]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/nfs/direct.c
NFS: make iocb available everywhere in direct read path
[mv-sheeva.git] / fs / nfs / direct.c
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts) 
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets 
13  * considerably larger than the client's memory do not always benefit 
14  * from a local cache.  A streaming video server, for instance, has no 
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001  Initial implementation for 2.4  --cel
33  * 08 Jul 2002  Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003  Port to 2.5 APIs  --cel
35  * 31 Mar 2004  Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004  Parallel async reads  --cel
37  *
38  */
39
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56
57 #include "iostat.h"
58
59 #define NFSDBG_FACILITY         NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE       (4096UL << PAGE_SHIFT)
61
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69         struct kref             kref;           /* release manager */
70         struct list_head        list;           /* nfs_read_data structs */
71         struct file *           filp;           /* file descriptor */
72         struct kiocb *          iocb;           /* controlling i/o request */
73         wait_queue_head_t       wait;           /* wait for i/o completion */
74         struct inode *          inode;          /* target file of I/O */
75         struct page **          pages;          /* pages in our buffer */
76         unsigned int            npages;         /* count of pages */
77         atomic_t                complete,       /* i/os we're waiting for */
78                                 count,          /* bytes actually processed */
79                                 error;          /* any reported error */
80 };
81
82
83 /**
84  * nfs_direct_IO - NFS address space operation for direct I/O
85  * @rw: direction (read or write)
86  * @iocb: target I/O control block
87  * @iov: array of vectors that define I/O buffer
88  * @pos: offset in file to begin the operation
89  * @nr_segs: size of iovec array
90  *
91  * The presence of this routine in the address space ops vector means
92  * the NFS client supports direct I/O.  However, we shunt off direct
93  * read and write requests before the VFS gets them, so this method
94  * should never be called.
95  */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98         struct dentry *dentry = iocb->ki_filp->f_dentry;
99
100         dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101                         dentry->d_name.name, (long long) pos, nr_segs);
102
103         return -EINVAL;
104 }
105
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108         int result = -ENOMEM;
109         unsigned long page_count;
110         size_t array_size;
111
112         /* set an arbitrary limit to prevent type overflow */
113         /* XXX: this can probably be as large as INT_MAX */
114         if (size > MAX_DIRECTIO_SIZE) {
115                 *pages = NULL;
116                 return -EFBIG;
117         }
118
119         page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120         page_count -= user_addr >> PAGE_SHIFT;
121
122         array_size = (page_count * sizeof(struct page *));
123         *pages = kmalloc(array_size, GFP_KERNEL);
124         if (*pages) {
125                 down_read(&current->mm->mmap_sem);
126                 result = get_user_pages(current, current->mm, user_addr,
127                                         page_count, (rw == READ), 0,
128                                         *pages, NULL);
129                 up_read(&current->mm->mmap_sem);
130                 /*
131                  * If we got fewer pages than expected from get_user_pages(),
132                  * the user buffer runs off the end of a mapping; return EFAULT.
133                  */
134                 if (result >= 0 && result < page_count) {
135                         nfs_free_user_pages(*pages, result, 0);
136                         *pages = NULL;
137                         result = -EFAULT;
138                 }
139         }
140         return result;
141 }
142
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145         int i;
146         for (i = 0; i < npages; i++) {
147                 struct page *page = pages[i];
148                 if (do_dirty && !PageCompound(page))
149                         set_page_dirty_lock(page);
150                 page_cache_release(page);
151         }
152         kfree(pages);
153 }
154
155 static void nfs_direct_req_release(struct kref *kref)
156 {
157         struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
158         kmem_cache_free(nfs_direct_cachep, dreq);
159 }
160
161 /*
162  * Note we also set the number of requests we have in the dreq when we are
163  * done.  This prevents races with I/O completion so we will always wait
164  * until all requests have been dispatched and completed.
165  */
166 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
167 {
168         struct list_head *list;
169         struct nfs_direct_req *dreq;
170         unsigned int reads = 0;
171         unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
172
173         dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
174         if (!dreq)
175                 return NULL;
176
177         kref_init(&dreq->kref);
178         init_waitqueue_head(&dreq->wait);
179         INIT_LIST_HEAD(&dreq->list);
180         atomic_set(&dreq->count, 0);
181         atomic_set(&dreq->error, 0);
182
183         list = &dreq->list;
184         for(;;) {
185                 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
186
187                 if (unlikely(!data)) {
188                         while (!list_empty(list)) {
189                                 data = list_entry(list->next,
190                                                   struct nfs_read_data, pages);
191                                 list_del(&data->pages);
192                                 nfs_readdata_free(data);
193                         }
194                         kref_put(&dreq->kref, nfs_direct_req_release);
195                         return NULL;
196                 }
197
198                 INIT_LIST_HEAD(&data->pages);
199                 list_add(&data->pages, list);
200
201                 data->req = (struct nfs_page *) dreq;
202                 reads++;
203                 if (nbytes <= rsize)
204                         break;
205                 nbytes -= rsize;
206         }
207         kref_get(&dreq->kref);
208         atomic_set(&dreq->complete, reads);
209         return dreq;
210 }
211
212 /*
213  * We must hold a reference to all the pages in this direct read request
214  * until the RPCs complete.  This could be long *after* we are woken up in
215  * nfs_direct_read_wait (for instance, if someone hits ^C on a slow server).
216  */
217 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
218 {
219         struct nfs_read_data *data = calldata;
220         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
221
222         if (nfs_readpage_result(task, data) != 0)
223                 return;
224         if (likely(task->tk_status >= 0))
225                 atomic_add(data->res.count, &dreq->count);
226         else
227                 atomic_set(&dreq->error, task->tk_status);
228
229         if (unlikely(atomic_dec_and_test(&dreq->complete))) {
230                 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
231                 wake_up(&dreq->wait);
232                 kref_put(&dreq->kref, nfs_direct_req_release);
233         }
234 }
235
236 static const struct rpc_call_ops nfs_read_direct_ops = {
237         .rpc_call_done = nfs_direct_read_result,
238         .rpc_release = nfs_readdata_release,
239 };
240
241 /*
242  * For each nfs_read_data struct that was allocated on the list, dispatch
243  * an NFS READ operation
244  */
245 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
246 {
247         struct file *file = dreq->filp;
248         struct inode *inode = file->f_mapping->host;
249         struct nfs_open_context *ctx = (struct nfs_open_context *)
250                                                         file->private_data;
251         struct list_head *list = &dreq->list;
252         struct page **pages = dreq->pages;
253         size_t rsize = NFS_SERVER(inode)->rsize;
254         unsigned int curpage, pgbase;
255
256         curpage = 0;
257         pgbase = user_addr & ~PAGE_MASK;
258         do {
259                 struct nfs_read_data *data;
260                 size_t bytes;
261
262                 bytes = rsize;
263                 if (count < rsize)
264                         bytes = count;
265
266                 data = list_entry(list->next, struct nfs_read_data, pages);
267                 list_del_init(&data->pages);
268
269                 data->inode = inode;
270                 data->cred = ctx->cred;
271                 data->args.fh = NFS_FH(inode);
272                 data->args.context = ctx;
273                 data->args.offset = file_offset;
274                 data->args.pgbase = pgbase;
275                 data->args.pages = &pages[curpage];
276                 data->args.count = bytes;
277                 data->res.fattr = &data->fattr;
278                 data->res.eof = 0;
279                 data->res.count = bytes;
280
281                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
282                                 &nfs_read_direct_ops, data);
283                 NFS_PROTO(inode)->read_setup(data);
284
285                 data->task.tk_cookie = (unsigned long) inode;
286
287                 lock_kernel();
288                 rpc_execute(&data->task);
289                 unlock_kernel();
290
291                 dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
292                                 data->task.tk_pid,
293                                 inode->i_sb->s_id,
294                                 (long long)NFS_FILEID(inode),
295                                 bytes,
296                                 (unsigned long long)data->args.offset);
297
298                 file_offset += bytes;
299                 pgbase += bytes;
300                 curpage += pgbase >> PAGE_SHIFT;
301                 pgbase &= ~PAGE_MASK;
302
303                 count -= bytes;
304         } while (count != 0);
305 }
306
307 /*
308  * Collects and returns the final error value/byte-count.
309  */
310 static ssize_t nfs_direct_read_wait(struct nfs_direct_req *dreq, int intr)
311 {
312         int result = 0;
313
314         if (intr) {
315                 result = wait_event_interruptible(dreq->wait,
316                                         (atomic_read(&dreq->complete) == 0));
317         } else {
318                 wait_event(dreq->wait, (atomic_read(&dreq->complete) == 0));
319         }
320
321         if (!result)
322                 result = atomic_read(&dreq->error);
323         if (!result)
324                 result = atomic_read(&dreq->count);
325
326         kref_put(&dreq->kref, nfs_direct_req_release);
327         return (ssize_t) result;
328 }
329
330 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
331 {
332         ssize_t result;
333         sigset_t oldset;
334         struct inode *inode = iocb->ki_filp->f_mapping->host;
335         struct rpc_clnt *clnt = NFS_CLIENT(inode);
336         struct nfs_direct_req *dreq;
337
338         dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
339         if (!dreq)
340                 return -ENOMEM;
341
342         dreq->pages = pages;
343         dreq->npages = nr_pages;
344         dreq->inode = inode;
345         dreq->filp = iocb->ki_filp;
346
347         nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
348         rpc_clnt_sigmask(clnt, &oldset);
349         nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
350         result = nfs_direct_read_wait(dreq, clnt->cl_intr);
351         rpc_clnt_sigunmask(clnt, &oldset);
352
353         return result;
354 }
355
356 static ssize_t nfs_direct_write_seg(struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
357 {
358         const unsigned int wsize = NFS_SERVER(inode)->wsize;
359         size_t request;
360         int curpage, need_commit;
361         ssize_t result, tot_bytes;
362         struct nfs_writeverf first_verf;
363         struct nfs_write_data *wdata;
364
365         wdata = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
366         if (!wdata)
367                 return -ENOMEM;
368
369         wdata->inode = inode;
370         wdata->cred = ctx->cred;
371         wdata->args.fh = NFS_FH(inode);
372         wdata->args.context = ctx;
373         wdata->args.stable = NFS_UNSTABLE;
374         if (IS_SYNC(inode) || NFS_PROTO(inode)->version == 2 || count <= wsize)
375                 wdata->args.stable = NFS_FILE_SYNC;
376         wdata->res.fattr = &wdata->fattr;
377         wdata->res.verf = &wdata->verf;
378
379         nfs_begin_data_update(inode);
380 retry:
381         need_commit = 0;
382         tot_bytes = 0;
383         curpage = 0;
384         request = count;
385         wdata->args.pgbase = user_addr & ~PAGE_MASK;
386         wdata->args.offset = file_offset;
387         do {
388                 wdata->args.count = request;
389                 if (wdata->args.count > wsize)
390                         wdata->args.count = wsize;
391                 wdata->args.pages = &pages[curpage];
392
393                 dprintk("NFS: direct write: c=%u o=%Ld ua=%lu, pb=%u, cp=%u\n",
394                         wdata->args.count, (long long) wdata->args.offset,
395                         user_addr + tot_bytes, wdata->args.pgbase, curpage);
396
397                 lock_kernel();
398                 result = NFS_PROTO(inode)->write(wdata);
399                 unlock_kernel();
400
401                 if (result <= 0) {
402                         if (tot_bytes > 0)
403                                 break;
404                         goto out;
405                 }
406
407                 if (tot_bytes == 0)
408                         memcpy(&first_verf.verifier, &wdata->verf.verifier,
409                                                 sizeof(first_verf.verifier));
410                 if (wdata->verf.committed != NFS_FILE_SYNC) {
411                         need_commit = 1;
412                         if (memcmp(&first_verf.verifier, &wdata->verf.verifier,
413                                         sizeof(first_verf.verifier)))
414                                 goto sync_retry;
415                 }
416
417                 tot_bytes += result;
418
419                 /* in case of a short write: stop now, let the app recover */
420                 if (result < wdata->args.count)
421                         break;
422
423                 wdata->args.offset += result;
424                 wdata->args.pgbase += result;
425                 curpage += wdata->args.pgbase >> PAGE_SHIFT;
426                 wdata->args.pgbase &= ~PAGE_MASK;
427                 request -= result;
428         } while (request != 0);
429
430         /*
431          * Commit data written so far, even in the event of an error
432          */
433         if (need_commit) {
434                 wdata->args.count = tot_bytes;
435                 wdata->args.offset = file_offset;
436
437                 lock_kernel();
438                 result = NFS_PROTO(inode)->commit(wdata);
439                 unlock_kernel();
440
441                 if (result < 0 || memcmp(&first_verf.verifier,
442                                          &wdata->verf.verifier,
443                                          sizeof(first_verf.verifier)) != 0)
444                         goto sync_retry;
445         }
446         result = tot_bytes;
447
448 out:
449         nfs_end_data_update(inode);
450         nfs_writedata_free(wdata);
451         return result;
452
453 sync_retry:
454         wdata->args.stable = NFS_FILE_SYNC;
455         goto retry;
456 }
457
458 /*
459  * Upon return, generic_file_direct_IO invalidates any cached pages
460  * that non-direct readers might access, so they will pick up these
461  * writes immediately.
462  */
463 static ssize_t nfs_direct_write(struct inode *inode, struct nfs_open_context *ctx, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs)
464 {
465         ssize_t tot_bytes = 0;
466         unsigned long seg = 0;
467
468         while ((seg < nr_segs) && (tot_bytes >= 0)) {
469                 ssize_t result;
470                 int page_count;
471                 struct page **pages;
472                 const struct iovec *vec = &iov[seg++];
473                 unsigned long user_addr = (unsigned long) vec->iov_base;
474                 size_t size = vec->iov_len;
475
476                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
477                 if (page_count < 0) {
478                         nfs_free_user_pages(pages, 0, 0);
479                         if (tot_bytes > 0)
480                                 break;
481                         return page_count;
482                 }
483
484                 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, size);
485                 result = nfs_direct_write_seg(inode, ctx, user_addr, size,
486                                 file_offset, pages, page_count);
487                 nfs_free_user_pages(pages, page_count, 0);
488
489                 if (result <= 0) {
490                         if (tot_bytes > 0)
491                                 break;
492                         return result;
493                 }
494                 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
495                 tot_bytes += result;
496                 file_offset += result;
497                 if (result < size)
498                         break;
499         }
500         return tot_bytes;
501 }
502
503 /**
504  * nfs_file_direct_read - file direct read operation for NFS files
505  * @iocb: target I/O control block
506  * @buf: user's buffer into which to read data
507  * count: number of bytes to read
508  * pos: byte offset in file where reading starts
509  *
510  * We use this function for direct reads instead of calling
511  * generic_file_aio_read() in order to avoid gfar's check to see if
512  * the request starts before the end of the file.  For that check
513  * to work, we must generate a GETATTR before each direct read, and
514  * even then there is a window between the GETATTR and the subsequent
515  * READ where the file size could change.  So our preference is simply
516  * to do all reads the application wants, and the server will take
517  * care of managing the end of file boundary.
518  * 
519  * This function also eliminates unnecessarily updating the file's
520  * atime locally, as the NFS server sets the file's atime, and this
521  * client must read the updated atime from the server back into its
522  * cache.
523  */
524 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
525 {
526         ssize_t retval = -EINVAL;
527         int page_count;
528         struct page **pages;
529         struct file *file = iocb->ki_filp;
530         struct address_space *mapping = file->f_mapping;
531
532         dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
533                 file->f_dentry->d_parent->d_name.name,
534                 file->f_dentry->d_name.name,
535                 (unsigned long) count, (long long) pos);
536
537         if (!is_sync_kiocb(iocb))
538                 goto out;
539         if (count < 0)
540                 goto out;
541         retval = -EFAULT;
542         if (!access_ok(VERIFY_WRITE, buf, count))
543                 goto out;
544         retval = 0;
545         if (!count)
546                 goto out;
547
548         retval = nfs_sync_mapping(mapping);
549         if (retval)
550                 goto out;
551
552         page_count = nfs_get_user_pages(READ, (unsigned long) buf,
553                                                 count, &pages);
554         if (page_count < 0) {
555                 nfs_free_user_pages(pages, 0, 0);
556                 retval = page_count;
557                 goto out;
558         }
559
560         retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
561                                                 pages, page_count);
562         if (retval > 0)
563                 iocb->ki_pos = pos + retval;
564
565 out:
566         return retval;
567 }
568
569 /**
570  * nfs_file_direct_write - file direct write operation for NFS files
571  * @iocb: target I/O control block
572  * @buf: user's buffer from which to write data
573  * count: number of bytes to write
574  * pos: byte offset in file where writing starts
575  *
576  * We use this function for direct writes instead of calling
577  * generic_file_aio_write() in order to avoid taking the inode
578  * semaphore and updating the i_size.  The NFS server will set
579  * the new i_size and this client must read the updated size
580  * back into its cache.  We let the server do generic write
581  * parameter checking and report problems.
582  *
583  * We also avoid an unnecessary invocation of generic_osync_inode(),
584  * as it is fairly meaningless to sync the metadata of an NFS file.
585  *
586  * We eliminate local atime updates, see direct read above.
587  *
588  * We avoid unnecessary page cache invalidations for normal cached
589  * readers of this file.
590  *
591  * Note that O_APPEND is not supported for NFS direct writes, as there
592  * is no atomic O_APPEND write facility in the NFS protocol.
593  */
594 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
595 {
596         ssize_t retval;
597         struct file *file = iocb->ki_filp;
598         struct nfs_open_context *ctx =
599                         (struct nfs_open_context *) file->private_data;
600         struct address_space *mapping = file->f_mapping;
601         struct inode *inode = mapping->host;
602         struct iovec iov = {
603                 .iov_base = (char __user *)buf,
604         };
605
606         dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
607                 file->f_dentry->d_parent->d_name.name,
608                 file->f_dentry->d_name.name,
609                 (unsigned long) count, (long long) pos);
610
611         retval = -EINVAL;
612         if (!is_sync_kiocb(iocb))
613                 goto out;
614
615         retval = generic_write_checks(file, &pos, &count, 0);
616         if (retval)
617                 goto out;
618
619         retval = -EINVAL;
620         if ((ssize_t) count < 0)
621                 goto out;
622         retval = 0;
623         if (!count)
624                 goto out;
625         iov.iov_len = count,
626
627         retval = -EFAULT;
628         if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
629                 goto out;
630
631         retval = nfs_sync_mapping(mapping);
632         if (retval)
633                 goto out;
634
635         retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
636         if (mapping->nrpages)
637                 invalidate_inode_pages2(mapping);
638         if (retval > 0)
639                 iocb->ki_pos = pos + retval;
640
641 out:
642         return retval;
643 }
644
645 int nfs_init_directcache(void)
646 {
647         nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
648                                                 sizeof(struct nfs_direct_req),
649                                                 0, SLAB_RECLAIM_ACCOUNT,
650                                                 NULL, NULL);
651         if (nfs_direct_cachep == NULL)
652                 return -ENOMEM;
653
654         return 0;
655 }
656
657 void nfs_destroy_directcache(void)
658 {
659         if (kmem_cache_destroy(nfs_direct_cachep))
660                 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
661 }