4 * Copyright (C) 1992 Rick Sladkey
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 * nfs regular file handling functions
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
33 #include <asm/uaccess.h>
35 #include "delegation.h"
42 #define NFSDBG_FACILITY NFSDBG_FILE
44 static const struct vm_operations_struct nfs_file_vm_ops;
46 /* Hack for future NFS swap support */
48 # define IS_SWAPFILE(inode) (0)
51 int nfs_check_flags(int flags)
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
64 nfs_file_open(struct inode *inode, struct file *filp)
68 dprintk("NFS: open file(%pD2)\n", filp);
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
75 res = nfs_open(inode, filp);
80 nfs_file_release(struct inode *inode, struct file *filp)
82 dprintk("NFS: release(%pD2)\n", filp);
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 return nfs_release(inode, filp);
87 EXPORT_SYMBOL_GPL(nfs_file_release);
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 struct nfs_server *server = NFS_SERVER(inode);
103 struct nfs_inode *nfsi = NFS_I(inode);
105 if (nfs_have_delegated_attributes(inode))
108 if (filp->f_flags & O_DIRECT)
110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 if (nfs_attribute_timeout(inode))
117 return __nfs_revalidate_inode(server, inode);
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 filp, offset, whence);
126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 * the cached file length
129 if (whence != SEEK_SET && whence != SEEK_CUR) {
130 struct inode *inode = filp->f_mapping->host;
132 int retval = nfs_revalidate_file_size(inode, filp);
134 return (loff_t)retval;
137 return generic_file_llseek(filp, offset, whence);
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
142 * Flush all dirty pages, and check for write errors.
145 nfs_file_flush(struct file *file, fl_owner_t id)
147 struct inode *inode = file_inode(file);
149 dprintk("NFS: flush(%pD2)\n", file);
151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 if ((file->f_mode & FMODE_WRITE) == 0)
156 * If we're holding a write delegation, then just start the i/o
157 * but don't wait for completion (or send a commit).
159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 return filemap_fdatawrite(file->f_mapping);
162 /* Flush writes to the server and return any errors */
163 return vfs_fsync(file, 0);
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
168 nfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
170 struct inode *inode = file_inode(iocb->ki_filp);
173 if (iocb->ki_filp->f_flags & O_DIRECT)
174 return nfs_file_direct_read(iocb, iter, pos);
176 dprintk("NFS: read_iter(%pD2, %lu@%lu)\n",
178 (unsigned long) iov_iter_count(iter), (unsigned long) pos);
180 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
182 result = generic_file_read_iter(iocb, iter, pos);
184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
188 EXPORT_SYMBOL_GPL(nfs_file_read_iter);
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 struct pipe_inode_info *pipe, size_t count,
195 struct inode *inode = file_inode(filp);
198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 filp, (unsigned long) count, (unsigned long long) *ppos);
201 res = nfs_revalidate_mapping(inode, filp->f_mapping);
203 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214 struct inode *inode = file_inode(file);
217 dprintk("NFS: mmap(%pD2)\n", file);
219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 * so we call that before revalidating the mapping
222 status = generic_file_mmap(file, vma);
224 vma->vm_ops = &nfs_file_vm_ops;
225 status = nfs_revalidate_mapping(inode, file->f_mapping);
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
232 * Flush any dirty pages for this process, and check for write errors.
233 * The return status from this call provides a reliable indication of
234 * whether any write errors occurred for this process.
236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237 * disk, but it retrieves and clears ctx->error after synching, despite
238 * the two being set at the same time in nfs_context_set_write_error().
239 * This is because the former is used to notify the _next_ call to
240 * nfs_file_write_iter() that a write error occurred, and hence cause it to
241 * fall back to doing a synchronous write.
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246 struct nfs_open_context *ctx = nfs_file_open_context(file);
247 struct inode *inode = file_inode(file);
248 int have_error, do_resend, status;
251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 status = nfs_commit_inode(inode, FLUSH_SYNC);
257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259 ret = xchg(&ctx->error, 0);
267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
279 struct inode *inode = file_inode(file);
281 trace_nfs_fsync_enter(inode);
284 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
287 mutex_lock(&inode->i_mutex);
288 ret = nfs_file_fsync_commit(file, start, end, datasync);
289 mutex_unlock(&inode->i_mutex);
291 * If nfs_file_fsync_commit detected a server reboot, then
292 * resend all dirty pages that might have been covered by
293 * the NFS_CONTEXT_RESEND_WRITES flag
297 } while (ret == -EAGAIN);
299 trace_nfs_fsync_exit(inode, ret);
304 * Decide whether a read/modify/write cycle may be more efficient
305 * then a modify/write/read cycle when writing to a page in the
308 * The modify/write/read cycle may occur if a page is read before
309 * being completely filled by the writer. In this situation, the
310 * page must be completely written to stable storage on the server
311 * before it can be refilled by reading in the page from the server.
312 * This can lead to expensive, small, FILE_SYNC mode writes being
315 * It may be more efficient to read the page first if the file is
316 * open for reading in addition to writing, the page is not marked
317 * as Uptodate, it is not dirty or waiting to be committed,
318 * indicating that it was previously allocated and then modified,
319 * that there were valid bytes of data in that range of the file,
320 * and that the new data won't completely replace the old data in
321 * that range of the file.
323 static int nfs_want_read_modify_write(struct file *file, struct page *page,
324 loff_t pos, unsigned len)
326 unsigned int pglen = nfs_page_length(page);
327 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
328 unsigned int end = offset + len;
330 if ((file->f_mode & FMODE_READ) && /* open for read? */
331 !PageUptodate(page) && /* Uptodate? */
332 !PagePrivate(page) && /* i/o request already? */
333 pglen && /* valid bytes of file? */
334 (end < pglen || offset)) /* replace all valid bytes? */
340 * This does the "real" work of the write. We must allocate and lock the
341 * page to be sent back to the generic routine, which then copies the
342 * data from user space.
344 * If the writer ends up delaying the write, the writer needs to
345 * increment the page use counts until he is done with the page.
347 static int nfs_write_begin(struct file *file, struct address_space *mapping,
348 loff_t pos, unsigned len, unsigned flags,
349 struct page **pagep, void **fsdata)
352 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
356 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%ld), %u@%lld)\n",
357 file, mapping->host->i_ino, len, (long long) pos);
361 * Prevent starvation issues if someone is doing a consistency
364 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
365 nfs_wait_bit_killable, TASK_KILLABLE);
369 page = grab_cache_page_write_begin(mapping, index, flags);
374 ret = nfs_flush_incompatible(file, page);
377 page_cache_release(page);
378 } else if (!once_thru &&
379 nfs_want_read_modify_write(file, page, pos, len)) {
381 ret = nfs_readpage(file, page);
382 page_cache_release(page);
389 static int nfs_write_end(struct file *file, struct address_space *mapping,
390 loff_t pos, unsigned len, unsigned copied,
391 struct page *page, void *fsdata)
393 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
394 struct nfs_open_context *ctx = nfs_file_open_context(file);
397 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%ld), %u@%lld)\n",
398 file, mapping->host->i_ino, len, (long long) pos);
401 * Zero any uninitialised parts of the page, and then mark the page
402 * as up to date if it turns out that we're extending the file.
404 if (!PageUptodate(page)) {
405 unsigned pglen = nfs_page_length(page);
406 unsigned end = offset + len;
409 zero_user_segments(page, 0, offset,
410 end, PAGE_CACHE_SIZE);
411 SetPageUptodate(page);
412 } else if (end >= pglen) {
413 zero_user_segment(page, end, PAGE_CACHE_SIZE);
415 SetPageUptodate(page);
417 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
420 status = nfs_updatepage(file, page, offset, copied);
423 page_cache_release(page);
427 NFS_I(mapping->host)->write_io += copied;
429 if (nfs_ctx_key_to_expire(ctx)) {
430 status = nfs_wb_all(mapping->host);
439 * Partially or wholly invalidate a page
440 * - Release the private state associated with a page if undergoing complete
442 * - Called if either PG_private or PG_fscache is set on the page
443 * - Caller holds page lock
445 static void nfs_invalidate_page(struct page *page, unsigned int offset,
448 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
449 page, offset, length);
451 if (offset != 0 || length < PAGE_CACHE_SIZE)
453 /* Cancel any unstarted writes on this page */
454 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
456 nfs_fscache_invalidate_page(page, page->mapping->host);
460 * Attempt to release the private state associated with a page
461 * - Called if either PG_private or PG_fscache is set on the page
462 * - Caller holds page lock
463 * - Return true (may release page) or false (may not)
465 static int nfs_release_page(struct page *page, gfp_t gfp)
467 struct address_space *mapping = page->mapping;
469 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
471 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
472 * doing this memory reclaim for a fs-related allocation.
474 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
475 !(current->flags & PF_FSTRANS)) {
476 int how = FLUSH_SYNC;
478 /* Don't let kswapd deadlock waiting for OOM RPC calls */
479 if (current_is_kswapd())
481 nfs_commit_inode(mapping->host, how);
483 /* If PagePrivate() is set, then the page is not freeable */
484 if (PagePrivate(page))
486 return nfs_fscache_release_page(page, gfp);
489 static void nfs_check_dirty_writeback(struct page *page,
490 bool *dirty, bool *writeback)
492 struct nfs_inode *nfsi;
493 struct address_space *mapping = page_file_mapping(page);
495 if (!mapping || PageSwapCache(page))
499 * Check if an unstable page is currently being committed and
500 * if so, have the VM treat it as if the page is under writeback
501 * so it will not block due to pages that will shortly be freeable.
503 nfsi = NFS_I(mapping->host);
504 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
510 * If PagePrivate() is set, then the page is not freeable and as the
511 * inode is not being committed, it's not going to be cleaned in the
512 * near future so treat it as dirty
514 if (PagePrivate(page))
519 * Attempt to clear the private state associated with a page when an error
520 * occurs that requires the cached contents of an inode to be written back or
522 * - Called if either PG_private or fscache is set on the page
523 * - Caller holds page lock
524 * - Return 0 if successful, -error otherwise
526 static int nfs_launder_page(struct page *page)
528 struct inode *inode = page_file_mapping(page)->host;
529 struct nfs_inode *nfsi = NFS_I(inode);
531 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
532 inode->i_ino, (long long)page_offset(page));
534 nfs_fscache_wait_on_page_write(nfsi, page);
535 return nfs_wb_page(inode, page);
538 #ifdef CONFIG_NFS_SWAP
539 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
543 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
546 static void nfs_swap_deactivate(struct file *file)
548 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
552 const struct address_space_operations nfs_file_aops = {
553 .readpage = nfs_readpage,
554 .readpages = nfs_readpages,
555 .set_page_dirty = __set_page_dirty_nobuffers,
556 .writepage = nfs_writepage,
557 .writepages = nfs_writepages,
558 .write_begin = nfs_write_begin,
559 .write_end = nfs_write_end,
560 .invalidatepage = nfs_invalidate_page,
561 .releasepage = nfs_release_page,
562 .direct_IO = nfs_direct_IO,
563 .migratepage = nfs_migrate_page,
564 .launder_page = nfs_launder_page,
565 .is_dirty_writeback = nfs_check_dirty_writeback,
566 .error_remove_page = generic_error_remove_page,
567 #ifdef CONFIG_NFS_SWAP
568 .swap_activate = nfs_swap_activate,
569 .swap_deactivate = nfs_swap_deactivate,
574 * Notification that a PTE pointing to an NFS page is about to be made
575 * writable, implying that someone is about to modify the page through a
576 * shared-writable mapping
578 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
580 struct page *page = vmf->page;
581 struct file *filp = vma->vm_file;
582 struct inode *inode = file_inode(filp);
584 int ret = VM_FAULT_NOPAGE;
585 struct address_space *mapping;
587 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%ld), offset %lld)\n",
588 filp, filp->f_mapping->host->i_ino,
589 (long long)page_offset(page));
591 /* make sure the cache has finished storing the page */
592 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
595 mapping = page_file_mapping(page);
596 if (mapping != inode->i_mapping)
599 wait_on_page_writeback(page);
601 pagelen = nfs_page_length(page);
605 ret = VM_FAULT_LOCKED;
606 if (nfs_flush_incompatible(filp, page) == 0 &&
607 nfs_updatepage(filp, page, 0, pagelen) == 0)
610 ret = VM_FAULT_SIGBUS;
617 static const struct vm_operations_struct nfs_file_vm_ops = {
618 .fault = filemap_fault,
619 .page_mkwrite = nfs_vm_page_mkwrite,
620 .remap_pages = generic_file_remap_pages,
623 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
625 struct nfs_open_context *ctx;
627 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
629 ctx = nfs_file_open_context(filp);
630 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
631 nfs_ctx_key_to_expire(ctx))
636 ssize_t nfs_file_write_iter(struct kiocb *iocb, struct iov_iter *iter,
639 struct file *file = iocb->ki_filp;
640 struct inode *inode = file_inode(file);
641 unsigned long written = 0;
643 size_t count = iov_iter_count(iter);
645 result = nfs_key_timeout_notify(file, inode);
649 if (file->f_flags & O_DIRECT)
650 return nfs_file_direct_write(iocb, iter, pos);
652 dprintk("NFS: write_iter(%pD2, %lu@%Ld)\n",
653 file, (unsigned long) count, (long long) pos);
656 if (IS_SWAPFILE(inode))
659 * O_APPEND implies that we must revalidate the file length.
661 if (file->f_flags & O_APPEND) {
662 result = nfs_revalidate_file_size(inode, file);
671 result = generic_file_write_iter(iocb, iter, pos);
675 /* Return error values for O_DSYNC and IS_SYNC() */
676 if (result >= 0 && nfs_need_sync_write(file, inode)) {
677 int err = vfs_fsync(file, 0);
682 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
687 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
690 EXPORT_SYMBOL_GPL(nfs_file_write_iter);
692 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
693 struct file *filp, loff_t *ppos,
694 size_t count, unsigned int flags)
696 struct inode *inode = file_inode(filp);
697 unsigned long written = 0;
700 dprintk("NFS splice_write(%pD2, %lu@%llu)\n",
701 filp, (unsigned long) count, (unsigned long long) *ppos);
704 * The combination of splice and an O_APPEND destination is disallowed.
707 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
711 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
712 int err = vfs_fsync(filp, 0);
717 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
720 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
723 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
725 struct inode *inode = filp->f_mapping->host;
727 unsigned int saved_type = fl->fl_type;
729 /* Try local locking first */
730 posix_test_lock(filp, fl);
731 if (fl->fl_type != F_UNLCK) {
732 /* found a conflict */
735 fl->fl_type = saved_type;
737 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
743 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
747 fl->fl_type = F_UNLCK;
751 static int do_vfs_lock(struct file *file, struct file_lock *fl)
754 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
756 res = posix_lock_file_wait(file, fl);
759 res = flock_lock_file_wait(file, fl);
768 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
770 struct inode *inode = filp->f_mapping->host;
771 struct nfs_lock_context *l_ctx;
775 * Flush all pending writes before doing anything
778 nfs_sync_mapping(filp->f_mapping);
780 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
781 if (!IS_ERR(l_ctx)) {
782 status = nfs_iocounter_wait(&l_ctx->io_count);
783 nfs_put_lock_context(l_ctx);
788 /* NOTE: special case
789 * If we're signalled while cleaning up locks on process exit, we
790 * still need to complete the unlock.
793 * Use local locking if mounted with "-onolock" or with appropriate
797 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
799 status = do_vfs_lock(filp, fl);
804 is_time_granular(struct timespec *ts) {
805 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
809 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
811 struct inode *inode = filp->f_mapping->host;
815 * Flush all pending writes before doing anything
818 status = nfs_sync_mapping(filp->f_mapping);
823 * Use local locking if mounted with "-onolock" or with appropriate
827 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
829 status = do_vfs_lock(filp, fl);
834 * Revalidate the cache if the server has time stamps granular
835 * enough to detect subsecond changes. Otherwise, clear the
836 * cache to prevent missing any changes.
838 * This makes locking act as a cache coherency point.
840 nfs_sync_mapping(filp->f_mapping);
841 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
842 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
843 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
845 nfs_zap_caches(inode);
852 * Lock a (portion of) a file
854 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
856 struct inode *inode = filp->f_mapping->host;
860 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
861 filp, fl->fl_type, fl->fl_flags,
862 (long long)fl->fl_start, (long long)fl->fl_end);
864 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
866 /* No mandatory locks over NFS */
867 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
870 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
873 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
874 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
880 ret = do_getlk(filp, cmd, fl, is_local);
881 else if (fl->fl_type == F_UNLCK)
882 ret = do_unlk(filp, cmd, fl, is_local);
884 ret = do_setlk(filp, cmd, fl, is_local);
888 EXPORT_SYMBOL_GPL(nfs_lock);
891 * Lock a (portion of) a file
893 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
895 struct inode *inode = filp->f_mapping->host;
898 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
899 filp, fl->fl_type, fl->fl_flags);
901 if (!(fl->fl_flags & FL_FLOCK))
905 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
906 * any standard. In principle we might be able to support LOCK_MAND
907 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
908 * NFS code is not set up for it.
910 if (fl->fl_type & LOCK_MAND)
913 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
916 /* We're simulating flock() locks using posix locks on the server */
917 fl->fl_owner = (fl_owner_t)filp;
919 fl->fl_end = OFFSET_MAX;
921 if (fl->fl_type == F_UNLCK)
922 return do_unlk(filp, cmd, fl, is_local);
923 return do_setlk(filp, cmd, fl, is_local);
925 EXPORT_SYMBOL_GPL(nfs_flock);
928 * There is no protocol support for leases, so we have no way to implement
929 * them correctly in the face of opens by other clients.
931 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
933 dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
936 EXPORT_SYMBOL_GPL(nfs_setlease);
938 const struct file_operations nfs_file_operations = {
939 .llseek = nfs_file_llseek,
940 .read = do_sync_read,
941 .write = do_sync_write,
942 .read_iter = nfs_file_read_iter,
943 .write_iter = nfs_file_write_iter,
944 .mmap = nfs_file_mmap,
945 .open = nfs_file_open,
946 .flush = nfs_file_flush,
947 .release = nfs_file_release,
948 .fsync = nfs_file_fsync,
951 .splice_read = nfs_file_splice_read,
952 .splice_write = nfs_file_splice_write,
953 .check_flags = nfs_check_flags,
954 .setlease = nfs_setlease,
956 EXPORT_SYMBOL_GPL(nfs_file_operations);