4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
40 mhash_entries = simple_strtoul(str, &str, 0);
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
50 mphash_entries = simple_strtoul(str, &str, 0);
53 __setup("mphash_entries=", set_mphash_entries);
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start = mnt->mnt_group_id + 1;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
180 unsigned int count = 0;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 return mnt->mnt_count;
193 static void drop_mountpoint(struct fs_pin *p)
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
201 static struct mount *alloc_vfsmnt(const char *name)
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 err = mnt_alloc_id(mnt);
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
220 goto out_free_devname;
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 mnt->mnt_writers = 0;
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 kfree_const(mnt->mnt_devname);
251 kmem_cache_free(mnt_cache, mnt);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount *mnt)
276 if (mnt->mnt_flags & MNT_READONLY)
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 static inline void mnt_inc_writers(struct mount *mnt)
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 static inline void mnt_dec_writers(struct mount *mnt)
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 static unsigned int mnt_get_writers(struct mount *mnt)
305 unsigned int count = 0;
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
314 return mnt->mnt_writers;
318 static int mnt_is_readonly(struct vfsmount *mnt)
320 if (mnt->mnt_sb->s_readonly_remount)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount *m)
345 struct mount *mnt = real_mount(m);
349 mnt_inc_writers(mnt);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount *m)
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
389 sb_end_write(m->mnt_sb);
392 EXPORT_SYMBOL_GPL(mnt_want_write);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount *mnt)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
412 mnt_inc_writers(real_mount(mnt));
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file *file)
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
430 return mnt_clone_write(file->f_path.mnt);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file *file)
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
447 sb_end_write(file->f_path.mnt->mnt_sb);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount *mnt)
463 mnt_dec_writers(real_mount(mnt));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount *mnt)
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
482 void __mnt_drop_write_file(struct file *file)
484 __mnt_drop_write(file->f_path.mnt);
487 void mnt_drop_write_file(struct file *file)
489 mnt_drop_write(file->f_path.mnt);
491 EXPORT_SYMBOL(mnt_drop_write_file);
493 static int mnt_make_readonly(struct mount *mnt)
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt) > 0)
524 mnt->mnt.mnt_flags |= MNT_READONLY;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 static void __mnt_unmake_readonly(struct mount *mnt)
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 int sb_prepare_remount_readonly(struct super_block *sb)
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
556 if (mnt_get_writers(mnt) > 0) {
562 if (!err && atomic_long_read(&sb->s_remove_count))
566 sb->s_readonly_remount = 1;
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
578 static void free_vfsmnt(struct mount *mnt)
580 kfree_const(mnt->mnt_devname);
582 free_percpu(mnt->mnt_pcp);
584 kmem_cache_free(mnt_cache, mnt);
587 static void delayed_free_vfsmnt(struct rcu_head *head)
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596 if (read_seqretry(&mount_lock, seq))
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
620 struct hlist_head *head = m_hash(mnt, dentry);
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
652 * lookup_mnt - Return the first child mount mounted at path
654 * "First" means first mounted chronologically. If you create the
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
665 * lookup_mnt takes a reference to the found vfsmount.
667 struct vfsmount *lookup_mnt(struct path *path)
669 struct mount *child_mnt;
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
698 bool __is_local_mountpoint(struct dentry *dentry)
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
702 bool is_covered = false;
704 if (!d_mountpoint(dentry))
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
713 up_read(&namespace_sem);
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
743 return ERR_PTR(-ENOMEM);
745 ret = d_set_mounted(dentry);
751 mp->m_dentry = dentry;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
758 static void put_mountpoint(struct mountpoint *mp)
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
771 static inline int check_mnt(struct mount *mnt)
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
777 * vfsmount lock must be held for write
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
783 wake_up_interruptible(&ns->poll);
788 * vfsmount lock must be held for write
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
792 if (ns && ns->event != event) {
794 wake_up_interruptible(&ns->poll);
799 * vfsmount lock must be held for write
801 static void unhash_mnt(struct mount *mnt)
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
813 * vfsmount lock must be held for write
815 static void detach_mnt(struct mount *mnt, struct path *old_path)
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
823 * vfsmount lock must be held for write
825 static void umount_mnt(struct mount *mnt)
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
833 * vfsmount lock must be held for write
835 void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
848 * vfsmount lock must be held for write
850 static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
859 static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
874 * vfsmount lock must be held for write
876 static void commit_tree(struct mount *mnt, struct mount *shadows)
878 struct mount *parent = mnt->mnt_parent;
881 struct mnt_namespace *n = parent->mnt_ns;
883 BUG_ON(parent == mnt);
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
889 list_splice(&head, n->list.prev);
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
895 static struct mount *next_mnt(struct mount *p, struct mount *root)
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
908 return list_entry(next, struct mount, mnt_child);
911 static struct mount *skip_mnt_tree(struct mount *p)
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
928 return ERR_PTR(-ENODEV);
930 mnt = alloc_vfsmnt(name);
932 return ERR_PTR(-ENOMEM);
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
937 root = mount_fs(type, flags, name, data);
941 return ERR_CAST(root);
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
958 struct super_block *sb = old->mnt.mnt_sb;
962 mnt = alloc_vfsmnt(old->mnt_devname);
964 return ERR_PTR(-ENOMEM);
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
969 mnt->mnt_group_id = old->mnt_group_id;
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1036 return ERR_PTR(err);
1039 static void cleanup_mnt(struct mount *mnt)
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1061 static void __cleanup_mnt(struct rcu_head *head)
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1066 static LLIST_HEAD(delayed_mntput_list);
1067 static void delayed_mntput(struct work_struct *unused)
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1079 static void mntput_no_expire(struct mount *mnt)
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1088 if (mnt_get_count(mnt)) {
1090 unlock_mount_hash();
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1095 unlock_mount_hash();
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1101 list_del(&mnt->mnt_instance);
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1109 unlock_mount_hash();
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1125 void mntput(struct vfsmount *mnt)
1128 struct mount *m = real_mount(mnt);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
1135 EXPORT_SYMBOL(mntput);
1137 struct vfsmount *mntget(struct vfsmount *mnt)
1140 mnt_add_count(real_mount(mnt), 1);
1143 EXPORT_SYMBOL(mntget);
1145 struct vfsmount *mnt_clone_internal(struct path *path)
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1155 static inline void mangle(struct seq_file *m, const char *s)
1157 seq_escape(m, s, " \t\n\\");
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1164 * See also save_mount_options().
1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1168 const char *options;
1171 options = rcu_dereference(root->d_sb->s_options);
1173 if (options != NULL && options[0]) {
1181 EXPORT_SYMBOL(generic_show_options);
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1196 void save_mount_options(struct super_block *sb, char *options)
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1201 EXPORT_SYMBOL(save_mount_options);
1203 void replace_mount_options(struct super_block *sb, char *options)
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1212 EXPORT_SYMBOL(replace_mount_options);
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file *m, loff_t *pos)
1218 struct proc_mounts *p = proc_mounts(m);
1220 down_read(&namespace_sem);
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1239 struct proc_mounts *p = proc_mounts(m);
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1246 static void m_stop(struct seq_file *m, void *v)
1248 up_read(&namespace_sem);
1251 static int m_show(struct seq_file *m, void *v)
1253 struct proc_mounts *p = proc_mounts(m);
1254 struct mount *r = list_entry(v, struct mount, mnt_list);
1255 return p->show(m, &r->mnt);
1258 const struct seq_operations mounts_op = {
1264 #endif /* CONFIG_PROC_FS */
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1274 int may_umount_tree(struct vfsmount *m)
1276 struct mount *mnt = real_mount(m);
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
1282 /* write lock needed for mnt_get_count */
1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 actual_refs += mnt_get_count(p);
1288 unlock_mount_hash();
1290 if (actual_refs > minimum_refs)
1296 EXPORT_SYMBOL(may_umount_tree);
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1311 int may_umount(struct vfsmount *mnt)
1314 down_read(&namespace_sem);
1316 if (propagate_mount_busy(real_mount(mnt), 2))
1318 unlock_mount_hash();
1319 up_read(&namespace_sem);
1323 EXPORT_SYMBOL(may_umount);
1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1327 static void namespace_unlock(void)
1329 struct hlist_head head;
1331 hlist_move_list(&unmounted, &head);
1333 up_write(&namespace_sem);
1335 if (likely(hlist_empty(&head)))
1340 group_pin_kill(&head);
1343 static inline void namespace_lock(void)
1345 down_write(&namespace_sem);
1348 enum umount_tree_flags {
1350 UMOUNT_PROPAGATE = 2,
1351 UMOUNT_CONNECTED = 4,
1354 * mount_lock must be held
1355 * namespace_sem must be held for write
1357 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1359 LIST_HEAD(tmp_list);
1362 if (how & UMOUNT_PROPAGATE)
1363 propagate_mount_unlock(mnt);
1365 /* Gather the mounts to umount */
1366 for (p = mnt; p; p = next_mnt(p, mnt)) {
1367 p->mnt.mnt_flags |= MNT_UMOUNT;
1368 list_move(&p->mnt_list, &tmp_list);
1371 /* Hide the mounts from mnt_mounts */
1372 list_for_each_entry(p, &tmp_list, mnt_list) {
1373 list_del_init(&p->mnt_child);
1376 /* Add propogated mounts to the tmp_list */
1377 if (how & UMOUNT_PROPAGATE)
1378 propagate_umount(&tmp_list);
1380 while (!list_empty(&tmp_list)) {
1382 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1383 list_del_init(&p->mnt_expire);
1384 list_del_init(&p->mnt_list);
1385 __touch_mnt_namespace(p->mnt_ns);
1387 if (how & UMOUNT_SYNC)
1388 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1390 disconnect = !(((how & UMOUNT_CONNECTED) &&
1391 mnt_has_parent(p) &&
1392 (p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) ||
1393 IS_MNT_LOCKED_AND_LAZY(p));
1395 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1396 disconnect ? &unmounted : NULL);
1397 if (mnt_has_parent(p)) {
1398 mnt_add_count(p->mnt_parent, -1);
1400 /* Don't forget about p */
1401 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1406 change_mnt_propagation(p, MS_PRIVATE);
1410 static void shrink_submounts(struct mount *mnt);
1412 static int do_umount(struct mount *mnt, int flags)
1414 struct super_block *sb = mnt->mnt.mnt_sb;
1417 retval = security_sb_umount(&mnt->mnt, flags);
1422 * Allow userspace to request a mountpoint be expired rather than
1423 * unmounting unconditionally. Unmount only happens if:
1424 * (1) the mark is already set (the mark is cleared by mntput())
1425 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1427 if (flags & MNT_EXPIRE) {
1428 if (&mnt->mnt == current->fs->root.mnt ||
1429 flags & (MNT_FORCE | MNT_DETACH))
1433 * probably don't strictly need the lock here if we examined
1434 * all race cases, but it's a slowpath.
1437 if (mnt_get_count(mnt) != 2) {
1438 unlock_mount_hash();
1441 unlock_mount_hash();
1443 if (!xchg(&mnt->mnt_expiry_mark, 1))
1448 * If we may have to abort operations to get out of this
1449 * mount, and they will themselves hold resources we must
1450 * allow the fs to do things. In the Unix tradition of
1451 * 'Gee thats tricky lets do it in userspace' the umount_begin
1452 * might fail to complete on the first run through as other tasks
1453 * must return, and the like. Thats for the mount program to worry
1454 * about for the moment.
1457 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1458 sb->s_op->umount_begin(sb);
1462 * No sense to grab the lock for this test, but test itself looks
1463 * somewhat bogus. Suggestions for better replacement?
1464 * Ho-hum... In principle, we might treat that as umount + switch
1465 * to rootfs. GC would eventually take care of the old vfsmount.
1466 * Actually it makes sense, especially if rootfs would contain a
1467 * /reboot - static binary that would close all descriptors and
1468 * call reboot(9). Then init(8) could umount root and exec /reboot.
1470 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1472 * Special case for "unmounting" root ...
1473 * we just try to remount it readonly.
1475 if (!capable(CAP_SYS_ADMIN))
1477 down_write(&sb->s_umount);
1478 if (!(sb->s_flags & MS_RDONLY))
1479 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1480 up_write(&sb->s_umount);
1488 if (flags & MNT_DETACH) {
1489 if (!list_empty(&mnt->mnt_list))
1490 umount_tree(mnt, UMOUNT_PROPAGATE);
1493 shrink_submounts(mnt);
1495 if (!propagate_mount_busy(mnt, 2)) {
1496 if (!list_empty(&mnt->mnt_list))
1497 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1501 unlock_mount_hash();
1507 * __detach_mounts - lazily unmount all mounts on the specified dentry
1509 * During unlink, rmdir, and d_drop it is possible to loose the path
1510 * to an existing mountpoint, and wind up leaking the mount.
1511 * detach_mounts allows lazily unmounting those mounts instead of
1514 * The caller may hold dentry->d_inode->i_mutex.
1516 void __detach_mounts(struct dentry *dentry)
1518 struct mountpoint *mp;
1522 mp = lookup_mountpoint(dentry);
1523 if (IS_ERR_OR_NULL(mp))
1527 while (!hlist_empty(&mp->m_list)) {
1528 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1529 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1530 struct mount *p, *tmp;
1531 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1532 hlist_add_head(&p->mnt_umount.s_list, &unmounted);
1536 else umount_tree(mnt, UMOUNT_CONNECTED);
1538 unlock_mount_hash();
1545 * Is the caller allowed to modify his namespace?
1547 static inline bool may_mount(void)
1549 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1553 * Now umount can handle mount points as well as block devices.
1554 * This is important for filesystems which use unnamed block devices.
1556 * We now support a flag for forced unmount like the other 'big iron'
1557 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1560 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1565 int lookup_flags = 0;
1567 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1573 if (!(flags & UMOUNT_NOFOLLOW))
1574 lookup_flags |= LOOKUP_FOLLOW;
1576 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1579 mnt = real_mount(path.mnt);
1581 if (path.dentry != path.mnt->mnt_root)
1583 if (!check_mnt(mnt))
1585 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1591 retval = do_umount(mnt, flags);
1593 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1595 mntput_no_expire(mnt);
1600 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1603 * The 2.0 compatible umount. No flags.
1605 SYSCALL_DEFINE1(oldumount, char __user *, name)
1607 return sys_umount(name, 0);
1612 static bool is_mnt_ns_file(struct dentry *dentry)
1614 /* Is this a proxy for a mount namespace? */
1615 return dentry->d_op == &ns_dentry_operations &&
1616 dentry->d_fsdata == &mntns_operations;
1619 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1621 return container_of(ns, struct mnt_namespace, ns);
1624 static bool mnt_ns_loop(struct dentry *dentry)
1626 /* Could bind mounting the mount namespace inode cause a
1627 * mount namespace loop?
1629 struct mnt_namespace *mnt_ns;
1630 if (!is_mnt_ns_file(dentry))
1633 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1634 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1637 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1640 struct mount *res, *p, *q, *r, *parent;
1642 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1643 return ERR_PTR(-EINVAL);
1645 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1646 return ERR_PTR(-EINVAL);
1648 res = q = clone_mnt(mnt, dentry, flag);
1652 q->mnt_mountpoint = mnt->mnt_mountpoint;
1655 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1657 if (!is_subdir(r->mnt_mountpoint, dentry))
1660 for (s = r; s; s = next_mnt(s, r)) {
1661 struct mount *t = NULL;
1662 if (!(flag & CL_COPY_UNBINDABLE) &&
1663 IS_MNT_UNBINDABLE(s)) {
1664 s = skip_mnt_tree(s);
1667 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1668 is_mnt_ns_file(s->mnt.mnt_root)) {
1669 s = skip_mnt_tree(s);
1672 while (p != s->mnt_parent) {
1678 q = clone_mnt(p, p->mnt.mnt_root, flag);
1682 list_add_tail(&q->mnt_list, &res->mnt_list);
1683 mnt_set_mountpoint(parent, p->mnt_mp, q);
1684 if (!list_empty(&parent->mnt_mounts)) {
1685 t = list_last_entry(&parent->mnt_mounts,
1686 struct mount, mnt_child);
1687 if (t->mnt_mp != p->mnt_mp)
1690 attach_shadowed(q, parent, t);
1691 unlock_mount_hash();
1698 umount_tree(res, UMOUNT_SYNC);
1699 unlock_mount_hash();
1704 /* Caller should check returned pointer for errors */
1706 struct vfsmount *collect_mounts(struct path *path)
1710 if (!check_mnt(real_mount(path->mnt)))
1711 tree = ERR_PTR(-EINVAL);
1713 tree = copy_tree(real_mount(path->mnt), path->dentry,
1714 CL_COPY_ALL | CL_PRIVATE);
1717 return ERR_CAST(tree);
1721 void drop_collected_mounts(struct vfsmount *mnt)
1725 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1726 unlock_mount_hash();
1731 * clone_private_mount - create a private clone of a path
1733 * This creates a new vfsmount, which will be the clone of @path. The new will
1734 * not be attached anywhere in the namespace and will be private (i.e. changes
1735 * to the originating mount won't be propagated into this).
1737 * Release with mntput().
1739 struct vfsmount *clone_private_mount(struct path *path)
1741 struct mount *old_mnt = real_mount(path->mnt);
1742 struct mount *new_mnt;
1744 if (IS_MNT_UNBINDABLE(old_mnt))
1745 return ERR_PTR(-EINVAL);
1747 down_read(&namespace_sem);
1748 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1749 up_read(&namespace_sem);
1750 if (IS_ERR(new_mnt))
1751 return ERR_CAST(new_mnt);
1753 return &new_mnt->mnt;
1755 EXPORT_SYMBOL_GPL(clone_private_mount);
1757 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1758 struct vfsmount *root)
1761 int res = f(root, arg);
1764 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1765 res = f(&mnt->mnt, arg);
1772 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1776 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1777 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1778 mnt_release_group_id(p);
1782 static int invent_group_ids(struct mount *mnt, bool recurse)
1786 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1787 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1788 int err = mnt_alloc_group_id(p);
1790 cleanup_group_ids(mnt, p);
1800 * @source_mnt : mount tree to be attached
1801 * @nd : place the mount tree @source_mnt is attached
1802 * @parent_nd : if non-null, detach the source_mnt from its parent and
1803 * store the parent mount and mountpoint dentry.
1804 * (done when source_mnt is moved)
1806 * NOTE: in the table below explains the semantics when a source mount
1807 * of a given type is attached to a destination mount of a given type.
1808 * ---------------------------------------------------------------------------
1809 * | BIND MOUNT OPERATION |
1810 * |**************************************************************************
1811 * | source-->| shared | private | slave | unbindable |
1815 * |**************************************************************************
1816 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1818 * |non-shared| shared (+) | private | slave (*) | invalid |
1819 * ***************************************************************************
1820 * A bind operation clones the source mount and mounts the clone on the
1821 * destination mount.
1823 * (++) the cloned mount is propagated to all the mounts in the propagation
1824 * tree of the destination mount and the cloned mount is added to
1825 * the peer group of the source mount.
1826 * (+) the cloned mount is created under the destination mount and is marked
1827 * as shared. The cloned mount is added to the peer group of the source
1829 * (+++) the mount is propagated to all the mounts in the propagation tree
1830 * of the destination mount and the cloned mount is made slave
1831 * of the same master as that of the source mount. The cloned mount
1832 * is marked as 'shared and slave'.
1833 * (*) the cloned mount is made a slave of the same master as that of the
1836 * ---------------------------------------------------------------------------
1837 * | MOVE MOUNT OPERATION |
1838 * |**************************************************************************
1839 * | source-->| shared | private | slave | unbindable |
1843 * |**************************************************************************
1844 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1846 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1847 * ***************************************************************************
1849 * (+) the mount is moved to the destination. And is then propagated to
1850 * all the mounts in the propagation tree of the destination mount.
1851 * (+*) the mount is moved to the destination.
1852 * (+++) the mount is moved to the destination and is then propagated to
1853 * all the mounts belonging to the destination mount's propagation tree.
1854 * the mount is marked as 'shared and slave'.
1855 * (*) the mount continues to be a slave at the new location.
1857 * if the source mount is a tree, the operations explained above is
1858 * applied to each mount in the tree.
1859 * Must be called without spinlocks held, since this function can sleep
1862 static int attach_recursive_mnt(struct mount *source_mnt,
1863 struct mount *dest_mnt,
1864 struct mountpoint *dest_mp,
1865 struct path *parent_path)
1867 HLIST_HEAD(tree_list);
1868 struct mount *child, *p;
1869 struct hlist_node *n;
1872 if (IS_MNT_SHARED(dest_mnt)) {
1873 err = invent_group_ids(source_mnt, true);
1876 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1879 goto out_cleanup_ids;
1880 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1886 detach_mnt(source_mnt, parent_path);
1887 attach_mnt(source_mnt, dest_mnt, dest_mp);
1888 touch_mnt_namespace(source_mnt->mnt_ns);
1890 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1891 commit_tree(source_mnt, NULL);
1894 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1896 hlist_del_init(&child->mnt_hash);
1897 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1898 child->mnt_mountpoint);
1899 commit_tree(child, q);
1901 unlock_mount_hash();
1906 while (!hlist_empty(&tree_list)) {
1907 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1908 umount_tree(child, UMOUNT_SYNC);
1910 unlock_mount_hash();
1911 cleanup_group_ids(source_mnt, NULL);
1916 static struct mountpoint *lock_mount(struct path *path)
1918 struct vfsmount *mnt;
1919 struct dentry *dentry = path->dentry;
1921 mutex_lock(&dentry->d_inode->i_mutex);
1922 if (unlikely(cant_mount(dentry))) {
1923 mutex_unlock(&dentry->d_inode->i_mutex);
1924 return ERR_PTR(-ENOENT);
1927 mnt = lookup_mnt(path);
1929 struct mountpoint *mp = lookup_mountpoint(dentry);
1931 mp = new_mountpoint(dentry);
1934 mutex_unlock(&dentry->d_inode->i_mutex);
1940 mutex_unlock(&path->dentry->d_inode->i_mutex);
1943 dentry = path->dentry = dget(mnt->mnt_root);
1947 static void unlock_mount(struct mountpoint *where)
1949 struct dentry *dentry = where->m_dentry;
1950 put_mountpoint(where);
1952 mutex_unlock(&dentry->d_inode->i_mutex);
1955 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1957 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1960 if (d_is_dir(mp->m_dentry) !=
1961 d_is_dir(mnt->mnt.mnt_root))
1964 return attach_recursive_mnt(mnt, p, mp, NULL);
1968 * Sanity check the flags to change_mnt_propagation.
1971 static int flags_to_propagation_type(int flags)
1973 int type = flags & ~(MS_REC | MS_SILENT);
1975 /* Fail if any non-propagation flags are set */
1976 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1978 /* Only one propagation flag should be set */
1979 if (!is_power_of_2(type))
1985 * recursively change the type of the mountpoint.
1987 static int do_change_type(struct path *path, int flag)
1990 struct mount *mnt = real_mount(path->mnt);
1991 int recurse = flag & MS_REC;
1995 if (path->dentry != path->mnt->mnt_root)
1998 type = flags_to_propagation_type(flag);
2003 if (type == MS_SHARED) {
2004 err = invent_group_ids(mnt, recurse);
2010 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2011 change_mnt_propagation(m, type);
2012 unlock_mount_hash();
2019 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2021 struct mount *child;
2022 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2023 if (!is_subdir(child->mnt_mountpoint, dentry))
2026 if (child->mnt.mnt_flags & MNT_LOCKED)
2033 * do loopback mount.
2035 static int do_loopback(struct path *path, const char *old_name,
2038 struct path old_path;
2039 struct mount *mnt = NULL, *old, *parent;
2040 struct mountpoint *mp;
2042 if (!old_name || !*old_name)
2044 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2049 if (mnt_ns_loop(old_path.dentry))
2052 mp = lock_mount(path);
2057 old = real_mount(old_path.mnt);
2058 parent = real_mount(path->mnt);
2061 if (IS_MNT_UNBINDABLE(old))
2064 if (!check_mnt(parent))
2067 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2070 if (!recurse && has_locked_children(old, old_path.dentry))
2074 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2076 mnt = clone_mnt(old, old_path.dentry, 0);
2083 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2085 err = graft_tree(mnt, parent, mp);
2088 umount_tree(mnt, UMOUNT_SYNC);
2089 unlock_mount_hash();
2094 path_put(&old_path);
2098 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2101 int readonly_request = 0;
2103 if (ms_flags & MS_RDONLY)
2104 readonly_request = 1;
2105 if (readonly_request == __mnt_is_readonly(mnt))
2108 if (readonly_request)
2109 error = mnt_make_readonly(real_mount(mnt));
2111 __mnt_unmake_readonly(real_mount(mnt));
2116 * change filesystem flags. dir should be a physical root of filesystem.
2117 * If you've mounted a non-root directory somewhere and want to do remount
2118 * on it - tough luck.
2120 static int do_remount(struct path *path, int flags, int mnt_flags,
2124 struct super_block *sb = path->mnt->mnt_sb;
2125 struct mount *mnt = real_mount(path->mnt);
2127 if (!check_mnt(mnt))
2130 if (path->dentry != path->mnt->mnt_root)
2133 /* Don't allow changing of locked mnt flags.
2135 * No locks need to be held here while testing the various
2136 * MNT_LOCK flags because those flags can never be cleared
2137 * once they are set.
2139 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2140 !(mnt_flags & MNT_READONLY)) {
2143 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2144 !(mnt_flags & MNT_NODEV)) {
2145 /* Was the nodev implicitly added in mount? */
2146 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2147 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2148 mnt_flags |= MNT_NODEV;
2153 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2154 !(mnt_flags & MNT_NOSUID)) {
2157 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2158 !(mnt_flags & MNT_NOEXEC)) {
2161 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2162 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2166 err = security_sb_remount(sb, data);
2170 down_write(&sb->s_umount);
2171 if (flags & MS_BIND)
2172 err = change_mount_flags(path->mnt, flags);
2173 else if (!capable(CAP_SYS_ADMIN))
2176 err = do_remount_sb(sb, flags, data, 0);
2179 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2180 mnt->mnt.mnt_flags = mnt_flags;
2181 touch_mnt_namespace(mnt->mnt_ns);
2182 unlock_mount_hash();
2184 up_write(&sb->s_umount);
2188 static inline int tree_contains_unbindable(struct mount *mnt)
2191 for (p = mnt; p; p = next_mnt(p, mnt)) {
2192 if (IS_MNT_UNBINDABLE(p))
2198 static int do_move_mount(struct path *path, const char *old_name)
2200 struct path old_path, parent_path;
2203 struct mountpoint *mp;
2205 if (!old_name || !*old_name)
2207 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2211 mp = lock_mount(path);
2216 old = real_mount(old_path.mnt);
2217 p = real_mount(path->mnt);
2220 if (!check_mnt(p) || !check_mnt(old))
2223 if (old->mnt.mnt_flags & MNT_LOCKED)
2227 if (old_path.dentry != old_path.mnt->mnt_root)
2230 if (!mnt_has_parent(old))
2233 if (d_is_dir(path->dentry) !=
2234 d_is_dir(old_path.dentry))
2237 * Don't move a mount residing in a shared parent.
2239 if (IS_MNT_SHARED(old->mnt_parent))
2242 * Don't move a mount tree containing unbindable mounts to a destination
2243 * mount which is shared.
2245 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2248 for (; mnt_has_parent(p); p = p->mnt_parent)
2252 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2256 /* if the mount is moved, it should no longer be expire
2258 list_del_init(&old->mnt_expire);
2263 path_put(&parent_path);
2264 path_put(&old_path);
2268 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2271 const char *subtype = strchr(fstype, '.');
2280 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2282 if (!mnt->mnt_sb->s_subtype)
2288 return ERR_PTR(err);
2292 * add a mount into a namespace's mount tree
2294 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2296 struct mountpoint *mp;
2297 struct mount *parent;
2300 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2302 mp = lock_mount(path);
2306 parent = real_mount(path->mnt);
2308 if (unlikely(!check_mnt(parent))) {
2309 /* that's acceptable only for automounts done in private ns */
2310 if (!(mnt_flags & MNT_SHRINKABLE))
2312 /* ... and for those we'd better have mountpoint still alive */
2313 if (!parent->mnt_ns)
2317 /* Refuse the same filesystem on the same mount point */
2319 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2320 path->mnt->mnt_root == path->dentry)
2324 if (d_is_symlink(newmnt->mnt.mnt_root))
2327 newmnt->mnt.mnt_flags = mnt_flags;
2328 err = graft_tree(newmnt, parent, mp);
2336 * create a new mount for userspace and request it to be added into the
2339 static int do_new_mount(struct path *path, const char *fstype, int flags,
2340 int mnt_flags, const char *name, void *data)
2342 struct file_system_type *type;
2343 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2344 struct vfsmount *mnt;
2350 type = get_fs_type(fstype);
2354 if (user_ns != &init_user_ns) {
2355 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2356 put_filesystem(type);
2359 /* Only in special cases allow devices from mounts
2360 * created outside the initial user namespace.
2362 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2364 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2368 mnt = vfs_kern_mount(type, flags, name, data);
2369 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2370 !mnt->mnt_sb->s_subtype)
2371 mnt = fs_set_subtype(mnt, fstype);
2373 put_filesystem(type);
2375 return PTR_ERR(mnt);
2377 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2383 int finish_automount(struct vfsmount *m, struct path *path)
2385 struct mount *mnt = real_mount(m);
2387 /* The new mount record should have at least 2 refs to prevent it being
2388 * expired before we get a chance to add it
2390 BUG_ON(mnt_get_count(mnt) < 2);
2392 if (m->mnt_sb == path->mnt->mnt_sb &&
2393 m->mnt_root == path->dentry) {
2398 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2402 /* remove m from any expiration list it may be on */
2403 if (!list_empty(&mnt->mnt_expire)) {
2405 list_del_init(&mnt->mnt_expire);
2414 * mnt_set_expiry - Put a mount on an expiration list
2415 * @mnt: The mount to list.
2416 * @expiry_list: The list to add the mount to.
2418 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2422 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2426 EXPORT_SYMBOL(mnt_set_expiry);
2429 * process a list of expirable mountpoints with the intent of discarding any
2430 * mountpoints that aren't in use and haven't been touched since last we came
2433 void mark_mounts_for_expiry(struct list_head *mounts)
2435 struct mount *mnt, *next;
2436 LIST_HEAD(graveyard);
2438 if (list_empty(mounts))
2444 /* extract from the expiration list every vfsmount that matches the
2445 * following criteria:
2446 * - only referenced by its parent vfsmount
2447 * - still marked for expiry (marked on the last call here; marks are
2448 * cleared by mntput())
2450 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2451 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2452 propagate_mount_busy(mnt, 1))
2454 list_move(&mnt->mnt_expire, &graveyard);
2456 while (!list_empty(&graveyard)) {
2457 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2458 touch_mnt_namespace(mnt->mnt_ns);
2459 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2461 unlock_mount_hash();
2465 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2468 * Ripoff of 'select_parent()'
2470 * search the list of submounts for a given mountpoint, and move any
2471 * shrinkable submounts to the 'graveyard' list.
2473 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2475 struct mount *this_parent = parent;
2476 struct list_head *next;
2480 next = this_parent->mnt_mounts.next;
2482 while (next != &this_parent->mnt_mounts) {
2483 struct list_head *tmp = next;
2484 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2487 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2490 * Descend a level if the d_mounts list is non-empty.
2492 if (!list_empty(&mnt->mnt_mounts)) {
2497 if (!propagate_mount_busy(mnt, 1)) {
2498 list_move_tail(&mnt->mnt_expire, graveyard);
2503 * All done at this level ... ascend and resume the search
2505 if (this_parent != parent) {
2506 next = this_parent->mnt_child.next;
2507 this_parent = this_parent->mnt_parent;
2514 * process a list of expirable mountpoints with the intent of discarding any
2515 * submounts of a specific parent mountpoint
2517 * mount_lock must be held for write
2519 static void shrink_submounts(struct mount *mnt)
2521 LIST_HEAD(graveyard);
2524 /* extract submounts of 'mountpoint' from the expiration list */
2525 while (select_submounts(mnt, &graveyard)) {
2526 while (!list_empty(&graveyard)) {
2527 m = list_first_entry(&graveyard, struct mount,
2529 touch_mnt_namespace(m->mnt_ns);
2530 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2536 * Some copy_from_user() implementations do not return the exact number of
2537 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2538 * Note that this function differs from copy_from_user() in that it will oops
2539 * on bad values of `to', rather than returning a short copy.
2541 static long exact_copy_from_user(void *to, const void __user * from,
2545 const char __user *f = from;
2548 if (!access_ok(VERIFY_READ, from, n))
2552 if (__get_user(c, f)) {
2563 int copy_mount_options(const void __user * data, unsigned long *where)
2573 if (!(page = __get_free_page(GFP_KERNEL)))
2576 /* We only care that *some* data at the address the user
2577 * gave us is valid. Just in case, we'll zero
2578 * the remainder of the page.
2580 /* copy_from_user cannot cross TASK_SIZE ! */
2581 size = TASK_SIZE - (unsigned long)data;
2582 if (size > PAGE_SIZE)
2585 i = size - exact_copy_from_user((void *)page, data, size);
2591 memset((char *)page + i, 0, PAGE_SIZE - i);
2596 char *copy_mount_string(const void __user *data)
2598 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2602 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2603 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2605 * data is a (void *) that can point to any structure up to
2606 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2607 * information (or be NULL).
2609 * Pre-0.97 versions of mount() didn't have a flags word.
2610 * When the flags word was introduced its top half was required
2611 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2612 * Therefore, if this magic number is present, it carries no information
2613 * and must be discarded.
2615 long do_mount(const char *dev_name, const char __user *dir_name,
2616 const char *type_page, unsigned long flags, void *data_page)
2623 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2624 flags &= ~MS_MGC_MSK;
2626 /* Basic sanity checks */
2628 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2630 /* ... and get the mountpoint */
2631 retval = user_path(dir_name, &path);
2635 retval = security_sb_mount(dev_name, &path,
2636 type_page, flags, data_page);
2637 if (!retval && !may_mount())
2642 /* Default to relatime unless overriden */
2643 if (!(flags & MS_NOATIME))
2644 mnt_flags |= MNT_RELATIME;
2646 /* Separate the per-mountpoint flags */
2647 if (flags & MS_NOSUID)
2648 mnt_flags |= MNT_NOSUID;
2649 if (flags & MS_NODEV)
2650 mnt_flags |= MNT_NODEV;
2651 if (flags & MS_NOEXEC)
2652 mnt_flags |= MNT_NOEXEC;
2653 if (flags & MS_NOATIME)
2654 mnt_flags |= MNT_NOATIME;
2655 if (flags & MS_NODIRATIME)
2656 mnt_flags |= MNT_NODIRATIME;
2657 if (flags & MS_STRICTATIME)
2658 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2659 if (flags & MS_RDONLY)
2660 mnt_flags |= MNT_READONLY;
2662 /* The default atime for remount is preservation */
2663 if ((flags & MS_REMOUNT) &&
2664 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2665 MS_STRICTATIME)) == 0)) {
2666 mnt_flags &= ~MNT_ATIME_MASK;
2667 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2670 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2671 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2674 if (flags & MS_REMOUNT)
2675 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2677 else if (flags & MS_BIND)
2678 retval = do_loopback(&path, dev_name, flags & MS_REC);
2679 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2680 retval = do_change_type(&path, flags);
2681 else if (flags & MS_MOVE)
2682 retval = do_move_mount(&path, dev_name);
2684 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2685 dev_name, data_page);
2691 static void free_mnt_ns(struct mnt_namespace *ns)
2693 ns_free_inum(&ns->ns);
2694 put_user_ns(ns->user_ns);
2699 * Assign a sequence number so we can detect when we attempt to bind
2700 * mount a reference to an older mount namespace into the current
2701 * mount namespace, preventing reference counting loops. A 64bit
2702 * number incrementing at 10Ghz will take 12,427 years to wrap which
2703 * is effectively never, so we can ignore the possibility.
2705 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2707 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2709 struct mnt_namespace *new_ns;
2712 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2714 return ERR_PTR(-ENOMEM);
2715 ret = ns_alloc_inum(&new_ns->ns);
2718 return ERR_PTR(ret);
2720 new_ns->ns.ops = &mntns_operations;
2721 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2722 atomic_set(&new_ns->count, 1);
2723 new_ns->root = NULL;
2724 INIT_LIST_HEAD(&new_ns->list);
2725 init_waitqueue_head(&new_ns->poll);
2727 new_ns->user_ns = get_user_ns(user_ns);
2731 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2732 struct user_namespace *user_ns, struct fs_struct *new_fs)
2734 struct mnt_namespace *new_ns;
2735 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2736 struct mount *p, *q;
2743 if (likely(!(flags & CLONE_NEWNS))) {
2750 new_ns = alloc_mnt_ns(user_ns);
2755 /* First pass: copy the tree topology */
2756 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2757 if (user_ns != ns->user_ns)
2758 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2759 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2762 free_mnt_ns(new_ns);
2763 return ERR_CAST(new);
2766 list_add_tail(&new_ns->list, &new->mnt_list);
2769 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2770 * as belonging to new namespace. We have already acquired a private
2771 * fs_struct, so tsk->fs->lock is not needed.
2778 if (&p->mnt == new_fs->root.mnt) {
2779 new_fs->root.mnt = mntget(&q->mnt);
2782 if (&p->mnt == new_fs->pwd.mnt) {
2783 new_fs->pwd.mnt = mntget(&q->mnt);
2787 p = next_mnt(p, old);
2788 q = next_mnt(q, new);
2791 while (p->mnt.mnt_root != q->mnt.mnt_root)
2792 p = next_mnt(p, old);
2805 * create_mnt_ns - creates a private namespace and adds a root filesystem
2806 * @mnt: pointer to the new root filesystem mountpoint
2808 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2810 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2811 if (!IS_ERR(new_ns)) {
2812 struct mount *mnt = real_mount(m);
2813 mnt->mnt_ns = new_ns;
2815 list_add(&mnt->mnt_list, &new_ns->list);
2822 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2824 struct mnt_namespace *ns;
2825 struct super_block *s;
2829 ns = create_mnt_ns(mnt);
2831 return ERR_CAST(ns);
2833 err = vfs_path_lookup(mnt->mnt_root, mnt,
2834 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2839 return ERR_PTR(err);
2841 /* trade a vfsmount reference for active sb one */
2842 s = path.mnt->mnt_sb;
2843 atomic_inc(&s->s_active);
2845 /* lock the sucker */
2846 down_write(&s->s_umount);
2847 /* ... and return the root of (sub)tree on it */
2850 EXPORT_SYMBOL(mount_subtree);
2852 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2853 char __user *, type, unsigned long, flags, void __user *, data)
2858 unsigned long data_page;
2860 kernel_type = copy_mount_string(type);
2861 ret = PTR_ERR(kernel_type);
2862 if (IS_ERR(kernel_type))
2865 kernel_dev = copy_mount_string(dev_name);
2866 ret = PTR_ERR(kernel_dev);
2867 if (IS_ERR(kernel_dev))
2870 ret = copy_mount_options(data, &data_page);
2874 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2875 (void *) data_page);
2877 free_page(data_page);
2887 * Return true if path is reachable from root
2889 * namespace_sem or mount_lock is held
2891 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2892 const struct path *root)
2894 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2895 dentry = mnt->mnt_mountpoint;
2896 mnt = mnt->mnt_parent;
2898 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2901 int path_is_under(struct path *path1, struct path *path2)
2904 read_seqlock_excl(&mount_lock);
2905 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2906 read_sequnlock_excl(&mount_lock);
2909 EXPORT_SYMBOL(path_is_under);
2912 * pivot_root Semantics:
2913 * Moves the root file system of the current process to the directory put_old,
2914 * makes new_root as the new root file system of the current process, and sets
2915 * root/cwd of all processes which had them on the current root to new_root.
2918 * The new_root and put_old must be directories, and must not be on the
2919 * same file system as the current process root. The put_old must be
2920 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2921 * pointed to by put_old must yield the same directory as new_root. No other
2922 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2924 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2925 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2926 * in this situation.
2929 * - we don't move root/cwd if they are not at the root (reason: if something
2930 * cared enough to change them, it's probably wrong to force them elsewhere)
2931 * - it's okay to pick a root that isn't the root of a file system, e.g.
2932 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2933 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2936 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2937 const char __user *, put_old)
2939 struct path new, old, parent_path, root_parent, root;
2940 struct mount *new_mnt, *root_mnt, *old_mnt;
2941 struct mountpoint *old_mp, *root_mp;
2947 error = user_path_dir(new_root, &new);
2951 error = user_path_dir(put_old, &old);
2955 error = security_sb_pivotroot(&old, &new);
2959 get_fs_root(current->fs, &root);
2960 old_mp = lock_mount(&old);
2961 error = PTR_ERR(old_mp);
2966 new_mnt = real_mount(new.mnt);
2967 root_mnt = real_mount(root.mnt);
2968 old_mnt = real_mount(old.mnt);
2969 if (IS_MNT_SHARED(old_mnt) ||
2970 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2971 IS_MNT_SHARED(root_mnt->mnt_parent))
2973 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2975 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2978 if (d_unlinked(new.dentry))
2981 if (new_mnt == root_mnt || old_mnt == root_mnt)
2982 goto out4; /* loop, on the same file system */
2984 if (root.mnt->mnt_root != root.dentry)
2985 goto out4; /* not a mountpoint */
2986 if (!mnt_has_parent(root_mnt))
2987 goto out4; /* not attached */
2988 root_mp = root_mnt->mnt_mp;
2989 if (new.mnt->mnt_root != new.dentry)
2990 goto out4; /* not a mountpoint */
2991 if (!mnt_has_parent(new_mnt))
2992 goto out4; /* not attached */
2993 /* make sure we can reach put_old from new_root */
2994 if (!is_path_reachable(old_mnt, old.dentry, &new))
2996 /* make certain new is below the root */
2997 if (!is_path_reachable(new_mnt, new.dentry, &root))
2999 root_mp->m_count++; /* pin it so it won't go away */
3001 detach_mnt(new_mnt, &parent_path);
3002 detach_mnt(root_mnt, &root_parent);
3003 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3004 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3005 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3007 /* mount old root on put_old */
3008 attach_mnt(root_mnt, old_mnt, old_mp);
3009 /* mount new_root on / */
3010 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3011 touch_mnt_namespace(current->nsproxy->mnt_ns);
3012 /* A moved mount should not expire automatically */
3013 list_del_init(&new_mnt->mnt_expire);
3014 unlock_mount_hash();
3015 chroot_fs_refs(&root, &new);
3016 put_mountpoint(root_mp);
3019 unlock_mount(old_mp);
3021 path_put(&root_parent);
3022 path_put(&parent_path);
3034 static void __init init_mount_tree(void)
3036 struct vfsmount *mnt;
3037 struct mnt_namespace *ns;
3039 struct file_system_type *type;
3041 type = get_fs_type("rootfs");
3043 panic("Can't find rootfs type");
3044 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3045 put_filesystem(type);
3047 panic("Can't create rootfs");
3049 ns = create_mnt_ns(mnt);
3051 panic("Can't allocate initial namespace");
3053 init_task.nsproxy->mnt_ns = ns;
3057 root.dentry = mnt->mnt_root;
3058 mnt->mnt_flags |= MNT_LOCKED;
3060 set_fs_pwd(current->fs, &root);
3061 set_fs_root(current->fs, &root);
3064 void __init mnt_init(void)
3069 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3070 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3072 mount_hashtable = alloc_large_system_hash("Mount-cache",
3073 sizeof(struct hlist_head),
3076 &m_hash_shift, &m_hash_mask, 0, 0);
3077 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3078 sizeof(struct hlist_head),
3081 &mp_hash_shift, &mp_hash_mask, 0, 0);
3083 if (!mount_hashtable || !mountpoint_hashtable)
3084 panic("Failed to allocate mount hash table\n");
3086 for (u = 0; u <= m_hash_mask; u++)
3087 INIT_HLIST_HEAD(&mount_hashtable[u]);
3088 for (u = 0; u <= mp_hash_mask; u++)
3089 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3095 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3097 fs_kobj = kobject_create_and_add("fs", NULL);
3099 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3104 void put_mnt_ns(struct mnt_namespace *ns)
3106 if (!atomic_dec_and_test(&ns->count))
3108 drop_collected_mounts(&ns->root->mnt);
3112 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3114 struct vfsmount *mnt;
3115 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3118 * it is a longterm mount, don't release mnt until
3119 * we unmount before file sys is unregistered
3121 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3125 EXPORT_SYMBOL_GPL(kern_mount_data);
3127 void kern_unmount(struct vfsmount *mnt)
3129 /* release long term mount so mount point can be released */
3130 if (!IS_ERR_OR_NULL(mnt)) {
3131 real_mount(mnt)->mnt_ns = NULL;
3132 synchronize_rcu(); /* yecchhh... */
3136 EXPORT_SYMBOL(kern_unmount);
3138 bool our_mnt(struct vfsmount *mnt)
3140 return check_mnt(real_mount(mnt));
3143 bool current_chrooted(void)
3145 /* Does the current process have a non-standard root */
3146 struct path ns_root;
3147 struct path fs_root;
3150 /* Find the namespace root */
3151 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3152 ns_root.dentry = ns_root.mnt->mnt_root;
3154 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3157 get_fs_root(current->fs, &fs_root);
3159 chrooted = !path_equal(&fs_root, &ns_root);
3167 bool fs_fully_visible(struct file_system_type *type)
3169 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3171 bool visible = false;
3176 down_read(&namespace_sem);
3177 list_for_each_entry(mnt, &ns->list, mnt_list) {
3178 struct mount *child;
3179 if (mnt->mnt.mnt_sb->s_type != type)
3182 /* This mount is not fully visible if there are any child mounts
3183 * that cover anything except for empty directories.
3185 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3186 struct inode *inode = child->mnt_mountpoint->d_inode;
3187 if (!S_ISDIR(inode->i_mode))
3189 if (inode->i_nlink > 2)
3197 up_read(&namespace_sem);
3201 static struct ns_common *mntns_get(struct task_struct *task)
3203 struct ns_common *ns = NULL;
3204 struct nsproxy *nsproxy;
3207 nsproxy = task->nsproxy;
3209 ns = &nsproxy->mnt_ns->ns;
3210 get_mnt_ns(to_mnt_ns(ns));
3217 static void mntns_put(struct ns_common *ns)
3219 put_mnt_ns(to_mnt_ns(ns));
3222 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3224 struct fs_struct *fs = current->fs;
3225 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3228 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3229 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3230 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3237 put_mnt_ns(nsproxy->mnt_ns);
3238 nsproxy->mnt_ns = mnt_ns;
3241 root.mnt = &mnt_ns->root->mnt;
3242 root.dentry = mnt_ns->root->mnt.mnt_root;
3244 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3247 /* Update the pwd and root */
3248 set_fs_pwd(fs, &root);
3249 set_fs_root(fs, &root);
3255 const struct proc_ns_operations mntns_operations = {
3257 .type = CLONE_NEWNS,
3260 .install = mntns_install,