]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/namei.c
namei: change calling conventions for lookup_{fast,slow} and follow_managed()
[karo-tx-linux.git] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now 
53  * replaced with a single function lookup_dentry() that can handle all 
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *      inside the path - always follow.
96  *      in the last component in creation/removal/renaming - never follow.
97  *      if LOOKUP_FOLLOW passed - follow.
98  *      if the pathname has trailing slashes - follow.
99  *      otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121
122 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127         struct filename *result;
128         char *kname;
129         int len;
130
131         result = audit_reusename(filename);
132         if (result)
133                 return result;
134
135         result = __getname();
136         if (unlikely(!result))
137                 return ERR_PTR(-ENOMEM);
138
139         /*
140          * First, try to embed the struct filename inside the names_cache
141          * allocation
142          */
143         kname = (char *)result->iname;
144         result->name = kname;
145
146         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147         if (unlikely(len < 0)) {
148                 __putname(result);
149                 return ERR_PTR(len);
150         }
151
152         /*
153          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154          * separate struct filename so we can dedicate the entire
155          * names_cache allocation for the pathname, and re-do the copy from
156          * userland.
157          */
158         if (unlikely(len == EMBEDDED_NAME_MAX)) {
159                 const size_t size = offsetof(struct filename, iname[1]);
160                 kname = (char *)result;
161
162                 /*
163                  * size is chosen that way we to guarantee that
164                  * result->iname[0] is within the same object and that
165                  * kname can't be equal to result->iname, no matter what.
166                  */
167                 result = kzalloc(size, GFP_KERNEL);
168                 if (unlikely(!result)) {
169                         __putname(kname);
170                         return ERR_PTR(-ENOMEM);
171                 }
172                 result->name = kname;
173                 len = strncpy_from_user(kname, filename, PATH_MAX);
174                 if (unlikely(len < 0)) {
175                         __putname(kname);
176                         kfree(result);
177                         return ERR_PTR(len);
178                 }
179                 if (unlikely(len == PATH_MAX)) {
180                         __putname(kname);
181                         kfree(result);
182                         return ERR_PTR(-ENAMETOOLONG);
183                 }
184         }
185
186         result->refcnt = 1;
187         /* The empty path is special. */
188         if (unlikely(!len)) {
189                 if (empty)
190                         *empty = 1;
191                 if (!(flags & LOOKUP_EMPTY)) {
192                         putname(result);
193                         return ERR_PTR(-ENOENT);
194                 }
195         }
196
197         result->uptr = filename;
198         result->aname = NULL;
199         audit_getname(result);
200         return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206         return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212         struct filename *result;
213         int len = strlen(filename) + 1;
214
215         result = __getname();
216         if (unlikely(!result))
217                 return ERR_PTR(-ENOMEM);
218
219         if (len <= EMBEDDED_NAME_MAX) {
220                 result->name = (char *)result->iname;
221         } else if (len <= PATH_MAX) {
222                 struct filename *tmp;
223
224                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225                 if (unlikely(!tmp)) {
226                         __putname(result);
227                         return ERR_PTR(-ENOMEM);
228                 }
229                 tmp->name = (char *)result;
230                 result = tmp;
231         } else {
232                 __putname(result);
233                 return ERR_PTR(-ENAMETOOLONG);
234         }
235         memcpy((char *)result->name, filename, len);
236         result->uptr = NULL;
237         result->aname = NULL;
238         result->refcnt = 1;
239         audit_getname(result);
240
241         return result;
242 }
243
244 void putname(struct filename *name)
245 {
246         BUG_ON(name->refcnt <= 0);
247
248         if (--name->refcnt > 0)
249                 return;
250
251         if (name->name != name->iname) {
252                 __putname(name->name);
253                 kfree(name);
254         } else
255                 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261         struct posix_acl *acl;
262
263         if (mask & MAY_NOT_BLOCK) {
264                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265                 if (!acl)
266                         return -EAGAIN;
267                 /* no ->get_acl() calls in RCU mode... */
268                 if (acl == ACL_NOT_CACHED)
269                         return -ECHILD;
270                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271         }
272
273         acl = get_acl(inode, ACL_TYPE_ACCESS);
274         if (IS_ERR(acl))
275                 return PTR_ERR(acl);
276         if (acl) {
277                 int error = posix_acl_permission(inode, acl, mask);
278                 posix_acl_release(acl);
279                 return error;
280         }
281 #endif
282
283         return -EAGAIN;
284 }
285
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291         unsigned int mode = inode->i_mode;
292
293         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294                 mode >>= 6;
295         else {
296                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297                         int error = check_acl(inode, mask);
298                         if (error != -EAGAIN)
299                                 return error;
300                 }
301
302                 if (in_group_p(inode->i_gid))
303                         mode >>= 3;
304         }
305
306         /*
307          * If the DACs are ok we don't need any capability check.
308          */
309         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310                 return 0;
311         return -EACCES;
312 }
313
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:      inode to check access rights for
317  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330         int ret;
331
332         /*
333          * Do the basic permission checks.
334          */
335         ret = acl_permission_check(inode, mask);
336         if (ret != -EACCES)
337                 return ret;
338
339         if (S_ISDIR(inode->i_mode)) {
340                 /* DACs are overridable for directories */
341                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342                         return 0;
343                 if (!(mask & MAY_WRITE))
344                         if (capable_wrt_inode_uidgid(inode,
345                                                      CAP_DAC_READ_SEARCH))
346                                 return 0;
347                 return -EACCES;
348         }
349         /*
350          * Read/write DACs are always overridable.
351          * Executable DACs are overridable when there is
352          * at least one exec bit set.
353          */
354         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356                         return 0;
357
358         /*
359          * Searching includes executable on directories, else just read.
360          */
361         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362         if (mask == MAY_READ)
363                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364                         return 0;
365
366         return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379                 if (likely(inode->i_op->permission))
380                         return inode->i_op->permission(inode, mask);
381
382                 /* This gets set once for the inode lifetime */
383                 spin_lock(&inode->i_lock);
384                 inode->i_opflags |= IOP_FASTPERM;
385                 spin_unlock(&inode->i_lock);
386         }
387         return generic_permission(inode, mask);
388 }
389
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404         int retval;
405
406         if (unlikely(mask & MAY_WRITE)) {
407                 /*
408                  * Nobody gets write access to an immutable file.
409                  */
410                 if (IS_IMMUTABLE(inode))
411                         return -EACCES;
412         }
413
414         retval = do_inode_permission(inode, mask);
415         if (retval)
416                 return retval;
417
418         retval = devcgroup_inode_permission(inode, mask);
419         if (retval)
420                 return retval;
421
422         return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436         if (unlikely(mask & MAY_WRITE)) {
437                 umode_t mode = inode->i_mode;
438
439                 /* Nobody gets write access to a read-only fs. */
440                 if ((sb->s_flags & MS_RDONLY) &&
441                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442                         return -EROFS;
443         }
444         return 0;
445 }
446
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460         int retval;
461
462         retval = sb_permission(inode->i_sb, inode, mask);
463         if (retval)
464                 return retval;
465         return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477         mntget(path->mnt);
478         dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490         dput(path->dentry);
491         mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497         struct path     path;
498         struct qstr     last;
499         struct path     root;
500         struct inode    *inode; /* path.dentry.d_inode */
501         unsigned int    flags;
502         unsigned        seq, m_seq;
503         int             last_type;
504         unsigned        depth;
505         int             total_link_count;
506         struct saved {
507                 struct path link;
508                 struct delayed_call done;
509                 const char *name;
510                 unsigned seq;
511         } *stack, internal[EMBEDDED_LEVELS];
512         struct filename *name;
513         struct nameidata *saved;
514         struct inode    *link_inode;
515         unsigned        root_seq;
516         int             dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521         struct nameidata *old = current->nameidata;
522         p->stack = p->internal;
523         p->dfd = dfd;
524         p->name = name;
525         p->total_link_count = old ? old->total_link_count : 0;
526         p->saved = old;
527         current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532         struct nameidata *now = current->nameidata, *old = now->saved;
533
534         current->nameidata = old;
535         if (old)
536                 old->total_link_count = now->total_link_count;
537         if (now->stack != now->internal)
538                 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543         struct saved *p;
544
545         if (nd->flags & LOOKUP_RCU) {
546                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547                                   GFP_ATOMIC);
548                 if (unlikely(!p))
549                         return -ECHILD;
550         } else {
551                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552                                   GFP_KERNEL);
553                 if (unlikely(!p))
554                         return -ENOMEM;
555         }
556         memcpy(p, nd->internal, sizeof(nd->internal));
557         nd->stack = p;
558         return 0;
559 }
560
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570         struct vfsmount *mnt = path->mnt;
571
572         /* Only bind mounts can have disconnected paths */
573         if (mnt->mnt_root == mnt->mnt_sb->s_root)
574                 return true;
575
576         return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581         if (likely(nd->depth != EMBEDDED_LEVELS))
582                 return 0;
583         if (likely(nd->stack != nd->internal))
584                 return 0;
585         return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590         int i = nd->depth;
591         while (i--) {
592                 struct saved *last = nd->stack + i;
593                 do_delayed_call(&last->done);
594                 clear_delayed_call(&last->done);
595         }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600         drop_links(nd);
601         if (!(nd->flags & LOOKUP_RCU)) {
602                 int i;
603                 path_put(&nd->path);
604                 for (i = 0; i < nd->depth; i++)
605                         path_put(&nd->stack[i].link);
606                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607                         path_put(&nd->root);
608                         nd->root.mnt = NULL;
609                 }
610         } else {
611                 nd->flags &= ~LOOKUP_RCU;
612                 if (!(nd->flags & LOOKUP_ROOT))
613                         nd->root.mnt = NULL;
614                 rcu_read_unlock();
615         }
616         nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621                             struct path *path, unsigned seq)
622 {
623         int res = __legitimize_mnt(path->mnt, nd->m_seq);
624         if (unlikely(res)) {
625                 if (res > 0)
626                         path->mnt = NULL;
627                 path->dentry = NULL;
628                 return false;
629         }
630         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631                 path->dentry = NULL;
632                 return false;
633         }
634         return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639         int i;
640         for (i = 0; i < nd->depth; i++) {
641                 struct saved *last = nd->stack + i;
642                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643                         drop_links(nd);
644                         nd->depth = i + 1;
645                         return false;
646                 }
647         }
648         return true;
649 }
650
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677         struct dentry *parent = nd->path.dentry;
678
679         BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681         nd->flags &= ~LOOKUP_RCU;
682         if (unlikely(!legitimize_links(nd)))
683                 goto out2;
684         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685                 goto out2;
686         if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687                 goto out1;
688
689         /*
690          * For a negative lookup, the lookup sequence point is the parents
691          * sequence point, and it only needs to revalidate the parent dentry.
692          *
693          * For a positive lookup, we need to move both the parent and the
694          * dentry from the RCU domain to be properly refcounted. And the
695          * sequence number in the dentry validates *both* dentry counters,
696          * since we checked the sequence number of the parent after we got
697          * the child sequence number. So we know the parent must still
698          * be valid if the child sequence number is still valid.
699          */
700         if (!dentry) {
701                 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702                         goto out;
703                 BUG_ON(nd->inode != parent->d_inode);
704         } else {
705                 if (!lockref_get_not_dead(&dentry->d_lockref))
706                         goto out;
707                 if (read_seqcount_retry(&dentry->d_seq, seq))
708                         goto drop_dentry;
709         }
710
711         /*
712          * Sequence counts matched. Now make sure that the root is
713          * still valid and get it if required.
714          */
715         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717                         rcu_read_unlock();
718                         dput(dentry);
719                         return -ECHILD;
720                 }
721         }
722
723         rcu_read_unlock();
724         return 0;
725
726 drop_dentry:
727         rcu_read_unlock();
728         dput(dentry);
729         goto drop_root_mnt;
730 out2:
731         nd->path.mnt = NULL;
732 out1:
733         nd->path.dentry = NULL;
734 out:
735         rcu_read_unlock();
736 drop_root_mnt:
737         if (!(nd->flags & LOOKUP_ROOT))
738                 nd->root.mnt = NULL;
739         return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744         if (unlikely(!legitimize_path(nd, link, seq))) {
745                 drop_links(nd);
746                 nd->depth = 0;
747                 nd->flags &= ~LOOKUP_RCU;
748                 nd->path.mnt = NULL;
749                 nd->path.dentry = NULL;
750                 if (!(nd->flags & LOOKUP_ROOT))
751                         nd->root.mnt = NULL;
752                 rcu_read_unlock();
753         } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754                 return 0;
755         }
756         path_put(link);
757         return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762         return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777         struct dentry *dentry = nd->path.dentry;
778         int status;
779
780         if (nd->flags & LOOKUP_RCU) {
781                 if (!(nd->flags & LOOKUP_ROOT))
782                         nd->root.mnt = NULL;
783                 if (unlikely(unlazy_walk(nd, NULL, 0)))
784                         return -ECHILD;
785         }
786
787         if (likely(!(nd->flags & LOOKUP_JUMPED)))
788                 return 0;
789
790         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791                 return 0;
792
793         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794         if (status > 0)
795                 return 0;
796
797         if (!status)
798                 status = -ESTALE;
799
800         return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805         struct fs_struct *fs = current->fs;
806
807         if (nd->flags & LOOKUP_RCU) {
808                 unsigned seq;
809
810                 do {
811                         seq = read_seqcount_begin(&fs->seq);
812                         nd->root = fs->root;
813                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814                 } while (read_seqcount_retry(&fs->seq, seq));
815         } else {
816                 get_fs_root(fs, &nd->root);
817         }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822         dput(path->dentry);
823         if (path->mnt != nd->path.mnt)
824                 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828                                         struct nameidata *nd)
829 {
830         if (!(nd->flags & LOOKUP_RCU)) {
831                 dput(nd->path.dentry);
832                 if (nd->path.mnt != path->mnt)
833                         mntput(nd->path.mnt);
834         }
835         nd->path.mnt = path->mnt;
836         nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841         if (nd->flags & LOOKUP_RCU) {
842                 struct dentry *d;
843                 nd->path = nd->root;
844                 d = nd->path.dentry;
845                 nd->inode = d->d_inode;
846                 nd->seq = nd->root_seq;
847                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848                         return -ECHILD;
849         } else {
850                 path_put(&nd->path);
851                 nd->path = nd->root;
852                 path_get(&nd->path);
853                 nd->inode = nd->path.dentry->d_inode;
854         }
855         nd->flags |= LOOKUP_JUMPED;
856         return 0;
857 }
858
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865         struct nameidata *nd = current->nameidata;
866         path_put(&nd->path);
867
868         nd->path = *path;
869         nd->inode = nd->path.dentry->d_inode;
870         nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875         struct saved *last = nd->stack + --nd->depth;
876         do_delayed_call(&last->done);
877         if (!(nd->flags & LOOKUP_RCU))
878                 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901         const struct inode *inode;
902         const struct inode *parent;
903
904         if (!sysctl_protected_symlinks)
905                 return 0;
906
907         /* Allowed if owner and follower match. */
908         inode = nd->link_inode;
909         if (uid_eq(current_cred()->fsuid, inode->i_uid))
910                 return 0;
911
912         /* Allowed if parent directory not sticky and world-writable. */
913         parent = nd->inode;
914         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915                 return 0;
916
917         /* Allowed if parent directory and link owner match. */
918         if (uid_eq(parent->i_uid, inode->i_uid))
919                 return 0;
920
921         if (nd->flags & LOOKUP_RCU)
922                 return -ECHILD;
923
924         audit_log_link_denied("follow_link", &nd->stack[0].link);
925         return -EACCES;
926 }
927
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942         umode_t mode = inode->i_mode;
943
944         /* Special files should not get pinned to the filesystem. */
945         if (!S_ISREG(mode))
946                 return false;
947
948         /* Setuid files should not get pinned to the filesystem. */
949         if (mode & S_ISUID)
950                 return false;
951
952         /* Executable setgid files should not get pinned to the filesystem. */
953         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954                 return false;
955
956         /* Hardlinking to unreadable or unwritable sources is dangerous. */
957         if (inode_permission(inode, MAY_READ | MAY_WRITE))
958                 return false;
959
960         return true;
961 }
962
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977         struct inode *inode;
978
979         if (!sysctl_protected_hardlinks)
980                 return 0;
981
982         inode = link->dentry->d_inode;
983
984         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985          * otherwise, it must be a safe source.
986          */
987         if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988                 return 0;
989
990         audit_log_link_denied("linkat", link);
991         return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997         struct saved *last = nd->stack + nd->depth - 1;
998         struct dentry *dentry = last->link.dentry;
999         struct inode *inode = nd->link_inode;
1000         int error;
1001         const char *res;
1002
1003         if (!(nd->flags & LOOKUP_RCU)) {
1004                 touch_atime(&last->link);
1005                 cond_resched();
1006         } else if (atime_needs_update(&last->link, inode)) {
1007                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008                         return ERR_PTR(-ECHILD);
1009                 touch_atime(&last->link);
1010         }
1011
1012         error = security_inode_follow_link(dentry, inode,
1013                                            nd->flags & LOOKUP_RCU);
1014         if (unlikely(error))
1015                 return ERR_PTR(error);
1016
1017         nd->last_type = LAST_BIND;
1018         res = inode->i_link;
1019         if (!res) {
1020                 const char * (*get)(struct dentry *, struct inode *,
1021                                 struct delayed_call *);
1022                 get = inode->i_op->get_link;
1023                 if (nd->flags & LOOKUP_RCU) {
1024                         res = get(NULL, inode, &last->done);
1025                         if (res == ERR_PTR(-ECHILD)) {
1026                                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027                                         return ERR_PTR(-ECHILD);
1028                                 res = get(dentry, inode, &last->done);
1029                         }
1030                 } else {
1031                         res = get(dentry, inode, &last->done);
1032                 }
1033                 if (IS_ERR_OR_NULL(res))
1034                         return res;
1035         }
1036         if (*res == '/') {
1037                 if (!nd->root.mnt)
1038                         set_root(nd);
1039                 if (unlikely(nd_jump_root(nd)))
1040                         return ERR_PTR(-ECHILD);
1041                 while (unlikely(*++res == '/'))
1042                         ;
1043         }
1044         if (!*res)
1045                 res = NULL;
1046         return res;
1047 }
1048
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061         struct mount *mnt = real_mount(path->mnt);
1062         struct mount *parent;
1063         struct dentry *mountpoint;
1064
1065         read_seqlock_excl(&mount_lock);
1066         parent = mnt->mnt_parent;
1067         if (parent == mnt) {
1068                 read_sequnlock_excl(&mount_lock);
1069                 return 0;
1070         }
1071         mntget(&parent->mnt);
1072         mountpoint = dget(mnt->mnt_mountpoint);
1073         read_sequnlock_excl(&mount_lock);
1074         dput(path->dentry);
1075         path->dentry = mountpoint;
1076         mntput(path->mnt);
1077         path->mnt = &parent->mnt;
1078         return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088                             bool *need_mntput)
1089 {
1090         struct vfsmount *mnt;
1091         int err;
1092
1093         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094                 return -EREMOTE;
1095
1096         /* We don't want to mount if someone's just doing a stat -
1097          * unless they're stat'ing a directory and appended a '/' to
1098          * the name.
1099          *
1100          * We do, however, want to mount if someone wants to open or
1101          * create a file of any type under the mountpoint, wants to
1102          * traverse through the mountpoint or wants to open the
1103          * mounted directory.  Also, autofs may mark negative dentries
1104          * as being automount points.  These will need the attentions
1105          * of the daemon to instantiate them before they can be used.
1106          */
1107         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109             path->dentry->d_inode)
1110                 return -EISDIR;
1111
1112         nd->total_link_count++;
1113         if (nd->total_link_count >= 40)
1114                 return -ELOOP;
1115
1116         mnt = path->dentry->d_op->d_automount(path);
1117         if (IS_ERR(mnt)) {
1118                 /*
1119                  * The filesystem is allowed to return -EISDIR here to indicate
1120                  * it doesn't want to automount.  For instance, autofs would do
1121                  * this so that its userspace daemon can mount on this dentry.
1122                  *
1123                  * However, we can only permit this if it's a terminal point in
1124                  * the path being looked up; if it wasn't then the remainder of
1125                  * the path is inaccessible and we should say so.
1126                  */
1127                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128                         return -EREMOTE;
1129                 return PTR_ERR(mnt);
1130         }
1131
1132         if (!mnt) /* mount collision */
1133                 return 0;
1134
1135         if (!*need_mntput) {
1136                 /* lock_mount() may release path->mnt on error */
1137                 mntget(path->mnt);
1138                 *need_mntput = true;
1139         }
1140         err = finish_automount(mnt, path);
1141
1142         switch (err) {
1143         case -EBUSY:
1144                 /* Someone else made a mount here whilst we were busy */
1145                 return 0;
1146         case 0:
1147                 path_put(path);
1148                 path->mnt = mnt;
1149                 path->dentry = dget(mnt->mnt_root);
1150                 return 0;
1151         default:
1152                 return err;
1153         }
1154
1155 }
1156
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170         unsigned managed;
1171         bool need_mntput = false;
1172         int ret = 0;
1173
1174         /* Given that we're not holding a lock here, we retain the value in a
1175          * local variable for each dentry as we look at it so that we don't see
1176          * the components of that value change under us */
1177         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178                managed &= DCACHE_MANAGED_DENTRY,
1179                unlikely(managed != 0)) {
1180                 /* Allow the filesystem to manage the transit without i_mutex
1181                  * being held. */
1182                 if (managed & DCACHE_MANAGE_TRANSIT) {
1183                         BUG_ON(!path->dentry->d_op);
1184                         BUG_ON(!path->dentry->d_op->d_manage);
1185                         ret = path->dentry->d_op->d_manage(path->dentry, false);
1186                         if (ret < 0)
1187                                 break;
1188                 }
1189
1190                 /* Transit to a mounted filesystem. */
1191                 if (managed & DCACHE_MOUNTED) {
1192                         struct vfsmount *mounted = lookup_mnt(path);
1193                         if (mounted) {
1194                                 dput(path->dentry);
1195                                 if (need_mntput)
1196                                         mntput(path->mnt);
1197                                 path->mnt = mounted;
1198                                 path->dentry = dget(mounted->mnt_root);
1199                                 need_mntput = true;
1200                                 continue;
1201                         }
1202
1203                         /* Something is mounted on this dentry in another
1204                          * namespace and/or whatever was mounted there in this
1205                          * namespace got unmounted before lookup_mnt() could
1206                          * get it */
1207                 }
1208
1209                 /* Handle an automount point */
1210                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211                         ret = follow_automount(path, nd, &need_mntput);
1212                         if (ret < 0)
1213                                 break;
1214                         continue;
1215                 }
1216
1217                 /* We didn't change the current path point */
1218                 break;
1219         }
1220
1221         if (need_mntput && path->mnt == mnt)
1222                 mntput(path->mnt);
1223         if (ret == -EISDIR || !ret)
1224                 ret = 1;
1225         if (need_mntput)
1226                 nd->flags |= LOOKUP_JUMPED;
1227         if (unlikely(ret < 0))
1228                 path_put_conditional(path, nd);
1229         return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234         struct vfsmount *mounted;
1235
1236         mounted = lookup_mnt(path);
1237         if (mounted) {
1238                 dput(path->dentry);
1239                 mntput(path->mnt);
1240                 path->mnt = mounted;
1241                 path->dentry = dget(mounted->mnt_root);
1242                 return 1;
1243         }
1244         return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250         return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251                 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259                                struct inode **inode, unsigned *seqp)
1260 {
1261         for (;;) {
1262                 struct mount *mounted;
1263                 /*
1264                  * Don't forget we might have a non-mountpoint managed dentry
1265                  * that wants to block transit.
1266                  */
1267                 switch (managed_dentry_rcu(path->dentry)) {
1268                 case -ECHILD:
1269                 default:
1270                         return false;
1271                 case -EISDIR:
1272                         return true;
1273                 case 0:
1274                         break;
1275                 }
1276
1277                 if (!d_mountpoint(path->dentry))
1278                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280                 mounted = __lookup_mnt(path->mnt, path->dentry);
1281                 if (!mounted)
1282                         break;
1283                 path->mnt = &mounted->mnt;
1284                 path->dentry = mounted->mnt.mnt_root;
1285                 nd->flags |= LOOKUP_JUMPED;
1286                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287                 /*
1288                  * Update the inode too. We don't need to re-check the
1289                  * dentry sequence number here after this d_inode read,
1290                  * because a mount-point is always pinned.
1291                  */
1292                 *inode = path->dentry->d_inode;
1293         }
1294         return !read_seqretry(&mount_lock, nd->m_seq) &&
1295                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300         struct inode *inode = nd->inode;
1301
1302         while (1) {
1303                 if (path_equal(&nd->path, &nd->root))
1304                         break;
1305                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306                         struct dentry *old = nd->path.dentry;
1307                         struct dentry *parent = old->d_parent;
1308                         unsigned seq;
1309
1310                         inode = parent->d_inode;
1311                         seq = read_seqcount_begin(&parent->d_seq);
1312                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313                                 return -ECHILD;
1314                         nd->path.dentry = parent;
1315                         nd->seq = seq;
1316                         if (unlikely(!path_connected(&nd->path)))
1317                                 return -ENOENT;
1318                         break;
1319                 } else {
1320                         struct mount *mnt = real_mount(nd->path.mnt);
1321                         struct mount *mparent = mnt->mnt_parent;
1322                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1323                         struct inode *inode2 = mountpoint->d_inode;
1324                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326                                 return -ECHILD;
1327                         if (&mparent->mnt == nd->path.mnt)
1328                                 break;
1329                         /* we know that mountpoint was pinned */
1330                         nd->path.dentry = mountpoint;
1331                         nd->path.mnt = &mparent->mnt;
1332                         inode = inode2;
1333                         nd->seq = seq;
1334                 }
1335         }
1336         while (unlikely(d_mountpoint(nd->path.dentry))) {
1337                 struct mount *mounted;
1338                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340                         return -ECHILD;
1341                 if (!mounted)
1342                         break;
1343                 nd->path.mnt = &mounted->mnt;
1344                 nd->path.dentry = mounted->mnt.mnt_root;
1345                 inode = nd->path.dentry->d_inode;
1346                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347         }
1348         nd->inode = inode;
1349         return 0;
1350 }
1351
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359         unsigned managed;
1360         int ret;
1361
1362         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364                 /* Allow the filesystem to manage the transit without i_mutex
1365                  * being held.
1366                  *
1367                  * We indicate to the filesystem if someone is trying to mount
1368                  * something here.  This gives autofs the chance to deny anyone
1369                  * other than its daemon the right to mount on its
1370                  * superstructure.
1371                  *
1372                  * The filesystem may sleep at this point.
1373                  */
1374                 if (managed & DCACHE_MANAGE_TRANSIT) {
1375                         BUG_ON(!path->dentry->d_op);
1376                         BUG_ON(!path->dentry->d_op->d_manage);
1377                         ret = path->dentry->d_op->d_manage(
1378                                 path->dentry, false);
1379                         if (ret < 0)
1380                                 return ret == -EISDIR ? 0 : ret;
1381                 }
1382
1383                 /* Transit to a mounted filesystem. */
1384                 if (managed & DCACHE_MOUNTED) {
1385                         struct vfsmount *mounted = lookup_mnt(path);
1386                         if (!mounted)
1387                                 break;
1388                         dput(path->dentry);
1389                         mntput(path->mnt);
1390                         path->mnt = mounted;
1391                         path->dentry = dget(mounted->mnt_root);
1392                         continue;
1393                 }
1394
1395                 /* Don't handle automount points here */
1396                 break;
1397         }
1398         return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407         while (d_mountpoint(path->dentry)) {
1408                 struct vfsmount *mounted = lookup_mnt(path);
1409                 if (!mounted)
1410                         break;
1411                 dput(path->dentry);
1412                 mntput(path->mnt);
1413                 path->mnt = mounted;
1414                 path->dentry = dget(mounted->mnt_root);
1415         }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420         while(1) {
1421                 struct dentry *old = nd->path.dentry;
1422
1423                 if (nd->path.dentry == nd->root.dentry &&
1424                     nd->path.mnt == nd->root.mnt) {
1425                         break;
1426                 }
1427                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428                         /* rare case of legitimate dget_parent()... */
1429                         nd->path.dentry = dget_parent(nd->path.dentry);
1430                         dput(old);
1431                         if (unlikely(!path_connected(&nd->path)))
1432                                 return -ENOENT;
1433                         break;
1434                 }
1435                 if (!follow_up(&nd->path))
1436                         break;
1437         }
1438         follow_mount(&nd->path);
1439         nd->inode = nd->path.dentry->d_inode;
1440         return 0;
1441 }
1442
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  *
1448  * dir->d_inode->i_mutex must be held
1449  */
1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1451                                     unsigned int flags)
1452 {
1453         struct dentry *dentry;
1454         int error;
1455
1456         dentry = d_lookup(dir, name);
1457         if (dentry) {
1458                 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1459                         error = d_revalidate(dentry, flags);
1460                         if (unlikely(error <= 0)) {
1461                                 if (error < 0) {
1462                                         dput(dentry);
1463                                         return ERR_PTR(error);
1464                                 } else {
1465                                         d_invalidate(dentry);
1466                                         dput(dentry);
1467                                         dentry = NULL;
1468                                 }
1469                         }
1470                 }
1471         }
1472         return dentry;
1473 }
1474
1475 /*
1476  * Call i_op->lookup on the dentry.  The dentry must be negative and
1477  * unhashed.
1478  *
1479  * dir->d_inode->i_mutex must be held
1480  */
1481 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1482                                   unsigned int flags)
1483 {
1484         struct dentry *old;
1485
1486         /* Don't create child dentry for a dead directory. */
1487         if (unlikely(IS_DEADDIR(dir))) {
1488                 dput(dentry);
1489                 return ERR_PTR(-ENOENT);
1490         }
1491
1492         old = dir->i_op->lookup(dir, dentry, flags);
1493         if (unlikely(old)) {
1494                 dput(dentry);
1495                 dentry = old;
1496         }
1497         return dentry;
1498 }
1499
1500 static struct dentry *__lookup_hash(struct qstr *name,
1501                 struct dentry *base, unsigned int flags)
1502 {
1503         struct dentry *dentry = lookup_dcache(name, base, flags);
1504
1505         if (dentry)
1506                 return dentry;
1507
1508         dentry = d_alloc(base, name);
1509         if (unlikely(!dentry))
1510                 return ERR_PTR(-ENOMEM);
1511
1512         return lookup_real(base->d_inode, dentry, flags);
1513 }
1514
1515 static int lookup_fast(struct nameidata *nd,
1516                        struct path *path, struct inode **inode,
1517                        unsigned *seqp)
1518 {
1519         struct vfsmount *mnt = nd->path.mnt;
1520         struct dentry *dentry, *parent = nd->path.dentry;
1521         int status = 1;
1522         int err;
1523
1524         /*
1525          * Rename seqlock is not required here because in the off chance
1526          * of a false negative due to a concurrent rename, the caller is
1527          * going to fall back to non-racy lookup.
1528          */
1529         if (nd->flags & LOOKUP_RCU) {
1530                 unsigned seq;
1531                 bool negative;
1532                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1533                 if (unlikely(!dentry)) {
1534                         if (unlazy_walk(nd, NULL, 0))
1535                                 return -ECHILD;
1536                         return 0;
1537                 }
1538
1539                 /*
1540                  * This sequence count validates that the inode matches
1541                  * the dentry name information from lookup.
1542                  */
1543                 *inode = d_backing_inode(dentry);
1544                 negative = d_is_negative(dentry);
1545                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1546                         return -ECHILD;
1547
1548                 /*
1549                  * This sequence count validates that the parent had no
1550                  * changes while we did the lookup of the dentry above.
1551                  *
1552                  * The memory barrier in read_seqcount_begin of child is
1553                  *  enough, we can use __read_seqcount_retry here.
1554                  */
1555                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1556                         return -ECHILD;
1557
1558                 *seqp = seq;
1559                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1560                         status = d_revalidate(dentry, nd->flags);
1561                 if (unlikely(status <= 0)) {
1562                         if (unlazy_walk(nd, dentry, seq))
1563                                 return -ECHILD;
1564                         if (status == -ECHILD)
1565                                 status = d_revalidate(dentry, nd->flags);
1566                 } else {
1567                         /*
1568                          * Note: do negative dentry check after revalidation in
1569                          * case that drops it.
1570                          */
1571                         if (unlikely(negative))
1572                                 return -ENOENT;
1573                         path->mnt = mnt;
1574                         path->dentry = dentry;
1575                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1576                                 return 1;
1577                         if (unlazy_walk(nd, dentry, seq))
1578                                 return -ECHILD;
1579                 }
1580         } else {
1581                 dentry = __d_lookup(parent, &nd->last);
1582                 if (unlikely(!dentry))
1583                         return 0;
1584                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1585                         status = d_revalidate(dentry, nd->flags);
1586         }
1587         if (unlikely(status <= 0)) {
1588                 if (!status)
1589                         d_invalidate(dentry);
1590                 dput(dentry);
1591                 return status;
1592         }
1593         if (unlikely(d_is_negative(dentry))) {
1594                 dput(dentry);
1595                 return -ENOENT;
1596         }
1597
1598         path->mnt = mnt;
1599         path->dentry = dentry;
1600         err = follow_managed(path, nd);
1601         if (likely(err > 0))
1602                 *inode = d_backing_inode(path->dentry);
1603         return err;
1604 }
1605
1606 /* Fast lookup failed, do it the slow way */
1607 static int lookup_slow(struct nameidata *nd, struct path *path)
1608 {
1609         struct dentry *dentry, *parent;
1610
1611         parent = nd->path.dentry;
1612         BUG_ON(nd->inode != parent->d_inode);
1613
1614         inode_lock(parent->d_inode);
1615         dentry = __lookup_hash(&nd->last, parent, nd->flags);
1616         inode_unlock(parent->d_inode);
1617         if (IS_ERR(dentry))
1618                 return PTR_ERR(dentry);
1619         path->mnt = nd->path.mnt;
1620         path->dentry = dentry;
1621         return follow_managed(path, nd);
1622 }
1623
1624 static inline int may_lookup(struct nameidata *nd)
1625 {
1626         if (nd->flags & LOOKUP_RCU) {
1627                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1628                 if (err != -ECHILD)
1629                         return err;
1630                 if (unlazy_walk(nd, NULL, 0))
1631                         return -ECHILD;
1632         }
1633         return inode_permission(nd->inode, MAY_EXEC);
1634 }
1635
1636 static inline int handle_dots(struct nameidata *nd, int type)
1637 {
1638         if (type == LAST_DOTDOT) {
1639                 if (!nd->root.mnt)
1640                         set_root(nd);
1641                 if (nd->flags & LOOKUP_RCU) {
1642                         return follow_dotdot_rcu(nd);
1643                 } else
1644                         return follow_dotdot(nd);
1645         }
1646         return 0;
1647 }
1648
1649 static int pick_link(struct nameidata *nd, struct path *link,
1650                      struct inode *inode, unsigned seq)
1651 {
1652         int error;
1653         struct saved *last;
1654         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1655                 path_to_nameidata(link, nd);
1656                 return -ELOOP;
1657         }
1658         if (!(nd->flags & LOOKUP_RCU)) {
1659                 if (link->mnt == nd->path.mnt)
1660                         mntget(link->mnt);
1661         }
1662         error = nd_alloc_stack(nd);
1663         if (unlikely(error)) {
1664                 if (error == -ECHILD) {
1665                         if (unlikely(unlazy_link(nd, link, seq)))
1666                                 return -ECHILD;
1667                         error = nd_alloc_stack(nd);
1668                 }
1669                 if (error) {
1670                         path_put(link);
1671                         return error;
1672                 }
1673         }
1674
1675         last = nd->stack + nd->depth++;
1676         last->link = *link;
1677         clear_delayed_call(&last->done);
1678         nd->link_inode = inode;
1679         last->seq = seq;
1680         return 1;
1681 }
1682
1683 /*
1684  * Do we need to follow links? We _really_ want to be able
1685  * to do this check without having to look at inode->i_op,
1686  * so we keep a cache of "no, this doesn't need follow_link"
1687  * for the common case.
1688  */
1689 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1690                                      int follow,
1691                                      struct inode *inode, unsigned seq)
1692 {
1693         if (likely(!d_is_symlink(link->dentry)))
1694                 return 0;
1695         if (!follow)
1696                 return 0;
1697         /* make sure that d_is_symlink above matches inode */
1698         if (nd->flags & LOOKUP_RCU) {
1699                 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1700                         return -ECHILD;
1701         }
1702         return pick_link(nd, link, inode, seq);
1703 }
1704
1705 enum {WALK_GET = 1, WALK_PUT = 2};
1706
1707 static int walk_component(struct nameidata *nd, int flags)
1708 {
1709         struct path path;
1710         struct inode *inode;
1711         unsigned seq;
1712         int err;
1713         /*
1714          * "." and ".." are special - ".." especially so because it has
1715          * to be able to know about the current root directory and
1716          * parent relationships.
1717          */
1718         if (unlikely(nd->last_type != LAST_NORM)) {
1719                 err = handle_dots(nd, nd->last_type);
1720                 if (flags & WALK_PUT)
1721                         put_link(nd);
1722                 return err;
1723         }
1724         err = lookup_fast(nd, &path, &inode, &seq);
1725         if (unlikely(err <= 0)) {
1726                 if (err < 0)
1727                         return err;
1728
1729                 err = lookup_slow(nd, &path);
1730                 if (err < 0)
1731                         return err;
1732
1733                 seq = 0;        /* we are already out of RCU mode */
1734                 err = -ENOENT;
1735                 if (d_is_negative(path.dentry))
1736                         goto out_path_put;
1737                 inode = d_backing_inode(path.dentry);
1738         }
1739
1740         if (flags & WALK_PUT)
1741                 put_link(nd);
1742         err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1743         if (unlikely(err))
1744                 return err;
1745         path_to_nameidata(&path, nd);
1746         nd->inode = inode;
1747         nd->seq = seq;
1748         return 0;
1749
1750 out_path_put:
1751         path_to_nameidata(&path, nd);
1752         return err;
1753 }
1754
1755 /*
1756  * We can do the critical dentry name comparison and hashing
1757  * operations one word at a time, but we are limited to:
1758  *
1759  * - Architectures with fast unaligned word accesses. We could
1760  *   do a "get_unaligned()" if this helps and is sufficiently
1761  *   fast.
1762  *
1763  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1764  *   do not trap on the (extremely unlikely) case of a page
1765  *   crossing operation.
1766  *
1767  * - Furthermore, we need an efficient 64-bit compile for the
1768  *   64-bit case in order to generate the "number of bytes in
1769  *   the final mask". Again, that could be replaced with a
1770  *   efficient population count instruction or similar.
1771  */
1772 #ifdef CONFIG_DCACHE_WORD_ACCESS
1773
1774 #include <asm/word-at-a-time.h>
1775
1776 #ifdef CONFIG_64BIT
1777
1778 static inline unsigned int fold_hash(unsigned long hash)
1779 {
1780         return hash_64(hash, 32);
1781 }
1782
1783 #else   /* 32-bit case */
1784
1785 #define fold_hash(x) (x)
1786
1787 #endif
1788
1789 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1790 {
1791         unsigned long a, mask;
1792         unsigned long hash = 0;
1793
1794         for (;;) {
1795                 a = load_unaligned_zeropad(name);
1796                 if (len < sizeof(unsigned long))
1797                         break;
1798                 hash += a;
1799                 hash *= 9;
1800                 name += sizeof(unsigned long);
1801                 len -= sizeof(unsigned long);
1802                 if (!len)
1803                         goto done;
1804         }
1805         mask = bytemask_from_count(len);
1806         hash += mask & a;
1807 done:
1808         return fold_hash(hash);
1809 }
1810 EXPORT_SYMBOL(full_name_hash);
1811
1812 /*
1813  * Calculate the length and hash of the path component, and
1814  * return the "hash_len" as the result.
1815  */
1816 static inline u64 hash_name(const char *name)
1817 {
1818         unsigned long a, b, adata, bdata, mask, hash, len;
1819         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1820
1821         hash = a = 0;
1822         len = -sizeof(unsigned long);
1823         do {
1824                 hash = (hash + a) * 9;
1825                 len += sizeof(unsigned long);
1826                 a = load_unaligned_zeropad(name+len);
1827                 b = a ^ REPEAT_BYTE('/');
1828         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1829
1830         adata = prep_zero_mask(a, adata, &constants);
1831         bdata = prep_zero_mask(b, bdata, &constants);
1832
1833         mask = create_zero_mask(adata | bdata);
1834
1835         hash += a & zero_bytemask(mask);
1836         len += find_zero(mask);
1837         return hashlen_create(fold_hash(hash), len);
1838 }
1839
1840 #else
1841
1842 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1843 {
1844         unsigned long hash = init_name_hash();
1845         while (len--)
1846                 hash = partial_name_hash(*name++, hash);
1847         return end_name_hash(hash);
1848 }
1849 EXPORT_SYMBOL(full_name_hash);
1850
1851 /*
1852  * We know there's a real path component here of at least
1853  * one character.
1854  */
1855 static inline u64 hash_name(const char *name)
1856 {
1857         unsigned long hash = init_name_hash();
1858         unsigned long len = 0, c;
1859
1860         c = (unsigned char)*name;
1861         do {
1862                 len++;
1863                 hash = partial_name_hash(c, hash);
1864                 c = (unsigned char)name[len];
1865         } while (c && c != '/');
1866         return hashlen_create(end_name_hash(hash), len);
1867 }
1868
1869 #endif
1870
1871 /*
1872  * Name resolution.
1873  * This is the basic name resolution function, turning a pathname into
1874  * the final dentry. We expect 'base' to be positive and a directory.
1875  *
1876  * Returns 0 and nd will have valid dentry and mnt on success.
1877  * Returns error and drops reference to input namei data on failure.
1878  */
1879 static int link_path_walk(const char *name, struct nameidata *nd)
1880 {
1881         int err;
1882
1883         while (*name=='/')
1884                 name++;
1885         if (!*name)
1886                 return 0;
1887
1888         /* At this point we know we have a real path component. */
1889         for(;;) {
1890                 u64 hash_len;
1891                 int type;
1892
1893                 err = may_lookup(nd);
1894                 if (err)
1895                         return err;
1896
1897                 hash_len = hash_name(name);
1898
1899                 type = LAST_NORM;
1900                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1901                         case 2:
1902                                 if (name[1] == '.') {
1903                                         type = LAST_DOTDOT;
1904                                         nd->flags |= LOOKUP_JUMPED;
1905                                 }
1906                                 break;
1907                         case 1:
1908                                 type = LAST_DOT;
1909                 }
1910                 if (likely(type == LAST_NORM)) {
1911                         struct dentry *parent = nd->path.dentry;
1912                         nd->flags &= ~LOOKUP_JUMPED;
1913                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1914                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
1915                                 err = parent->d_op->d_hash(parent, &this);
1916                                 if (err < 0)
1917                                         return err;
1918                                 hash_len = this.hash_len;
1919                                 name = this.name;
1920                         }
1921                 }
1922
1923                 nd->last.hash_len = hash_len;
1924                 nd->last.name = name;
1925                 nd->last_type = type;
1926
1927                 name += hashlen_len(hash_len);
1928                 if (!*name)
1929                         goto OK;
1930                 /*
1931                  * If it wasn't NUL, we know it was '/'. Skip that
1932                  * slash, and continue until no more slashes.
1933                  */
1934                 do {
1935                         name++;
1936                 } while (unlikely(*name == '/'));
1937                 if (unlikely(!*name)) {
1938 OK:
1939                         /* pathname body, done */
1940                         if (!nd->depth)
1941                                 return 0;
1942                         name = nd->stack[nd->depth - 1].name;
1943                         /* trailing symlink, done */
1944                         if (!name)
1945                                 return 0;
1946                         /* last component of nested symlink */
1947                         err = walk_component(nd, WALK_GET | WALK_PUT);
1948                 } else {
1949                         err = walk_component(nd, WALK_GET);
1950                 }
1951                 if (err < 0)
1952                         return err;
1953
1954                 if (err) {
1955                         const char *s = get_link(nd);
1956
1957                         if (IS_ERR(s))
1958                                 return PTR_ERR(s);
1959                         err = 0;
1960                         if (unlikely(!s)) {
1961                                 /* jumped */
1962                                 put_link(nd);
1963                         } else {
1964                                 nd->stack[nd->depth - 1].name = name;
1965                                 name = s;
1966                                 continue;
1967                         }
1968                 }
1969                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1970                         if (nd->flags & LOOKUP_RCU) {
1971                                 if (unlazy_walk(nd, NULL, 0))
1972                                         return -ECHILD;
1973                         }
1974                         return -ENOTDIR;
1975                 }
1976         }
1977 }
1978
1979 static const char *path_init(struct nameidata *nd, unsigned flags)
1980 {
1981         int retval = 0;
1982         const char *s = nd->name->name;
1983
1984         nd->last_type = LAST_ROOT; /* if there are only slashes... */
1985         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1986         nd->depth = 0;
1987         if (flags & LOOKUP_ROOT) {
1988                 struct dentry *root = nd->root.dentry;
1989                 struct inode *inode = root->d_inode;
1990                 if (*s) {
1991                         if (!d_can_lookup(root))
1992                                 return ERR_PTR(-ENOTDIR);
1993                         retval = inode_permission(inode, MAY_EXEC);
1994                         if (retval)
1995                                 return ERR_PTR(retval);
1996                 }
1997                 nd->path = nd->root;
1998                 nd->inode = inode;
1999                 if (flags & LOOKUP_RCU) {
2000                         rcu_read_lock();
2001                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2002                         nd->root_seq = nd->seq;
2003                         nd->m_seq = read_seqbegin(&mount_lock);
2004                 } else {
2005                         path_get(&nd->path);
2006                 }
2007                 return s;
2008         }
2009
2010         nd->root.mnt = NULL;
2011         nd->path.mnt = NULL;
2012         nd->path.dentry = NULL;
2013
2014         nd->m_seq = read_seqbegin(&mount_lock);
2015         if (*s == '/') {
2016                 if (flags & LOOKUP_RCU)
2017                         rcu_read_lock();
2018                 set_root(nd);
2019                 if (likely(!nd_jump_root(nd)))
2020                         return s;
2021                 nd->root.mnt = NULL;
2022                 rcu_read_unlock();
2023                 return ERR_PTR(-ECHILD);
2024         } else if (nd->dfd == AT_FDCWD) {
2025                 if (flags & LOOKUP_RCU) {
2026                         struct fs_struct *fs = current->fs;
2027                         unsigned seq;
2028
2029                         rcu_read_lock();
2030
2031                         do {
2032                                 seq = read_seqcount_begin(&fs->seq);
2033                                 nd->path = fs->pwd;
2034                                 nd->inode = nd->path.dentry->d_inode;
2035                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2036                         } while (read_seqcount_retry(&fs->seq, seq));
2037                 } else {
2038                         get_fs_pwd(current->fs, &nd->path);
2039                         nd->inode = nd->path.dentry->d_inode;
2040                 }
2041                 return s;
2042         } else {
2043                 /* Caller must check execute permissions on the starting path component */
2044                 struct fd f = fdget_raw(nd->dfd);
2045                 struct dentry *dentry;
2046
2047                 if (!f.file)
2048                         return ERR_PTR(-EBADF);
2049
2050                 dentry = f.file->f_path.dentry;
2051
2052                 if (*s) {
2053                         if (!d_can_lookup(dentry)) {
2054                                 fdput(f);
2055                                 return ERR_PTR(-ENOTDIR);
2056                         }
2057                 }
2058
2059                 nd->path = f.file->f_path;
2060                 if (flags & LOOKUP_RCU) {
2061                         rcu_read_lock();
2062                         nd->inode = nd->path.dentry->d_inode;
2063                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2064                 } else {
2065                         path_get(&nd->path);
2066                         nd->inode = nd->path.dentry->d_inode;
2067                 }
2068                 fdput(f);
2069                 return s;
2070         }
2071 }
2072
2073 static const char *trailing_symlink(struct nameidata *nd)
2074 {
2075         const char *s;
2076         int error = may_follow_link(nd);
2077         if (unlikely(error))
2078                 return ERR_PTR(error);
2079         nd->flags |= LOOKUP_PARENT;
2080         nd->stack[0].name = NULL;
2081         s = get_link(nd);
2082         return s ? s : "";
2083 }
2084
2085 static inline int lookup_last(struct nameidata *nd)
2086 {
2087         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2088                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2089
2090         nd->flags &= ~LOOKUP_PARENT;
2091         return walk_component(nd,
2092                         nd->flags & LOOKUP_FOLLOW
2093                                 ? nd->depth
2094                                         ? WALK_PUT | WALK_GET
2095                                         : WALK_GET
2096                                 : 0);
2097 }
2098
2099 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2100 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2101 {
2102         const char *s = path_init(nd, flags);
2103         int err;
2104
2105         if (IS_ERR(s))
2106                 return PTR_ERR(s);
2107         while (!(err = link_path_walk(s, nd))
2108                 && ((err = lookup_last(nd)) > 0)) {
2109                 s = trailing_symlink(nd);
2110                 if (IS_ERR(s)) {
2111                         err = PTR_ERR(s);
2112                         break;
2113                 }
2114         }
2115         if (!err)
2116                 err = complete_walk(nd);
2117
2118         if (!err && nd->flags & LOOKUP_DIRECTORY)
2119                 if (!d_can_lookup(nd->path.dentry))
2120                         err = -ENOTDIR;
2121         if (!err) {
2122                 *path = nd->path;
2123                 nd->path.mnt = NULL;
2124                 nd->path.dentry = NULL;
2125         }
2126         terminate_walk(nd);
2127         return err;
2128 }
2129
2130 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2131                            struct path *path, struct path *root)
2132 {
2133         int retval;
2134         struct nameidata nd;
2135         if (IS_ERR(name))
2136                 return PTR_ERR(name);
2137         if (unlikely(root)) {
2138                 nd.root = *root;
2139                 flags |= LOOKUP_ROOT;
2140         }
2141         set_nameidata(&nd, dfd, name);
2142         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2143         if (unlikely(retval == -ECHILD))
2144                 retval = path_lookupat(&nd, flags, path);
2145         if (unlikely(retval == -ESTALE))
2146                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2147
2148         if (likely(!retval))
2149                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2150         restore_nameidata();
2151         putname(name);
2152         return retval;
2153 }
2154
2155 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2156 static int path_parentat(struct nameidata *nd, unsigned flags,
2157                                 struct path *parent)
2158 {
2159         const char *s = path_init(nd, flags);
2160         int err;
2161         if (IS_ERR(s))
2162                 return PTR_ERR(s);
2163         err = link_path_walk(s, nd);
2164         if (!err)
2165                 err = complete_walk(nd);
2166         if (!err) {
2167                 *parent = nd->path;
2168                 nd->path.mnt = NULL;
2169                 nd->path.dentry = NULL;
2170         }
2171         terminate_walk(nd);
2172         return err;
2173 }
2174
2175 static struct filename *filename_parentat(int dfd, struct filename *name,
2176                                 unsigned int flags, struct path *parent,
2177                                 struct qstr *last, int *type)
2178 {
2179         int retval;
2180         struct nameidata nd;
2181
2182         if (IS_ERR(name))
2183                 return name;
2184         set_nameidata(&nd, dfd, name);
2185         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2186         if (unlikely(retval == -ECHILD))
2187                 retval = path_parentat(&nd, flags, parent);
2188         if (unlikely(retval == -ESTALE))
2189                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2190         if (likely(!retval)) {
2191                 *last = nd.last;
2192                 *type = nd.last_type;
2193                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2194         } else {
2195                 putname(name);
2196                 name = ERR_PTR(retval);
2197         }
2198         restore_nameidata();
2199         return name;
2200 }
2201
2202 /* does lookup, returns the object with parent locked */
2203 struct dentry *kern_path_locked(const char *name, struct path *path)
2204 {
2205         struct filename *filename;
2206         struct dentry *d;
2207         struct qstr last;
2208         int type;
2209
2210         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2211                                     &last, &type);
2212         if (IS_ERR(filename))
2213                 return ERR_CAST(filename);
2214         if (unlikely(type != LAST_NORM)) {
2215                 path_put(path);
2216                 putname(filename);
2217                 return ERR_PTR(-EINVAL);
2218         }
2219         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2220         d = __lookup_hash(&last, path->dentry, 0);
2221         if (IS_ERR(d)) {
2222                 inode_unlock(path->dentry->d_inode);
2223                 path_put(path);
2224         }
2225         putname(filename);
2226         return d;
2227 }
2228
2229 int kern_path(const char *name, unsigned int flags, struct path *path)
2230 {
2231         return filename_lookup(AT_FDCWD, getname_kernel(name),
2232                                flags, path, NULL);
2233 }
2234 EXPORT_SYMBOL(kern_path);
2235
2236 /**
2237  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2238  * @dentry:  pointer to dentry of the base directory
2239  * @mnt: pointer to vfs mount of the base directory
2240  * @name: pointer to file name
2241  * @flags: lookup flags
2242  * @path: pointer to struct path to fill
2243  */
2244 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2245                     const char *name, unsigned int flags,
2246                     struct path *path)
2247 {
2248         struct path root = {.mnt = mnt, .dentry = dentry};
2249         /* the first argument of filename_lookup() is ignored with root */
2250         return filename_lookup(AT_FDCWD, getname_kernel(name),
2251                                flags , path, &root);
2252 }
2253 EXPORT_SYMBOL(vfs_path_lookup);
2254
2255 /**
2256  * lookup_one_len - filesystem helper to lookup single pathname component
2257  * @name:       pathname component to lookup
2258  * @base:       base directory to lookup from
2259  * @len:        maximum length @len should be interpreted to
2260  *
2261  * Note that this routine is purely a helper for filesystem usage and should
2262  * not be called by generic code.
2263  *
2264  * The caller must hold base->i_mutex.
2265  */
2266 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2267 {
2268         struct qstr this;
2269         unsigned int c;
2270         int err;
2271
2272         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2273
2274         this.name = name;
2275         this.len = len;
2276         this.hash = full_name_hash(name, len);
2277         if (!len)
2278                 return ERR_PTR(-EACCES);
2279
2280         if (unlikely(name[0] == '.')) {
2281                 if (len < 2 || (len == 2 && name[1] == '.'))
2282                         return ERR_PTR(-EACCES);
2283         }
2284
2285         while (len--) {
2286                 c = *(const unsigned char *)name++;
2287                 if (c == '/' || c == '\0')
2288                         return ERR_PTR(-EACCES);
2289         }
2290         /*
2291          * See if the low-level filesystem might want
2292          * to use its own hash..
2293          */
2294         if (base->d_flags & DCACHE_OP_HASH) {
2295                 int err = base->d_op->d_hash(base, &this);
2296                 if (err < 0)
2297                         return ERR_PTR(err);
2298         }
2299
2300         err = inode_permission(base->d_inode, MAY_EXEC);
2301         if (err)
2302                 return ERR_PTR(err);
2303
2304         return __lookup_hash(&this, base, 0);
2305 }
2306 EXPORT_SYMBOL(lookup_one_len);
2307
2308 /**
2309  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2310  * @name:       pathname component to lookup
2311  * @base:       base directory to lookup from
2312  * @len:        maximum length @len should be interpreted to
2313  *
2314  * Note that this routine is purely a helper for filesystem usage and should
2315  * not be called by generic code.
2316  *
2317  * Unlike lookup_one_len, it should be called without the parent
2318  * i_mutex held, and will take the i_mutex itself if necessary.
2319  */
2320 struct dentry *lookup_one_len_unlocked(const char *name,
2321                                        struct dentry *base, int len)
2322 {
2323         struct qstr this;
2324         unsigned int c;
2325         int err;
2326         struct dentry *ret;
2327
2328         this.name = name;
2329         this.len = len;
2330         this.hash = full_name_hash(name, len);
2331         if (!len)
2332                 return ERR_PTR(-EACCES);
2333
2334         if (unlikely(name[0] == '.')) {
2335                 if (len < 2 || (len == 2 && name[1] == '.'))
2336                         return ERR_PTR(-EACCES);
2337         }
2338
2339         while (len--) {
2340                 c = *(const unsigned char *)name++;
2341                 if (c == '/' || c == '\0')
2342                         return ERR_PTR(-EACCES);
2343         }
2344         /*
2345          * See if the low-level filesystem might want
2346          * to use its own hash..
2347          */
2348         if (base->d_flags & DCACHE_OP_HASH) {
2349                 int err = base->d_op->d_hash(base, &this);
2350                 if (err < 0)
2351                         return ERR_PTR(err);
2352         }
2353
2354         err = inode_permission(base->d_inode, MAY_EXEC);
2355         if (err)
2356                 return ERR_PTR(err);
2357
2358         /*
2359          * __d_lookup() is used to try to get a quick answer and avoid the
2360          * mutex.  A false-negative does no harm.
2361          */
2362         ret = __d_lookup(base, &this);
2363         if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) {
2364                 dput(ret);
2365                 ret = NULL;
2366         }
2367         if (ret)
2368                 return ret;
2369
2370         inode_lock(base->d_inode);
2371         ret =  __lookup_hash(&this, base, 0);
2372         inode_unlock(base->d_inode);
2373         return ret;
2374 }
2375 EXPORT_SYMBOL(lookup_one_len_unlocked);
2376
2377 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2378                  struct path *path, int *empty)
2379 {
2380         return filename_lookup(dfd, getname_flags(name, flags, empty),
2381                                flags, path, NULL);
2382 }
2383 EXPORT_SYMBOL(user_path_at_empty);
2384
2385 /*
2386  * NB: most callers don't do anything directly with the reference to the
2387  *     to struct filename, but the nd->last pointer points into the name string
2388  *     allocated by getname. So we must hold the reference to it until all
2389  *     path-walking is complete.
2390  */
2391 static inline struct filename *
2392 user_path_parent(int dfd, const char __user *path,
2393                  struct path *parent,
2394                  struct qstr *last,
2395                  int *type,
2396                  unsigned int flags)
2397 {
2398         /* only LOOKUP_REVAL is allowed in extra flags */
2399         return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2400                                  parent, last, type);
2401 }
2402
2403 /**
2404  * mountpoint_last - look up last component for umount
2405  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2406  * @path: pointer to container for result
2407  *
2408  * This is a special lookup_last function just for umount. In this case, we
2409  * need to resolve the path without doing any revalidation.
2410  *
2411  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2412  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2413  * in almost all cases, this lookup will be served out of the dcache. The only
2414  * cases where it won't are if nd->last refers to a symlink or the path is
2415  * bogus and it doesn't exist.
2416  *
2417  * Returns:
2418  * -error: if there was an error during lookup. This includes -ENOENT if the
2419  *         lookup found a negative dentry. The nd->path reference will also be
2420  *         put in this case.
2421  *
2422  * 0:      if we successfully resolved nd->path and found it to not to be a
2423  *         symlink that needs to be followed. "path" will also be populated.
2424  *         The nd->path reference will also be put.
2425  *
2426  * 1:      if we successfully resolved nd->last and found it to be a symlink
2427  *         that needs to be followed. "path" will be populated with the path
2428  *         to the link, and nd->path will *not* be put.
2429  */
2430 static int
2431 mountpoint_last(struct nameidata *nd, struct path *path)
2432 {
2433         int error = 0;
2434         struct dentry *dentry;
2435         struct dentry *dir = nd->path.dentry;
2436
2437         /* If we're in rcuwalk, drop out of it to handle last component */
2438         if (nd->flags & LOOKUP_RCU) {
2439                 if (unlazy_walk(nd, NULL, 0))
2440                         return -ECHILD;
2441         }
2442
2443         nd->flags &= ~LOOKUP_PARENT;
2444
2445         if (unlikely(nd->last_type != LAST_NORM)) {
2446                 error = handle_dots(nd, nd->last_type);
2447                 if (error)
2448                         return error;
2449                 dentry = dget(nd->path.dentry);
2450                 goto done;
2451         }
2452
2453         inode_lock(dir->d_inode);
2454         dentry = d_lookup(dir, &nd->last);
2455         if (!dentry) {
2456                 /*
2457                  * No cached dentry. Mounted dentries are pinned in the cache,
2458                  * so that means that this dentry is probably a symlink or the
2459                  * path doesn't actually point to a mounted dentry.
2460                  */
2461                 dentry = d_alloc(dir, &nd->last);
2462                 if (!dentry) {
2463                         inode_unlock(dir->d_inode);
2464                         return -ENOMEM;
2465                 }
2466                 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2467                 if (IS_ERR(dentry)) {
2468                         inode_unlock(dir->d_inode);
2469                         return PTR_ERR(dentry);
2470                 }
2471         }
2472         inode_unlock(dir->d_inode);
2473
2474 done:
2475         if (d_is_negative(dentry)) {
2476                 dput(dentry);
2477                 return -ENOENT;
2478         }
2479         if (nd->depth)
2480                 put_link(nd);
2481         path->dentry = dentry;
2482         path->mnt = nd->path.mnt;
2483         error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2484                                    d_backing_inode(dentry), 0);
2485         if (unlikely(error))
2486                 return error;
2487         mntget(path->mnt);
2488         follow_mount(path);
2489         return 0;
2490 }
2491
2492 /**
2493  * path_mountpoint - look up a path to be umounted
2494  * @nd:         lookup context
2495  * @flags:      lookup flags
2496  * @path:       pointer to container for result
2497  *
2498  * Look up the given name, but don't attempt to revalidate the last component.
2499  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2500  */
2501 static int
2502 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2503 {
2504         const char *s = path_init(nd, flags);
2505         int err;
2506         if (IS_ERR(s))
2507                 return PTR_ERR(s);
2508         while (!(err = link_path_walk(s, nd)) &&
2509                 (err = mountpoint_last(nd, path)) > 0) {
2510                 s = trailing_symlink(nd);
2511                 if (IS_ERR(s)) {
2512                         err = PTR_ERR(s);
2513                         break;
2514                 }
2515         }
2516         terminate_walk(nd);
2517         return err;
2518 }
2519
2520 static int
2521 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2522                         unsigned int flags)
2523 {
2524         struct nameidata nd;
2525         int error;
2526         if (IS_ERR(name))
2527                 return PTR_ERR(name);
2528         set_nameidata(&nd, dfd, name);
2529         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2530         if (unlikely(error == -ECHILD))
2531                 error = path_mountpoint(&nd, flags, path);
2532         if (unlikely(error == -ESTALE))
2533                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2534         if (likely(!error))
2535                 audit_inode(name, path->dentry, 0);
2536         restore_nameidata();
2537         putname(name);
2538         return error;
2539 }
2540
2541 /**
2542  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2543  * @dfd:        directory file descriptor
2544  * @name:       pathname from userland
2545  * @flags:      lookup flags
2546  * @path:       pointer to container to hold result
2547  *
2548  * A umount is a special case for path walking. We're not actually interested
2549  * in the inode in this situation, and ESTALE errors can be a problem. We
2550  * simply want track down the dentry and vfsmount attached at the mountpoint
2551  * and avoid revalidating the last component.
2552  *
2553  * Returns 0 and populates "path" on success.
2554  */
2555 int
2556 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2557                         struct path *path)
2558 {
2559         return filename_mountpoint(dfd, getname(name), path, flags);
2560 }
2561
2562 int
2563 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2564                         unsigned int flags)
2565 {
2566         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2567 }
2568 EXPORT_SYMBOL(kern_path_mountpoint);
2569
2570 int __check_sticky(struct inode *dir, struct inode *inode)
2571 {
2572         kuid_t fsuid = current_fsuid();
2573
2574         if (uid_eq(inode->i_uid, fsuid))
2575                 return 0;
2576         if (uid_eq(dir->i_uid, fsuid))
2577                 return 0;
2578         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2579 }
2580 EXPORT_SYMBOL(__check_sticky);
2581
2582 /*
2583  *      Check whether we can remove a link victim from directory dir, check
2584  *  whether the type of victim is right.
2585  *  1. We can't do it if dir is read-only (done in permission())
2586  *  2. We should have write and exec permissions on dir
2587  *  3. We can't remove anything from append-only dir
2588  *  4. We can't do anything with immutable dir (done in permission())
2589  *  5. If the sticky bit on dir is set we should either
2590  *      a. be owner of dir, or
2591  *      b. be owner of victim, or
2592  *      c. have CAP_FOWNER capability
2593  *  6. If the victim is append-only or immutable we can't do antyhing with
2594  *     links pointing to it.
2595  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2596  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2597  *  9. We can't remove a root or mountpoint.
2598  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2599  *     nfs_async_unlink().
2600  */
2601 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2602 {
2603         struct inode *inode = d_backing_inode(victim);
2604         int error;
2605
2606         if (d_is_negative(victim))
2607                 return -ENOENT;
2608         BUG_ON(!inode);
2609
2610         BUG_ON(victim->d_parent->d_inode != dir);
2611         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2612
2613         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2614         if (error)
2615                 return error;
2616         if (IS_APPEND(dir))
2617                 return -EPERM;
2618
2619         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2620             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2621                 return -EPERM;
2622         if (isdir) {
2623                 if (!d_is_dir(victim))
2624                         return -ENOTDIR;
2625                 if (IS_ROOT(victim))
2626                         return -EBUSY;
2627         } else if (d_is_dir(victim))
2628                 return -EISDIR;
2629         if (IS_DEADDIR(dir))
2630                 return -ENOENT;
2631         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2632                 return -EBUSY;
2633         return 0;
2634 }
2635
2636 /*      Check whether we can create an object with dentry child in directory
2637  *  dir.
2638  *  1. We can't do it if child already exists (open has special treatment for
2639  *     this case, but since we are inlined it's OK)
2640  *  2. We can't do it if dir is read-only (done in permission())
2641  *  3. We should have write and exec permissions on dir
2642  *  4. We can't do it if dir is immutable (done in permission())
2643  */
2644 static inline int may_create(struct inode *dir, struct dentry *child)
2645 {
2646         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2647         if (child->d_inode)
2648                 return -EEXIST;
2649         if (IS_DEADDIR(dir))
2650                 return -ENOENT;
2651         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2652 }
2653
2654 /*
2655  * p1 and p2 should be directories on the same fs.
2656  */
2657 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2658 {
2659         struct dentry *p;
2660
2661         if (p1 == p2) {
2662                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2663                 return NULL;
2664         }
2665
2666         mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2667
2668         p = d_ancestor(p2, p1);
2669         if (p) {
2670                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2671                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2672                 return p;
2673         }
2674
2675         p = d_ancestor(p1, p2);
2676         if (p) {
2677                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2678                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2679                 return p;
2680         }
2681
2682         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2683         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2684         return NULL;
2685 }
2686 EXPORT_SYMBOL(lock_rename);
2687
2688 void unlock_rename(struct dentry *p1, struct dentry *p2)
2689 {
2690         inode_unlock(p1->d_inode);
2691         if (p1 != p2) {
2692                 inode_unlock(p2->d_inode);
2693                 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2694         }
2695 }
2696 EXPORT_SYMBOL(unlock_rename);
2697
2698 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2699                 bool want_excl)
2700 {
2701         int error = may_create(dir, dentry);
2702         if (error)
2703                 return error;
2704
2705         if (!dir->i_op->create)
2706                 return -EACCES; /* shouldn't it be ENOSYS? */
2707         mode &= S_IALLUGO;
2708         mode |= S_IFREG;
2709         error = security_inode_create(dir, dentry, mode);
2710         if (error)
2711                 return error;
2712         error = dir->i_op->create(dir, dentry, mode, want_excl);
2713         if (!error)
2714                 fsnotify_create(dir, dentry);
2715         return error;
2716 }
2717 EXPORT_SYMBOL(vfs_create);
2718
2719 static int may_open(struct path *path, int acc_mode, int flag)
2720 {
2721         struct dentry *dentry = path->dentry;
2722         struct inode *inode = dentry->d_inode;
2723         int error;
2724
2725         if (!inode)
2726                 return -ENOENT;
2727
2728         switch (inode->i_mode & S_IFMT) {
2729         case S_IFLNK:
2730                 return -ELOOP;
2731         case S_IFDIR:
2732                 if (acc_mode & MAY_WRITE)
2733                         return -EISDIR;
2734                 break;
2735         case S_IFBLK:
2736         case S_IFCHR:
2737                 if (path->mnt->mnt_flags & MNT_NODEV)
2738                         return -EACCES;
2739                 /*FALLTHRU*/
2740         case S_IFIFO:
2741         case S_IFSOCK:
2742                 flag &= ~O_TRUNC;
2743                 break;
2744         }
2745
2746         error = inode_permission(inode, MAY_OPEN | acc_mode);
2747         if (error)
2748                 return error;
2749
2750         /*
2751          * An append-only file must be opened in append mode for writing.
2752          */
2753         if (IS_APPEND(inode)) {
2754                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2755                         return -EPERM;
2756                 if (flag & O_TRUNC)
2757                         return -EPERM;
2758         }
2759
2760         /* O_NOATIME can only be set by the owner or superuser */
2761         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2762                 return -EPERM;
2763
2764         return 0;
2765 }
2766
2767 static int handle_truncate(struct file *filp)
2768 {
2769         struct path *path = &filp->f_path;
2770         struct inode *inode = path->dentry->d_inode;
2771         int error = get_write_access(inode);
2772         if (error)
2773                 return error;
2774         /*
2775          * Refuse to truncate files with mandatory locks held on them.
2776          */
2777         error = locks_verify_locked(filp);
2778         if (!error)
2779                 error = security_path_truncate(path);
2780         if (!error) {
2781                 error = do_truncate(path->dentry, 0,
2782                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2783                                     filp);
2784         }
2785         put_write_access(inode);
2786         return error;
2787 }
2788
2789 static inline int open_to_namei_flags(int flag)
2790 {
2791         if ((flag & O_ACCMODE) == 3)
2792                 flag--;
2793         return flag;
2794 }
2795
2796 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2797 {
2798         int error = security_path_mknod(dir, dentry, mode, 0);
2799         if (error)
2800                 return error;
2801
2802         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2803         if (error)
2804                 return error;
2805
2806         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2807 }
2808
2809 /*
2810  * Attempt to atomically look up, create and open a file from a negative
2811  * dentry.
2812  *
2813  * Returns 0 if successful.  The file will have been created and attached to
2814  * @file by the filesystem calling finish_open().
2815  *
2816  * Returns 1 if the file was looked up only or didn't need creating.  The
2817  * caller will need to perform the open themselves.  @path will have been
2818  * updated to point to the new dentry.  This may be negative.
2819  *
2820  * Returns an error code otherwise.
2821  */
2822 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2823                         struct path *path, struct file *file,
2824                         const struct open_flags *op,
2825                         bool got_write, bool need_lookup,
2826                         int *opened)
2827 {
2828         struct inode *dir =  nd->path.dentry->d_inode;
2829         unsigned open_flag = open_to_namei_flags(op->open_flag);
2830         umode_t mode;
2831         int error;
2832         int acc_mode;
2833         int create_error = 0;
2834         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2835         bool excl;
2836
2837         BUG_ON(dentry->d_inode);
2838
2839         /* Don't create child dentry for a dead directory. */
2840         if (unlikely(IS_DEADDIR(dir))) {
2841                 error = -ENOENT;
2842                 goto out;
2843         }
2844
2845         mode = op->mode;
2846         if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2847                 mode &= ~current_umask();
2848
2849         excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2850         if (excl)
2851                 open_flag &= ~O_TRUNC;
2852
2853         /*
2854          * Checking write permission is tricky, bacuse we don't know if we are
2855          * going to actually need it: O_CREAT opens should work as long as the
2856          * file exists.  But checking existence breaks atomicity.  The trick is
2857          * to check access and if not granted clear O_CREAT from the flags.
2858          *
2859          * Another problem is returing the "right" error value (e.g. for an
2860          * O_EXCL open we want to return EEXIST not EROFS).
2861          */
2862         if (((open_flag & (O_CREAT | O_TRUNC)) ||
2863             (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2864                 if (!(open_flag & O_CREAT)) {
2865                         /*
2866                          * No O_CREATE -> atomicity not a requirement -> fall
2867                          * back to lookup + open
2868                          */
2869                         goto no_open;
2870                 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2871                         /* Fall back and fail with the right error */
2872                         create_error = -EROFS;
2873                         goto no_open;
2874                 } else {
2875                         /* No side effects, safe to clear O_CREAT */
2876                         create_error = -EROFS;
2877                         open_flag &= ~O_CREAT;
2878                 }
2879         }
2880
2881         if (open_flag & O_CREAT) {
2882                 error = may_o_create(&nd->path, dentry, mode);
2883                 if (error) {
2884                         create_error = error;
2885                         if (open_flag & O_EXCL)
2886                                 goto no_open;
2887                         open_flag &= ~O_CREAT;
2888                 }
2889         }
2890
2891         if (nd->flags & LOOKUP_DIRECTORY)
2892                 open_flag |= O_DIRECTORY;
2893
2894         file->f_path.dentry = DENTRY_NOT_SET;
2895         file->f_path.mnt = nd->path.mnt;
2896         error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2897                                       opened);
2898         if (error < 0) {
2899                 if (create_error && error == -ENOENT)
2900                         error = create_error;
2901                 goto out;
2902         }
2903
2904         if (error) {    /* returned 1, that is */
2905                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2906                         error = -EIO;
2907                         goto out;
2908                 }
2909                 if (file->f_path.dentry) {
2910                         dput(dentry);
2911                         dentry = file->f_path.dentry;
2912                 }
2913                 if (*opened & FILE_CREATED)
2914                         fsnotify_create(dir, dentry);
2915                 if (!dentry->d_inode) {
2916                         WARN_ON(*opened & FILE_CREATED);
2917                         if (create_error) {
2918                                 error = create_error;
2919                                 goto out;
2920                         }
2921                 } else {
2922                         if (excl && !(*opened & FILE_CREATED)) {
2923                                 error = -EEXIST;
2924                                 goto out;
2925                         }
2926                 }
2927                 goto looked_up;
2928         }
2929
2930         /*
2931          * We didn't have the inode before the open, so check open permission
2932          * here.
2933          */
2934         acc_mode = op->acc_mode;
2935         if (*opened & FILE_CREATED) {
2936                 WARN_ON(!(open_flag & O_CREAT));
2937                 fsnotify_create(dir, dentry);
2938                 acc_mode = 0;
2939         }
2940         error = may_open(&file->f_path, acc_mode, open_flag);
2941         if (error)
2942                 fput(file);
2943
2944 out:
2945         dput(dentry);
2946         return error;
2947
2948 no_open:
2949         if (need_lookup) {
2950                 dentry = lookup_real(dir, dentry, nd->flags);
2951                 if (IS_ERR(dentry))
2952                         return PTR_ERR(dentry);
2953
2954                 if (create_error) {
2955                         int open_flag = op->open_flag;
2956
2957                         error = create_error;
2958                         if ((open_flag & O_EXCL)) {
2959                                 if (!dentry->d_inode)
2960                                         goto out;
2961                         } else if (!dentry->d_inode) {
2962                                 goto out;
2963                         } else if ((open_flag & O_TRUNC) &&
2964                                    d_is_reg(dentry)) {
2965                                 goto out;
2966                         }
2967                         /* will fail later, go on to get the right error */
2968                 }
2969         }
2970 looked_up:
2971         path->dentry = dentry;
2972         path->mnt = nd->path.mnt;
2973         return 1;
2974 }
2975
2976 /*
2977  * Look up and maybe create and open the last component.
2978  *
2979  * Must be called with i_mutex held on parent.
2980  *
2981  * Returns 0 if the file was successfully atomically created (if necessary) and
2982  * opened.  In this case the file will be returned attached to @file.
2983  *
2984  * Returns 1 if the file was not completely opened at this time, though lookups
2985  * and creations will have been performed and the dentry returned in @path will
2986  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2987  * specified then a negative dentry may be returned.
2988  *
2989  * An error code is returned otherwise.
2990  *
2991  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2992  * cleared otherwise prior to returning.
2993  */
2994 static int lookup_open(struct nameidata *nd, struct path *path,
2995                         struct file *file,
2996                         const struct open_flags *op,
2997                         bool got_write, int *opened)
2998 {
2999         struct dentry *dir = nd->path.dentry;
3000         struct inode *dir_inode = dir->d_inode;
3001         struct dentry *dentry;
3002         int error;
3003         bool need_lookup = false;
3004
3005         *opened &= ~FILE_CREATED;
3006         dentry = lookup_dcache(&nd->last, dir, nd->flags);
3007         if (IS_ERR(dentry))
3008                 return PTR_ERR(dentry);
3009
3010         if (!dentry) {
3011                 dentry = d_alloc(dir, &nd->last);
3012                 if (unlikely(!dentry))
3013                         return -ENOMEM;
3014                 need_lookup = true;
3015         } else if (dentry->d_inode) {
3016                 /* Cached positive dentry: will open in f_op->open */
3017                 goto out_no_open;
3018         }
3019
3020         if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3021                 return atomic_open(nd, dentry, path, file, op, got_write,
3022                                    need_lookup, opened);
3023         }
3024
3025         if (need_lookup) {
3026                 BUG_ON(dentry->d_inode);
3027
3028                 dentry = lookup_real(dir_inode, dentry, nd->flags);
3029                 if (IS_ERR(dentry))
3030                         return PTR_ERR(dentry);
3031         }
3032
3033         /* Negative dentry, just create the file */
3034         if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3035                 umode_t mode = op->mode;
3036                 if (!IS_POSIXACL(dir->d_inode))
3037                         mode &= ~current_umask();
3038                 /*
3039                  * This write is needed to ensure that a
3040                  * rw->ro transition does not occur between
3041                  * the time when the file is created and when
3042                  * a permanent write count is taken through
3043                  * the 'struct file' in finish_open().
3044                  */
3045                 if (!got_write) {
3046                         error = -EROFS;
3047                         goto out_dput;
3048                 }
3049                 *opened |= FILE_CREATED;
3050                 error = security_path_mknod(&nd->path, dentry, mode, 0);
3051                 if (error)
3052                         goto out_dput;
3053                 error = vfs_create(dir->d_inode, dentry, mode,
3054                                    nd->flags & LOOKUP_EXCL);
3055                 if (error)
3056                         goto out_dput;
3057         }
3058 out_no_open:
3059         path->dentry = dentry;
3060         path->mnt = nd->path.mnt;
3061         return 1;
3062
3063 out_dput:
3064         dput(dentry);
3065         return error;
3066 }
3067
3068 /*
3069  * Handle the last step of open()
3070  */
3071 static int do_last(struct nameidata *nd,
3072                    struct file *file, const struct open_flags *op,
3073                    int *opened)
3074 {
3075         struct dentry *dir = nd->path.dentry;
3076         int open_flag = op->open_flag;
3077         bool will_truncate = (open_flag & O_TRUNC) != 0;
3078         bool got_write = false;
3079         int acc_mode = op->acc_mode;
3080         unsigned seq;
3081         struct inode *inode;
3082         struct path save_parent = { .dentry = NULL, .mnt = NULL };
3083         struct path path;
3084         bool retried = false;
3085         int error;
3086
3087         nd->flags &= ~LOOKUP_PARENT;
3088         nd->flags |= op->intent;
3089
3090         if (nd->last_type != LAST_NORM) {
3091                 error = handle_dots(nd, nd->last_type);
3092                 if (unlikely(error))
3093                         return error;
3094                 goto finish_open;
3095         }
3096
3097         if (!(open_flag & O_CREAT)) {
3098                 if (nd->last.name[nd->last.len])
3099                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3100                 /* we _can_ be in RCU mode here */
3101                 error = lookup_fast(nd, &path, &inode, &seq);
3102                 if (likely(error > 0))
3103                         goto finish_lookup;
3104
3105                 if (error < 0)
3106                         return error;
3107
3108                 BUG_ON(nd->inode != dir->d_inode);
3109                 BUG_ON(nd->flags & LOOKUP_RCU);
3110         } else {
3111                 /* create side of things */
3112                 /*
3113                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3114                  * has been cleared when we got to the last component we are
3115                  * about to look up
3116                  */
3117                 error = complete_walk(nd);
3118                 if (error)
3119                         return error;
3120
3121                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3122                 /* trailing slashes? */
3123                 if (unlikely(nd->last.name[nd->last.len]))
3124                         return -EISDIR;
3125         }
3126
3127 retry_lookup:
3128         if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3129                 error = mnt_want_write(nd->path.mnt);
3130                 if (!error)
3131                         got_write = true;
3132                 /*
3133                  * do _not_ fail yet - we might not need that or fail with
3134                  * a different error; let lookup_open() decide; we'll be
3135                  * dropping this one anyway.
3136                  */
3137         }
3138         inode_lock(dir->d_inode);
3139         error = lookup_open(nd, &path, file, op, got_write, opened);
3140         inode_unlock(dir->d_inode);
3141
3142         if (error <= 0) {
3143                 if (error)
3144                         goto out;
3145
3146                 if ((*opened & FILE_CREATED) ||
3147                     !S_ISREG(file_inode(file)->i_mode))
3148                         will_truncate = false;
3149
3150                 audit_inode(nd->name, file->f_path.dentry, 0);
3151                 goto opened;
3152         }
3153
3154         if (*opened & FILE_CREATED) {
3155                 /* Don't check for write permission, don't truncate */
3156                 open_flag &= ~O_TRUNC;
3157                 will_truncate = false;
3158                 acc_mode = 0;
3159                 path_to_nameidata(&path, nd);
3160                 goto finish_open_created;
3161         }
3162
3163         /*
3164          * If atomic_open() acquired write access it is dropped now due to
3165          * possible mount and symlink following (this might be optimized away if
3166          * necessary...)
3167          */
3168         if (got_write) {
3169                 mnt_drop_write(nd->path.mnt);
3170                 got_write = false;
3171         }
3172
3173         if (unlikely(d_is_negative(path.dentry))) {
3174                 path_to_nameidata(&path, nd);
3175                 return -ENOENT;
3176         }
3177
3178         /*
3179          * create/update audit record if it already exists.
3180          */
3181         audit_inode(nd->name, path.dentry, 0);
3182
3183         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3184                 path_to_nameidata(&path, nd);
3185                 return -EEXIST;
3186         }
3187
3188         error = follow_managed(&path, nd);
3189         if (unlikely(error < 0))
3190                 return error;
3191
3192         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3193         inode = d_backing_inode(path.dentry);
3194 finish_lookup:
3195         if (nd->depth)
3196                 put_link(nd);
3197         error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3198                                    inode, seq);
3199         if (unlikely(error))
3200                 return error;
3201
3202         if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3203                 path_to_nameidata(&path, nd);
3204         } else {
3205                 save_parent.dentry = nd->path.dentry;
3206                 save_parent.mnt = mntget(path.mnt);
3207                 nd->path.dentry = path.dentry;
3208
3209         }
3210         nd->inode = inode;
3211         nd->seq = seq;
3212         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3213 finish_open:
3214         error = complete_walk(nd);
3215         if (error) {
3216                 path_put(&save_parent);
3217                 return error;
3218         }
3219         audit_inode(nd->name, nd->path.dentry, 0);
3220         if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3221                 error = -ELOOP;
3222                 goto out;
3223         }
3224         error = -EISDIR;
3225         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3226                 goto out;
3227         error = -ENOTDIR;
3228         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3229                 goto out;
3230         if (!d_is_reg(nd->path.dentry))
3231                 will_truncate = false;
3232
3233         if (will_truncate) {
3234                 error = mnt_want_write(nd->path.mnt);
3235                 if (error)
3236                         goto out;
3237                 got_write = true;
3238         }
3239 finish_open_created:
3240         if (likely(!(open_flag & O_PATH))) {
3241                 error = may_open(&nd->path, acc_mode, open_flag);
3242                 if (error)
3243                         goto out;
3244         }
3245         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3246         error = vfs_open(&nd->path, file, current_cred());
3247         if (!error) {
3248                 *opened |= FILE_OPENED;
3249         } else {
3250                 if (error == -EOPENSTALE)
3251                         goto stale_open;
3252                 goto out;
3253         }
3254 opened:
3255         error = open_check_o_direct(file);
3256         if (error)
3257                 goto exit_fput;
3258         error = ima_file_check(file, op->acc_mode, *opened);
3259         if (error)
3260                 goto exit_fput;
3261
3262         if (will_truncate) {
3263                 error = handle_truncate(file);
3264                 if (error)
3265                         goto exit_fput;
3266         }
3267 out:
3268         if (unlikely(error > 0)) {
3269                 WARN_ON(1);
3270                 error = -EINVAL;
3271         }
3272         if (got_write)
3273                 mnt_drop_write(nd->path.mnt);
3274         path_put(&save_parent);
3275         return error;
3276
3277 exit_fput:
3278         fput(file);
3279         goto out;
3280
3281 stale_open:
3282         /* If no saved parent or already retried then can't retry */
3283         if (!save_parent.dentry || retried)
3284                 goto out;
3285
3286         BUG_ON(save_parent.dentry != dir);
3287         path_put(&nd->path);
3288         nd->path = save_parent;
3289         nd->inode = dir->d_inode;
3290         save_parent.mnt = NULL;
3291         save_parent.dentry = NULL;
3292         if (got_write) {
3293                 mnt_drop_write(nd->path.mnt);
3294                 got_write = false;
3295         }
3296         retried = true;
3297         goto retry_lookup;
3298 }
3299
3300 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3301                 const struct open_flags *op,
3302                 struct file *file, int *opened)
3303 {
3304         static const struct qstr name = QSTR_INIT("/", 1);
3305         struct dentry *child;
3306         struct inode *dir;
3307         struct path path;
3308         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3309         if (unlikely(error))
3310                 return error;
3311         error = mnt_want_write(path.mnt);
3312         if (unlikely(error))
3313                 goto out;
3314         dir = path.dentry->d_inode;
3315         /* we want directory to be writable */
3316         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3317         if (error)
3318                 goto out2;
3319         if (!dir->i_op->tmpfile) {
3320                 error = -EOPNOTSUPP;
3321                 goto out2;
3322         }
3323         child = d_alloc(path.dentry, &name);
3324         if (unlikely(!child)) {
3325                 error = -ENOMEM;
3326                 goto out2;
3327         }
3328         dput(path.dentry);
3329         path.dentry = child;
3330         error = dir->i_op->tmpfile(dir, child, op->mode);
3331         if (error)
3332                 goto out2;
3333         audit_inode(nd->name, child, 0);
3334         /* Don't check for other permissions, the inode was just created */
3335         error = may_open(&path, 0, op->open_flag);
3336         if (error)
3337                 goto out2;
3338         file->f_path.mnt = path.mnt;
3339         error = finish_open(file, child, NULL, opened);
3340         if (error)
3341                 goto out2;
3342         error = open_check_o_direct(file);
3343         if (error) {
3344                 fput(file);
3345         } else if (!(op->open_flag & O_EXCL)) {
3346                 struct inode *inode = file_inode(file);
3347                 spin_lock(&inode->i_lock);
3348                 inode->i_state |= I_LINKABLE;
3349                 spin_unlock(&inode->i_lock);
3350         }
3351 out2:
3352         mnt_drop_write(path.mnt);
3353 out:
3354         path_put(&path);
3355         return error;
3356 }
3357
3358 static struct file *path_openat(struct nameidata *nd,
3359                         const struct open_flags *op, unsigned flags)
3360 {
3361         const char *s;
3362         struct file *file;
3363         int opened = 0;
3364         int error;
3365
3366         file = get_empty_filp();
3367         if (IS_ERR(file))
3368                 return file;
3369
3370         file->f_flags = op->open_flag;
3371
3372         if (unlikely(file->f_flags & __O_TMPFILE)) {
3373                 error = do_tmpfile(nd, flags, op, file, &opened);
3374                 goto out2;
3375         }
3376
3377         s = path_init(nd, flags);
3378         if (IS_ERR(s)) {
3379                 put_filp(file);
3380                 return ERR_CAST(s);
3381         }
3382         while (!(error = link_path_walk(s, nd)) &&
3383                 (error = do_last(nd, file, op, &opened)) > 0) {
3384                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3385                 s = trailing_symlink(nd);
3386                 if (IS_ERR(s)) {
3387                         error = PTR_ERR(s);
3388                         break;
3389                 }
3390         }
3391         terminate_walk(nd);
3392 out2:
3393         if (!(opened & FILE_OPENED)) {
3394                 BUG_ON(!error);
3395                 put_filp(file);
3396         }
3397         if (unlikely(error)) {
3398                 if (error == -EOPENSTALE) {
3399                         if (flags & LOOKUP_RCU)
3400                                 error = -ECHILD;
3401                         else
3402                                 error = -ESTALE;
3403                 }
3404                 file = ERR_PTR(error);
3405         }
3406         return file;
3407 }
3408
3409 struct file *do_filp_open(int dfd, struct filename *pathname,
3410                 const struct open_flags *op)
3411 {
3412         struct nameidata nd;
3413         int flags = op->lookup_flags;
3414         struct file *filp;
3415
3416         set_nameidata(&nd, dfd, pathname);
3417         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3418         if (unlikely(filp == ERR_PTR(-ECHILD)))
3419                 filp = path_openat(&nd, op, flags);
3420         if (unlikely(filp == ERR_PTR(-ESTALE)))
3421                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3422         restore_nameidata();
3423         return filp;
3424 }
3425
3426 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3427                 const char *name, const struct open_flags *op)
3428 {
3429         struct nameidata nd;
3430         struct file *file;
3431         struct filename *filename;
3432         int flags = op->lookup_flags | LOOKUP_ROOT;
3433
3434         nd.root.mnt = mnt;
3435         nd.root.dentry = dentry;
3436
3437         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3438                 return ERR_PTR(-ELOOP);
3439
3440         filename = getname_kernel(name);
3441         if (IS_ERR(filename))
3442                 return ERR_CAST(filename);
3443
3444         set_nameidata(&nd, -1, filename);
3445         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3446         if (unlikely(file == ERR_PTR(-ECHILD)))
3447                 file = path_openat(&nd, op, flags);
3448         if (unlikely(file == ERR_PTR(-ESTALE)))
3449                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3450         restore_nameidata();
3451         putname(filename);
3452         return file;
3453 }
3454
3455 static struct dentry *filename_create(int dfd, struct filename *name,
3456                                 struct path *path, unsigned int lookup_flags)
3457 {
3458         struct dentry *dentry = ERR_PTR(-EEXIST);
3459         struct qstr last;
3460         int type;
3461         int err2;
3462         int error;
3463         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3464
3465         /*
3466          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3467          * other flags passed in are ignored!
3468          */
3469         lookup_flags &= LOOKUP_REVAL;
3470
3471         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3472         if (IS_ERR(name))
3473                 return ERR_CAST(name);
3474
3475         /*
3476          * Yucky last component or no last component at all?
3477          * (foo/., foo/.., /////)
3478          */
3479         if (unlikely(type != LAST_NORM))
3480                 goto out;
3481
3482         /* don't fail immediately if it's r/o, at least try to report other errors */
3483         err2 = mnt_want_write(path->mnt);
3484         /*
3485          * Do the final lookup.
3486          */
3487         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3488         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3489         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3490         if (IS_ERR(dentry))
3491                 goto unlock;
3492
3493         error = -EEXIST;
3494         if (d_is_positive(dentry))
3495                 goto fail;
3496
3497         /*
3498          * Special case - lookup gave negative, but... we had foo/bar/
3499          * From the vfs_mknod() POV we just have a negative dentry -
3500          * all is fine. Let's be bastards - you had / on the end, you've
3501          * been asking for (non-existent) directory. -ENOENT for you.
3502          */
3503         if (unlikely(!is_dir && last.name[last.len])) {
3504                 error = -ENOENT;
3505                 goto fail;
3506         }
3507         if (unlikely(err2)) {
3508                 error = err2;
3509                 goto fail;
3510         }
3511         putname(name);
3512         return dentry;
3513 fail:
3514         dput(dentry);
3515         dentry = ERR_PTR(error);
3516 unlock:
3517         inode_unlock(path->dentry->d_inode);
3518         if (!err2)
3519                 mnt_drop_write(path->mnt);
3520 out:
3521         path_put(path);
3522         putname(name);
3523         return dentry;
3524 }
3525
3526 struct dentry *kern_path_create(int dfd, const char *pathname,
3527                                 struct path *path, unsigned int lookup_flags)
3528 {
3529         return filename_create(dfd, getname_kernel(pathname),
3530                                 path, lookup_flags);
3531 }
3532 EXPORT_SYMBOL(kern_path_create);
3533
3534 void done_path_create(struct path *path, struct dentry *dentry)
3535 {
3536         dput(dentry);
3537         inode_unlock(path->dentry->d_inode);
3538         mnt_drop_write(path->mnt);
3539         path_put(path);
3540 }
3541 EXPORT_SYMBOL(done_path_create);
3542
3543 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3544                                 struct path *path, unsigned int lookup_flags)
3545 {
3546         return filename_create(dfd, getname(pathname), path, lookup_flags);
3547 }
3548 EXPORT_SYMBOL(user_path_create);
3549
3550 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3551 {
3552         int error = may_create(dir, dentry);
3553
3554         if (error)
3555                 return error;
3556
3557         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3558                 return -EPERM;
3559
3560         if (!dir->i_op->mknod)
3561                 return -EPERM;
3562
3563         error = devcgroup_inode_mknod(mode, dev);
3564         if (error)
3565                 return error;
3566
3567         error = security_inode_mknod(dir, dentry, mode, dev);
3568         if (error)
3569                 return error;
3570
3571         error = dir->i_op->mknod(dir, dentry, mode, dev);
3572         if (!error)
3573                 fsnotify_create(dir, dentry);
3574         return error;
3575 }
3576 EXPORT_SYMBOL(vfs_mknod);
3577
3578 static int may_mknod(umode_t mode)
3579 {
3580         switch (mode & S_IFMT) {
3581         case S_IFREG:
3582         case S_IFCHR:
3583         case S_IFBLK:
3584         case S_IFIFO:
3585         case S_IFSOCK:
3586         case 0: /* zero mode translates to S_IFREG */
3587                 return 0;
3588         case S_IFDIR:
3589                 return -EPERM;
3590         default:
3591                 return -EINVAL;
3592         }
3593 }
3594
3595 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3596                 unsigned, dev)
3597 {
3598         struct dentry *dentry;
3599         struct path path;
3600         int error;
3601         unsigned int lookup_flags = 0;
3602
3603         error = may_mknod(mode);
3604         if (error)
3605                 return error;
3606 retry:
3607         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3608         if (IS_ERR(dentry))
3609                 return PTR_ERR(dentry);
3610
3611         if (!IS_POSIXACL(path.dentry->d_inode))
3612                 mode &= ~current_umask();
3613         error = security_path_mknod(&path, dentry, mode, dev);
3614         if (error)
3615                 goto out;
3616         switch (mode & S_IFMT) {
3617                 case 0: case S_IFREG:
3618                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3619                         break;
3620                 case S_IFCHR: case S_IFBLK:
3621                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3622                                         new_decode_dev(dev));
3623                         break;
3624                 case S_IFIFO: case S_IFSOCK:
3625                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3626                         break;
3627         }
3628 out:
3629         done_path_create(&path, dentry);
3630         if (retry_estale(error, lookup_flags)) {
3631                 lookup_flags |= LOOKUP_REVAL;
3632                 goto retry;
3633         }
3634         return error;
3635 }
3636
3637 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3638 {
3639         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3640 }
3641
3642 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3643 {
3644         int error = may_create(dir, dentry);
3645         unsigned max_links = dir->i_sb->s_max_links;
3646
3647         if (error)
3648                 return error;
3649
3650         if (!dir->i_op->mkdir)
3651                 return -EPERM;
3652
3653         mode &= (S_IRWXUGO|S_ISVTX);
3654         error = security_inode_mkdir(dir, dentry, mode);
3655         if (error)
3656                 return error;
3657
3658         if (max_links && dir->i_nlink >= max_links)
3659                 return -EMLINK;
3660
3661         error = dir->i_op->mkdir(dir, dentry, mode);
3662         if (!error)
3663                 fsnotify_mkdir(dir, dentry);
3664         return error;
3665 }
3666 EXPORT_SYMBOL(vfs_mkdir);
3667
3668 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3669 {
3670         struct dentry *dentry;
3671         struct path path;
3672         int error;
3673         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3674
3675 retry:
3676         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3677         if (IS_ERR(dentry))
3678                 return PTR_ERR(dentry);
3679
3680         if (!IS_POSIXACL(path.dentry->d_inode))
3681                 mode &= ~current_umask();
3682         error = security_path_mkdir(&path, dentry, mode);
3683         if (!error)
3684                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3685         done_path_create(&path, dentry);
3686         if (retry_estale(error, lookup_flags)) {
3687                 lookup_flags |= LOOKUP_REVAL;
3688                 goto retry;
3689         }
3690         return error;
3691 }
3692
3693 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3694 {
3695         return sys_mkdirat(AT_FDCWD, pathname, mode);
3696 }
3697
3698 /*
3699  * The dentry_unhash() helper will try to drop the dentry early: we
3700  * should have a usage count of 1 if we're the only user of this
3701  * dentry, and if that is true (possibly after pruning the dcache),
3702  * then we drop the dentry now.
3703  *
3704  * A low-level filesystem can, if it choses, legally
3705  * do a
3706  *
3707  *      if (!d_unhashed(dentry))
3708  *              return -EBUSY;
3709  *
3710  * if it cannot handle the case of removing a directory
3711  * that is still in use by something else..
3712  */
3713 void dentry_unhash(struct dentry *dentry)
3714 {
3715         shrink_dcache_parent(dentry);
3716         spin_lock(&dentry->d_lock);
3717         if (dentry->d_lockref.count == 1)
3718                 __d_drop(dentry);
3719         spin_unlock(&dentry->d_lock);
3720 }
3721 EXPORT_SYMBOL(dentry_unhash);
3722
3723 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3724 {
3725         int error = may_delete(dir, dentry, 1);
3726
3727         if (error)
3728                 return error;
3729
3730         if (!dir->i_op->rmdir)
3731                 return -EPERM;
3732
3733         dget(dentry);
3734         inode_lock(dentry->d_inode);
3735
3736         error = -EBUSY;
3737         if (is_local_mountpoint(dentry))
3738                 goto out;
3739
3740         error = security_inode_rmdir(dir, dentry);
3741         if (error)
3742                 goto out;
3743
3744         shrink_dcache_parent(dentry);
3745         error = dir->i_op->rmdir(dir, dentry);
3746         if (error)
3747                 goto out;
3748
3749         dentry->d_inode->i_flags |= S_DEAD;
3750         dont_mount(dentry);
3751         detach_mounts(dentry);
3752
3753 out:
3754         inode_unlock(dentry->d_inode);
3755         dput(dentry);
3756         if (!error)
3757                 d_delete(dentry);
3758         return error;
3759 }
3760 EXPORT_SYMBOL(vfs_rmdir);
3761
3762 static long do_rmdir(int dfd, const char __user *pathname)
3763 {
3764         int error = 0;
3765         struct filename *name;
3766         struct dentry *dentry;
3767         struct path path;
3768         struct qstr last;
3769         int type;
3770         unsigned int lookup_flags = 0;
3771 retry:
3772         name = user_path_parent(dfd, pathname,
3773                                 &path, &last, &type, lookup_flags);
3774         if (IS_ERR(name))
3775                 return PTR_ERR(name);
3776
3777         switch (type) {
3778         case LAST_DOTDOT:
3779                 error = -ENOTEMPTY;
3780                 goto exit1;
3781         case LAST_DOT:
3782                 error = -EINVAL;
3783                 goto exit1;
3784         case LAST_ROOT:
3785                 error = -EBUSY;
3786                 goto exit1;
3787         }
3788
3789         error = mnt_want_write(path.mnt);
3790         if (error)
3791                 goto exit1;
3792
3793         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3794         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3795         error = PTR_ERR(dentry);
3796         if (IS_ERR(dentry))
3797                 goto exit2;
3798         if (!dentry->d_inode) {
3799                 error = -ENOENT;
3800                 goto exit3;
3801         }
3802         error = security_path_rmdir(&path, dentry);
3803         if (error)
3804                 goto exit3;
3805         error = vfs_rmdir(path.dentry->d_inode, dentry);
3806 exit3:
3807         dput(dentry);
3808 exit2:
3809         inode_unlock(path.dentry->d_inode);
3810         mnt_drop_write(path.mnt);
3811 exit1:
3812         path_put(&path);
3813         putname(name);
3814         if (retry_estale(error, lookup_flags)) {
3815                 lookup_flags |= LOOKUP_REVAL;
3816                 goto retry;
3817         }
3818         return error;
3819 }
3820
3821 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3822 {
3823         return do_rmdir(AT_FDCWD, pathname);
3824 }
3825
3826 /**
3827  * vfs_unlink - unlink a filesystem object
3828  * @dir:        parent directory
3829  * @dentry:     victim
3830  * @delegated_inode: returns victim inode, if the inode is delegated.
3831  *
3832  * The caller must hold dir->i_mutex.
3833  *
3834  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3835  * return a reference to the inode in delegated_inode.  The caller
3836  * should then break the delegation on that inode and retry.  Because
3837  * breaking a delegation may take a long time, the caller should drop
3838  * dir->i_mutex before doing so.
3839  *
3840  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3841  * be appropriate for callers that expect the underlying filesystem not
3842  * to be NFS exported.
3843  */
3844 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3845 {
3846         struct inode *target = dentry->d_inode;
3847         int error = may_delete(dir, dentry, 0);
3848
3849         if (error)
3850                 return error;
3851
3852         if (!dir->i_op->unlink)
3853                 return -EPERM;
3854
3855         inode_lock(target);
3856         if (is_local_mountpoint(dentry))
3857                 error = -EBUSY;
3858         else {
3859                 error = security_inode_unlink(dir, dentry);
3860                 if (!error) {
3861                         error = try_break_deleg(target, delegated_inode);
3862                         if (error)
3863                                 goto out;
3864                         error = dir->i_op->unlink(dir, dentry);
3865                         if (!error) {
3866                                 dont_mount(dentry);
3867                                 detach_mounts(dentry);
3868                         }
3869                 }
3870         }
3871 out:
3872         inode_unlock(target);
3873
3874         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3875         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3876                 fsnotify_link_count(target);
3877                 d_delete(dentry);
3878         }
3879
3880         return error;
3881 }
3882 EXPORT_SYMBOL(vfs_unlink);
3883
3884 /*
3885  * Make sure that the actual truncation of the file will occur outside its
3886  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3887  * writeout happening, and we don't want to prevent access to the directory
3888  * while waiting on the I/O.
3889  */
3890 static long do_unlinkat(int dfd, const char __user *pathname)
3891 {
3892         int error;
3893         struct filename *name;
3894         struct dentry *dentry;
3895         struct path path;
3896         struct qstr last;
3897         int type;
3898         struct inode *inode = NULL;
3899         struct inode *delegated_inode = NULL;
3900         unsigned int lookup_flags = 0;
3901 retry:
3902         name = user_path_parent(dfd, pathname,
3903                                 &path, &last, &type, lookup_flags);
3904         if (IS_ERR(name))
3905                 return PTR_ERR(name);
3906
3907         error = -EISDIR;
3908         if (type != LAST_NORM)
3909                 goto exit1;
3910
3911         error = mnt_want_write(path.mnt);
3912         if (error)
3913                 goto exit1;
3914 retry_deleg:
3915         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3916         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3917         error = PTR_ERR(dentry);
3918         if (!IS_ERR(dentry)) {
3919                 /* Why not before? Because we want correct error value */
3920                 if (last.name[last.len])
3921                         goto slashes;
3922                 inode = dentry->d_inode;
3923                 if (d_is_negative(dentry))
3924                         goto slashes;
3925                 ihold(inode);
3926                 error = security_path_unlink(&path, dentry);
3927                 if (error)
3928                         goto exit2;
3929                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3930 exit2:
3931                 dput(dentry);
3932         }
3933         inode_unlock(path.dentry->d_inode);
3934         if (inode)
3935                 iput(inode);    /* truncate the inode here */
3936         inode = NULL;
3937         if (delegated_inode) {
3938                 error = break_deleg_wait(&delegated_inode);
3939                 if (!error)
3940                         goto retry_deleg;
3941         }
3942         mnt_drop_write(path.mnt);
3943 exit1:
3944         path_put(&path);
3945         putname(name);
3946         if (retry_estale(error, lookup_flags)) {
3947                 lookup_flags |= LOOKUP_REVAL;
3948                 inode = NULL;
3949                 goto retry;
3950         }
3951         return error;
3952
3953 slashes:
3954         if (d_is_negative(dentry))
3955                 error = -ENOENT;
3956         else if (d_is_dir(dentry))
3957                 error = -EISDIR;
3958         else
3959                 error = -ENOTDIR;
3960         goto exit2;
3961 }
3962
3963 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3964 {
3965         if ((flag & ~AT_REMOVEDIR) != 0)
3966                 return -EINVAL;
3967
3968         if (flag & AT_REMOVEDIR)
3969                 return do_rmdir(dfd, pathname);
3970
3971         return do_unlinkat(dfd, pathname);
3972 }
3973
3974 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3975 {
3976         return do_unlinkat(AT_FDCWD, pathname);
3977 }
3978
3979 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3980 {
3981         int error = may_create(dir, dentry);
3982
3983         if (error)
3984                 return error;
3985
3986         if (!dir->i_op->symlink)
3987                 return -EPERM;
3988
3989         error = security_inode_symlink(dir, dentry, oldname);
3990         if (error)
3991                 return error;
3992
3993         error = dir->i_op->symlink(dir, dentry, oldname);
3994         if (!error)
3995                 fsnotify_create(dir, dentry);
3996         return error;
3997 }
3998 EXPORT_SYMBOL(vfs_symlink);
3999
4000 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4001                 int, newdfd, const char __user *, newname)
4002 {
4003         int error;
4004         struct filename *from;
4005         struct dentry *dentry;
4006         struct path path;
4007         unsigned int lookup_flags = 0;
4008
4009         from = getname(oldname);
4010         if (IS_ERR(from))
4011                 return PTR_ERR(from);
4012 retry:
4013         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4014         error = PTR_ERR(dentry);
4015         if (IS_ERR(dentry))
4016                 goto out_putname;
4017
4018         error = security_path_symlink(&path, dentry, from->name);
4019         if (!error)
4020                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4021         done_path_create(&path, dentry);
4022         if (retry_estale(error, lookup_flags)) {
4023                 lookup_flags |= LOOKUP_REVAL;
4024                 goto retry;
4025         }
4026 out_putname:
4027         putname(from);
4028         return error;
4029 }
4030
4031 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4032 {
4033         return sys_symlinkat(oldname, AT_FDCWD, newname);
4034 }
4035
4036 /**
4037  * vfs_link - create a new link
4038  * @old_dentry: object to be linked
4039  * @dir:        new parent
4040  * @new_dentry: where to create the new link
4041  * @delegated_inode: returns inode needing a delegation break
4042  *
4043  * The caller must hold dir->i_mutex
4044  *
4045  * If vfs_link discovers a delegation on the to-be-linked file in need
4046  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4047  * inode in delegated_inode.  The caller should then break the delegation
4048  * and retry.  Because breaking a delegation may take a long time, the
4049  * caller should drop the i_mutex before doing so.
4050  *
4051  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4052  * be appropriate for callers that expect the underlying filesystem not
4053  * to be NFS exported.
4054  */
4055 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4056 {
4057         struct inode *inode = old_dentry->d_inode;
4058         unsigned max_links = dir->i_sb->s_max_links;
4059         int error;
4060
4061         if (!inode)
4062                 return -ENOENT;
4063
4064         error = may_create(dir, new_dentry);
4065         if (error)
4066                 return error;
4067
4068         if (dir->i_sb != inode->i_sb)
4069                 return -EXDEV;
4070
4071         /*
4072          * A link to an append-only or immutable file cannot be created.
4073          */
4074         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4075                 return -EPERM;
4076         if (!dir->i_op->link)
4077                 return -EPERM;
4078         if (S_ISDIR(inode->i_mode))
4079                 return -EPERM;
4080
4081         error = security_inode_link(old_dentry, dir, new_dentry);
4082         if (error)
4083                 return error;
4084
4085         inode_lock(inode);
4086         /* Make sure we don't allow creating hardlink to an unlinked file */
4087         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4088                 error =  -ENOENT;
4089         else if (max_links && inode->i_nlink >= max_links)
4090                 error = -EMLINK;
4091         else {
4092                 error = try_break_deleg(inode, delegated_inode);
4093                 if (!error)
4094                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4095         }
4096
4097         if (!error && (inode->i_state & I_LINKABLE)) {
4098                 spin_lock(&inode->i_lock);
4099                 inode->i_state &= ~I_LINKABLE;
4100                 spin_unlock(&inode->i_lock);
4101         }
4102         inode_unlock(inode);
4103         if (!error)
4104                 fsnotify_link(dir, inode, new_dentry);
4105         return error;
4106 }
4107 EXPORT_SYMBOL(vfs_link);
4108
4109 /*
4110  * Hardlinks are often used in delicate situations.  We avoid
4111  * security-related surprises by not following symlinks on the
4112  * newname.  --KAB
4113  *
4114  * We don't follow them on the oldname either to be compatible
4115  * with linux 2.0, and to avoid hard-linking to directories
4116  * and other special files.  --ADM
4117  */
4118 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4119                 int, newdfd, const char __user *, newname, int, flags)
4120 {
4121         struct dentry *new_dentry;
4122         struct path old_path, new_path;
4123         struct inode *delegated_inode = NULL;
4124         int how = 0;
4125         int error;
4126
4127         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4128                 return -EINVAL;
4129         /*
4130          * To use null names we require CAP_DAC_READ_SEARCH
4131          * This ensures that not everyone will be able to create
4132          * handlink using the passed filedescriptor.
4133          */
4134         if (flags & AT_EMPTY_PATH) {
4135                 if (!capable(CAP_DAC_READ_SEARCH))
4136                         return -ENOENT;
4137                 how = LOOKUP_EMPTY;
4138         }
4139
4140         if (flags & AT_SYMLINK_FOLLOW)
4141                 how |= LOOKUP_FOLLOW;
4142 retry:
4143         error = user_path_at(olddfd, oldname, how, &old_path);
4144         if (error)
4145                 return error;
4146
4147         new_dentry = user_path_create(newdfd, newname, &new_path,
4148                                         (how & LOOKUP_REVAL));
4149         error = PTR_ERR(new_dentry);
4150         if (IS_ERR(new_dentry))
4151                 goto out;
4152
4153         error = -EXDEV;
4154         if (old_path.mnt != new_path.mnt)
4155                 goto out_dput;
4156         error = may_linkat(&old_path);
4157         if (unlikely(error))
4158                 goto out_dput;
4159         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4160         if (error)
4161                 goto out_dput;
4162         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4163 out_dput:
4164         done_path_create(&new_path, new_dentry);
4165         if (delegated_inode) {
4166                 error = break_deleg_wait(&delegated_inode);
4167                 if (!error) {
4168                         path_put(&old_path);
4169                         goto retry;
4170                 }
4171         }
4172         if (retry_estale(error, how)) {
4173                 path_put(&old_path);
4174                 how |= LOOKUP_REVAL;
4175                 goto retry;
4176         }
4177 out:
4178         path_put(&old_path);
4179
4180         return error;
4181 }
4182
4183 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4184 {
4185         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4186 }
4187
4188 /**
4189  * vfs_rename - rename a filesystem object
4190  * @old_dir:    parent of source
4191  * @old_dentry: source
4192  * @new_dir:    parent of destination
4193  * @new_dentry: destination
4194  * @delegated_inode: returns an inode needing a delegation break
4195  * @flags:      rename flags
4196  *
4197  * The caller must hold multiple mutexes--see lock_rename()).
4198  *
4199  * If vfs_rename discovers a delegation in need of breaking at either
4200  * the source or destination, it will return -EWOULDBLOCK and return a
4201  * reference to the inode in delegated_inode.  The caller should then
4202  * break the delegation and retry.  Because breaking a delegation may
4203  * take a long time, the caller should drop all locks before doing
4204  * so.
4205  *
4206  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4207  * be appropriate for callers that expect the underlying filesystem not
4208  * to be NFS exported.
4209  *
4210  * The worst of all namespace operations - renaming directory. "Perverted"
4211  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4212  * Problems:
4213  *      a) we can get into loop creation.
4214  *      b) race potential - two innocent renames can create a loop together.
4215  *         That's where 4.4 screws up. Current fix: serialization on
4216  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4217  *         story.
4218  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4219  *         and source (if it is not a directory).
4220  *         And that - after we got ->i_mutex on parents (until then we don't know
4221  *         whether the target exists).  Solution: try to be smart with locking
4222  *         order for inodes.  We rely on the fact that tree topology may change
4223  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4224  *         move will be locked.  Thus we can rank directories by the tree
4225  *         (ancestors first) and rank all non-directories after them.
4226  *         That works since everybody except rename does "lock parent, lookup,
4227  *         lock child" and rename is under ->s_vfs_rename_mutex.
4228  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4229  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4230  *         we'd better make sure that there's no link(2) for them.
4231  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4232  *         we are removing the target. Solution: we will have to grab ->i_mutex
4233  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4234  *         ->i_mutex on parents, which works but leads to some truly excessive
4235  *         locking].
4236  */
4237 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4238                struct inode *new_dir, struct dentry *new_dentry,
4239                struct inode **delegated_inode, unsigned int flags)
4240 {
4241         int error;
4242         bool is_dir = d_is_dir(old_dentry);
4243         const unsigned char *old_name;
4244         struct inode *source = old_dentry->d_inode;
4245         struct inode *target = new_dentry->d_inode;
4246         bool new_is_dir = false;
4247         unsigned max_links = new_dir->i_sb->s_max_links;
4248
4249         if (source == target)
4250                 return 0;
4251
4252         error = may_delete(old_dir, old_dentry, is_dir);
4253         if (error)
4254                 return error;
4255
4256         if (!target) {
4257                 error = may_create(new_dir, new_dentry);
4258         } else {
4259                 new_is_dir = d_is_dir(new_dentry);
4260
4261                 if (!(flags & RENAME_EXCHANGE))
4262                         error = may_delete(new_dir, new_dentry, is_dir);
4263                 else
4264                         error = may_delete(new_dir, new_dentry, new_is_dir);
4265         }
4266         if (error)
4267                 return error;
4268
4269         if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4270                 return -EPERM;
4271
4272         if (flags && !old_dir->i_op->rename2)
4273                 return -EINVAL;
4274
4275         /*
4276          * If we are going to change the parent - check write permissions,
4277          * we'll need to flip '..'.
4278          */
4279         if (new_dir != old_dir) {
4280                 if (is_dir) {
4281                         error = inode_permission(source, MAY_WRITE);
4282                         if (error)
4283                                 return error;
4284                 }
4285                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4286                         error = inode_permission(target, MAY_WRITE);
4287                         if (error)
4288                                 return error;
4289                 }
4290         }
4291
4292         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4293                                       flags);
4294         if (error)
4295                 return error;
4296
4297         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4298         dget(new_dentry);
4299         if (!is_dir || (flags & RENAME_EXCHANGE))
4300                 lock_two_nondirectories(source, target);
4301         else if (target)
4302                 inode_lock(target);
4303
4304         error = -EBUSY;
4305         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4306                 goto out;
4307
4308         if (max_links && new_dir != old_dir) {
4309                 error = -EMLINK;
4310                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4311                         goto out;
4312                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4313                     old_dir->i_nlink >= max_links)
4314                         goto out;
4315         }
4316         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4317                 shrink_dcache_parent(new_dentry);
4318         if (!is_dir) {
4319                 error = try_break_deleg(source, delegated_inode);
4320                 if (error)
4321                         goto out;
4322         }
4323         if (target && !new_is_dir) {
4324                 error = try_break_deleg(target, delegated_inode);
4325                 if (error)
4326                         goto out;
4327         }
4328         if (!old_dir->i_op->rename2) {
4329                 error = old_dir->i_op->rename(old_dir, old_dentry,
4330                                               new_dir, new_dentry);
4331         } else {
4332                 WARN_ON(old_dir->i_op->rename != NULL);
4333                 error = old_dir->i_op->rename2(old_dir, old_dentry,
4334                                                new_dir, new_dentry, flags);
4335         }
4336         if (error)
4337                 goto out;
4338
4339         if (!(flags & RENAME_EXCHANGE) && target) {
4340                 if (is_dir)
4341                         target->i_flags |= S_DEAD;
4342                 dont_mount(new_dentry);
4343                 detach_mounts(new_dentry);
4344         }
4345         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4346                 if (!(flags & RENAME_EXCHANGE))
4347                         d_move(old_dentry, new_dentry);
4348                 else
4349                         d_exchange(old_dentry, new_dentry);
4350         }
4351 out:
4352         if (!is_dir || (flags & RENAME_EXCHANGE))
4353                 unlock_two_nondirectories(source, target);
4354         else if (target)
4355                 inode_unlock(target);
4356         dput(new_dentry);
4357         if (!error) {
4358                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4359                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4360                 if (flags & RENAME_EXCHANGE) {
4361                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4362                                       new_is_dir, NULL, new_dentry);
4363                 }
4364         }
4365         fsnotify_oldname_free(old_name);
4366
4367         return error;
4368 }
4369 EXPORT_SYMBOL(vfs_rename);
4370
4371 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4372                 int, newdfd, const char __user *, newname, unsigned int, flags)
4373 {
4374         struct dentry *old_dentry, *new_dentry;
4375         struct dentry *trap;
4376         struct path old_path, new_path;
4377         struct qstr old_last, new_last;
4378         int old_type, new_type;
4379         struct inode *delegated_inode = NULL;
4380         struct filename *from;
4381         struct filename *to;
4382         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4383         bool should_retry = false;
4384         int error;
4385
4386         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4387                 return -EINVAL;
4388
4389         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4390             (flags & RENAME_EXCHANGE))
4391                 return -EINVAL;
4392
4393         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4394                 return -EPERM;
4395
4396         if (flags & RENAME_EXCHANGE)
4397                 target_flags = 0;
4398
4399 retry:
4400         from = user_path_parent(olddfd, oldname,
4401                                 &old_path, &old_last, &old_type, lookup_flags);
4402         if (IS_ERR(from)) {
4403                 error = PTR_ERR(from);
4404                 goto exit;
4405         }
4406
4407         to = user_path_parent(newdfd, newname,
4408                                 &new_path, &new_last, &new_type, lookup_flags);
4409         if (IS_ERR(to)) {
4410                 error = PTR_ERR(to);
4411                 goto exit1;
4412         }
4413
4414         error = -EXDEV;
4415         if (old_path.mnt != new_path.mnt)
4416                 goto exit2;
4417
4418         error = -EBUSY;
4419         if (old_type != LAST_NORM)
4420                 goto exit2;
4421
4422         if (flags & RENAME_NOREPLACE)
4423                 error = -EEXIST;
4424         if (new_type != LAST_NORM)
4425                 goto exit2;
4426
4427         error = mnt_want_write(old_path.mnt);
4428         if (error)
4429                 goto exit2;
4430
4431 retry_deleg:
4432         trap = lock_rename(new_path.dentry, old_path.dentry);
4433
4434         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4435         error = PTR_ERR(old_dentry);
4436         if (IS_ERR(old_dentry))
4437                 goto exit3;
4438         /* source must exist */
4439         error = -ENOENT;
4440         if (d_is_negative(old_dentry))
4441                 goto exit4;
4442         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4443         error = PTR_ERR(new_dentry);
4444         if (IS_ERR(new_dentry))
4445                 goto exit4;
4446         error = -EEXIST;
4447         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4448                 goto exit5;
4449         if (flags & RENAME_EXCHANGE) {
4450                 error = -ENOENT;
4451                 if (d_is_negative(new_dentry))
4452                         goto exit5;
4453
4454                 if (!d_is_dir(new_dentry)) {
4455                         error = -ENOTDIR;
4456                         if (new_last.name[new_last.len])
4457                                 goto exit5;
4458                 }
4459         }
4460         /* unless the source is a directory trailing slashes give -ENOTDIR */
4461         if (!d_is_dir(old_dentry)) {
4462                 error = -ENOTDIR;
4463                 if (old_last.name[old_last.len])
4464                         goto exit5;
4465                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4466                         goto exit5;
4467         }
4468         /* source should not be ancestor of target */
4469         error = -EINVAL;
4470         if (old_dentry == trap)
4471                 goto exit5;
4472         /* target should not be an ancestor of source */
4473         if (!(flags & RENAME_EXCHANGE))
4474                 error = -ENOTEMPTY;
4475         if (new_dentry == trap)
4476                 goto exit5;
4477
4478         error = security_path_rename(&old_path, old_dentry,
4479                                      &new_path, new_dentry, flags);
4480         if (error)
4481                 goto exit5;
4482         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4483                            new_path.dentry->d_inode, new_dentry,
4484                            &delegated_inode, flags);
4485 exit5:
4486         dput(new_dentry);
4487 exit4:
4488         dput(old_dentry);
4489 exit3:
4490         unlock_rename(new_path.dentry, old_path.dentry);
4491         if (delegated_inode) {
4492                 error = break_deleg_wait(&delegated_inode);
4493                 if (!error)
4494                         goto retry_deleg;
4495         }
4496         mnt_drop_write(old_path.mnt);
4497 exit2:
4498         if (retry_estale(error, lookup_flags))
4499                 should_retry = true;
4500         path_put(&new_path);
4501         putname(to);
4502 exit1:
4503         path_put(&old_path);
4504         putname(from);
4505         if (should_retry) {
4506                 should_retry = false;
4507                 lookup_flags |= LOOKUP_REVAL;
4508                 goto retry;
4509         }
4510 exit:
4511         return error;
4512 }
4513
4514 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4515                 int, newdfd, const char __user *, newname)
4516 {
4517         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4518 }
4519
4520 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4521 {
4522         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4523 }
4524
4525 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4526 {
4527         int error = may_create(dir, dentry);
4528         if (error)
4529                 return error;
4530
4531         if (!dir->i_op->mknod)
4532                 return -EPERM;
4533
4534         return dir->i_op->mknod(dir, dentry,
4535                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4536 }
4537 EXPORT_SYMBOL(vfs_whiteout);
4538
4539 int readlink_copy(char __user *buffer, int buflen, const char *link)
4540 {
4541         int len = PTR_ERR(link);
4542         if (IS_ERR(link))
4543                 goto out;
4544
4545         len = strlen(link);
4546         if (len > (unsigned) buflen)
4547                 len = buflen;
4548         if (copy_to_user(buffer, link, len))
4549                 len = -EFAULT;
4550 out:
4551         return len;
4552 }
4553 EXPORT_SYMBOL(readlink_copy);
4554
4555 /*
4556  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4557  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4558  * for any given inode is up to filesystem.
4559  */
4560 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4561 {
4562         DEFINE_DELAYED_CALL(done);
4563         struct inode *inode = d_inode(dentry);
4564         const char *link = inode->i_link;
4565         int res;
4566
4567         if (!link) {
4568                 link = inode->i_op->get_link(dentry, inode, &done);
4569                 if (IS_ERR(link))
4570                         return PTR_ERR(link);
4571         }
4572         res = readlink_copy(buffer, buflen, link);
4573         do_delayed_call(&done);
4574         return res;
4575 }
4576 EXPORT_SYMBOL(generic_readlink);
4577
4578 /* get the link contents into pagecache */
4579 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4580                           struct delayed_call *callback)
4581 {
4582         char *kaddr;
4583         struct page *page;
4584         struct address_space *mapping = inode->i_mapping;
4585
4586         if (!dentry) {
4587                 page = find_get_page(mapping, 0);
4588                 if (!page)
4589                         return ERR_PTR(-ECHILD);
4590                 if (!PageUptodate(page)) {
4591                         put_page(page);
4592                         return ERR_PTR(-ECHILD);
4593                 }
4594         } else {
4595                 page = read_mapping_page(mapping, 0, NULL);
4596                 if (IS_ERR(page))
4597                         return (char*)page;
4598         }
4599         set_delayed_call(callback, page_put_link, page);
4600         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4601         kaddr = page_address(page);
4602         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4603         return kaddr;
4604 }
4605
4606 EXPORT_SYMBOL(page_get_link);
4607
4608 void page_put_link(void *arg)
4609 {
4610         put_page(arg);
4611 }
4612 EXPORT_SYMBOL(page_put_link);
4613
4614 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4615 {
4616         DEFINE_DELAYED_CALL(done);
4617         int res = readlink_copy(buffer, buflen,
4618                                 page_get_link(dentry, d_inode(dentry),
4619                                               &done));
4620         do_delayed_call(&done);
4621         return res;
4622 }
4623 EXPORT_SYMBOL(page_readlink);
4624
4625 /*
4626  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4627  */
4628 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4629 {
4630         struct address_space *mapping = inode->i_mapping;
4631         struct page *page;
4632         void *fsdata;
4633         int err;
4634         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4635         if (nofs)
4636                 flags |= AOP_FLAG_NOFS;
4637
4638 retry:
4639         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4640                                 flags, &page, &fsdata);
4641         if (err)
4642                 goto fail;
4643
4644         memcpy(page_address(page), symname, len-1);
4645
4646         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4647                                                         page, fsdata);
4648         if (err < 0)
4649                 goto fail;
4650         if (err < len-1)
4651                 goto retry;
4652
4653         mark_inode_dirty(inode);
4654         return 0;
4655 fail:
4656         return err;
4657 }
4658 EXPORT_SYMBOL(__page_symlink);
4659
4660 int page_symlink(struct inode *inode, const char *symname, int len)
4661 {
4662         return __page_symlink(inode, symname, len,
4663                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4664 }
4665 EXPORT_SYMBOL(page_symlink);
4666
4667 const struct inode_operations page_symlink_inode_operations = {
4668         .readlink       = generic_readlink,
4669         .get_link       = page_get_link,
4670 };
4671 EXPORT_SYMBOL(page_symlink_inode_operations);