_has_buffers(page)) {
485                 struct buffer_head *head = page_buffers(page);
486                 struct buffer_head *bh = head;
487
488                 /* If they're all mapped and dirty, do it */
489                 page_block = 0;
490                 do {
491                         BUG_ON(buffer_locked(bh));
492                         if (!buffer_mapped(bh)) {
493                                 /*
494                                  * unmapped dirty buffers are created by
495                                  * __set_page_dirty_buffers -> mmapped data
496                                  */
497                                 if (buffer_dirty(bh))
498                                         goto confused;
499                                 if (first_unmapped == blocks_per_page)
500                                         first_unmapped = page_block;
501                                 continue;
502                         }
503
504                         if (first_unmapped != blocks_per_page)
505                                 goto confused;  /* hole -> non-hole */
506
507                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
508                                 goto confused;
509                         if (page_block) {
510                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
511                                         goto confused;
512                         }
513                         blocks[page_block++] = bh->b_blocknr;
514                         boundary = buffer_boundary(bh);
515                         if (boundary) {
516                                 boundary_block = bh->b_blocknr;
517                                 boundary_bdev = bh->b_bdev;
518                         }
519                         bdev = bh->b_bdev;
520                 } while ((bh = bh->b_this_page) != head);
521
522                 if (first_unmapped)
523                         goto page_is_mapped;
524
525                 /*
526                  * Page has buffers, but they are all unmapped. The page was
527                  * created by pagein or read over a hole which was handled by
528                  * block_read_full_page().  If this address_space is also
529                  * using mpage_readpages then this can rarely happen.
530                  */
531                 goto confused;
532         }
533
534         /*
535          * The page has no buffers: map it to disk
536          */
537         BUG_ON(!PageUptodate(page));
538         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
539         last_block = (i_size - 1) >> blkbits;
540         map_bh.b_page = page;
541         for (page_block = 0; page_block < blocks_per_page; ) {
542
543                 map_bh.b_state = 0;
544                 map_bh.b_size = 1 << blkbits;
545                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
546                         goto confused;
547                 if (buffer_new(&map_bh))
548                         unmap_underlying_metadata(map_bh.b_bdev,
549                                                 map_bh.b_blocknr);
550                 if (buffer_boundary(&map_bh)) {
551                         boundary_block = map_bh.b_blocknr;
552                         boundary_bdev = map_bh.b_bdev;
553                 }
554                 if (page_block) {
555                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
556                                 goto confused;
557                 }
558                 blocks[page_block++] = map_bh.b_blocknr;
559                 boundary = buffer_boundary(&map_bh);
560                 bdev = map_bh.b_bdev;
561                 if (block_in_file == last_block)
562                         break;
563                 block_in_file++;
564         }
565         BUG_ON(page_block == 0);
566
567         first_unmapped = page_block;
568
569 page_is_mapped:
570         end_index = i_size >> PAGE_CACHE_SHIFT;
571         if (page->index >= end_index) {
572                 /*
573                  * The page straddles i_size.  It must be zeroed out on each
574                  * and every writepage invocation because it may be mmapped.
575                  * "A file is mapped in multiples of the page size.  For a file
576                  * that is not a multiple of the page size, the remaining memory
577                  * is zeroed when mapped, and writes to that region are not
578                  * written out to the file."
579                  */
580                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
581
582                 if (page->index > end_index || !offset)
583                         goto confused;
584                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
585         }
586
587         /*
588          * This page will go to BIO.  Do we need to send this BIO off first?
589          */
590         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
591                 bio = mpage_bio_submit(WRITE, bio);
592
593 alloc_new:
594         if (bio == NULL) {
595                 if (first_unmapped == blocks_per_page) {
596                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
597                                                                 page, wbc)) {
598                                 clean_buffers(page, first_unmapped);
599                                 goto out;
600                         }
601                 }
602                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
603                                 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
604                 if (bio == NULL)
605                         goto confused;
606         }
607
608         /*
609          * Must try to add the page before marking the buffer clean or
610          * the confused fail path above (OOM) will be very confused when
611          * it finds all bh marked clean (i.e. it will not write anything)
612          */
613         length = first_unmapped << blkbits;
614         if (bio_add_page(bio, page, length, 0) < length) {
615                 bio = mpage_bio_submit(WRITE, bio);
616                 goto alloc_new;
617         }
618
619         clean_buffers(page, first_unmapped);
620
621         BUG_ON(PageWriteback(page));
622         set_page_writeback(page);
623         unlock_page(page);
624         if (boundary || (first_unmapped != blocks_per_page)) {
625                 bio = mpage_bio_submit(WRITE, bio);
626                 if (boundary_block) {
627                         write_boundary_block(boundary_bdev,
628                                         boundary_block, 1 << blkbits);
629                 }
630         } else {
631                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
632         }
633         goto out;
634
635 confused:
636         if (bio)
637                 bio = mpage_bio_submit(WRITE, bio);
638
639         if (mpd->use_writepage) {
640                 ret = mapping->a_ops->writepage(page, wbc);
641         } else {
642                 ret = -EAGAIN;
643                 goto out;
644         }
645         /*
646          * The caller has a ref on the inode, so *mapping is stable
647          */
648         mapping_set_error(mapping, ret);
649 out:
650         mpd->bio = bio;
651         return ret;
652 }
653
654 /**
655  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
656  * @mapping: address space structure to write
657  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
658  * @get_block: the filesystem's block mapper function.
659  *             If this is NULL then use a_ops->writepage.  Otherwise, go
660  *             direct-to-BIO.
661  *
662  * This is a library function, which implements the writepages()
663  * address_space_operation.
664  *
665  * If a page is already under I/O, generic_writepages() skips it, even
666  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
667  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
668  * and msync() need to guarantee that all the data which was dirty at the time
669  * the call was made get new I/O started against them.  If wbc->sync_mode is
670  * WB_SYNC_ALL then we were called for data integrity and we must wait for
671  * existing IO to complete.
672  */
673 int
674 mpage_writepages(struct address_space *mapping,
675                 struct writeback_control *wbc, get_block_t get_block)
676 {
677         struct blk_plug plug;
678         int ret;
679
680         blk_start_plug(&plug);
681
682         if (!get_block)
683                 ret = generic_writepages(mapping, wbc);
684         else {
685                 struct mpage_data mpd = {
686                         .bio = NULL,
687                         .last_block_in_bio = 0,
688                         .get_block = get_block,
689                         .use_writepage = 1,
690                 };
691
692                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
693                 if (mpd.bio)
694                         mpage_bio_submit(WRITE, mpd.bio);
695         }
696         blk_finish_plug(&plug);
697         return ret;
698 }
699 EXPORT_SYMBOL(mpage_writepages);
700
701 int mpage_writepage(struct page *page, get_block_t get_block,
702         struct writeback_control *wbc)
703 {
704         struct mpage_data mpd = {
705                 .bio = NULL,
706                 .last_block_in_bio = 0,
707                 .get_block = get_block,
708                 .use_writepage = 0,
709         };
710         int ret = __mpage_writepage(page, wbc, &mpd);
711         if (mpd.bio)
712                 mpage_bio_submit(WRITE, mpd.bio);
713         return ret;
714 }
715 EXPORT_SYMBOL(mpage_writepage);