2 * page.c - buffer/page management specific to NILFS
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21 * Seiji Kihara <kihara@osrg.net>.
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
37 #define NILFS_BUFFER_INHERENT_BITS \
38 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
39 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated))
41 static struct buffer_head *
42 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
43 int blkbits, unsigned long b_state)
46 unsigned long first_block;
47 struct buffer_head *bh;
49 if (!page_has_buffers(page))
50 create_empty_buffers(page, 1 << blkbits, b_state);
52 first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
53 bh = nilfs_page_get_nth_block(page, block - first_block);
61 * Since the page cache of B-tree node pages or data page cache of pseudo
62 * inodes does not have a valid mapping->host pointer, calling
63 * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
64 * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
65 * To avoid this problem, the old style mark_buffer_dirty() is used instead.
67 void nilfs_mark_buffer_dirty(struct buffer_head *bh)
69 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
70 __set_page_dirty_nobuffers(bh->b_page);
73 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
74 struct address_space *mapping,
76 unsigned long b_state)
78 int blkbits = inode->i_blkbits;
79 pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
80 struct page *page, *opage;
81 struct buffer_head *bh, *obh;
83 page = grab_cache_page(mapping, index);
87 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
90 page_cache_release(page);
93 if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
95 * Shadow page cache uses assoc_mapping to point its original
96 * page cache. The following code tries the original cache
97 * if the given cache is a shadow and it didn't hit.
99 opage = find_lock_page(mapping->assoc_mapping, index);
103 obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
105 if (buffer_uptodate(obh)) {
106 nilfs_copy_buffer(bh, obh);
107 if (buffer_dirty(obh)) {
108 nilfs_mark_buffer_dirty(bh);
109 if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
110 nilfs_mdt_mark_dirty(inode);
115 page_cache_release(opage);
121 * nilfs_forget_buffer - discard dirty state
122 * @inode: owner inode of the buffer
123 * @bh: buffer head of the buffer to be discarded
125 void nilfs_forget_buffer(struct buffer_head *bh)
127 struct page *page = bh->b_page;
130 clear_buffer_nilfs_volatile(bh);
131 if (test_clear_buffer_dirty(bh) && nilfs_page_buffers_clean(page))
132 __nilfs_clear_page_dirty(page);
134 clear_buffer_uptodate(bh);
135 clear_buffer_mapped(bh);
137 ClearPageUptodate(page);
138 ClearPageMappedToDisk(page);
144 * nilfs_copy_buffer -- copy buffer data and flags
145 * @dbh: destination buffer
146 * @sbh: source buffer
148 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
150 void *kaddr0, *kaddr1;
152 struct page *spage = sbh->b_page, *dpage = dbh->b_page;
153 struct buffer_head *bh;
155 kaddr0 = kmap_atomic(spage, KM_USER0);
156 kaddr1 = kmap_atomic(dpage, KM_USER1);
157 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
158 kunmap_atomic(kaddr1, KM_USER1);
159 kunmap_atomic(kaddr0, KM_USER0);
161 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
162 dbh->b_blocknr = sbh->b_blocknr;
163 dbh->b_bdev = sbh->b_bdev;
166 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
167 while ((bh = bh->b_this_page) != dbh) {
172 if (bits & (1UL << BH_Uptodate))
173 SetPageUptodate(dpage);
175 ClearPageUptodate(dpage);
176 if (bits & (1UL << BH_Mapped))
177 SetPageMappedToDisk(dpage);
179 ClearPageMappedToDisk(dpage);
183 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
184 * @page: page to be checked
186 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
187 * Otherwise, it returns non-zero value.
189 int nilfs_page_buffers_clean(struct page *page)
191 struct buffer_head *bh, *head;
193 bh = head = page_buffers(page);
195 if (buffer_dirty(bh))
197 bh = bh->b_this_page;
198 } while (bh != head);
202 void nilfs_page_bug(struct page *page)
204 struct address_space *m;
205 unsigned long ino = 0;
207 if (unlikely(!page)) {
208 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
214 struct inode *inode = NILFS_AS_I(m);
218 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
219 "mapping=%p ino=%lu\n",
220 page, atomic_read(&page->_count),
221 (unsigned long long)page->index, page->flags, m, ino);
223 if (page_has_buffers(page)) {
224 struct buffer_head *bh, *head;
227 bh = head = page_buffers(page);
230 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
231 i++, bh, atomic_read(&bh->b_count),
232 (unsigned long long)bh->b_blocknr, bh->b_state);
233 bh = bh->b_this_page;
234 } while (bh != head);
239 * nilfs_alloc_private_page - allocate a private page with buffer heads
241 * Return Value: On success, a pointer to the allocated page is returned.
242 * On error, NULL is returned.
244 struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
247 struct buffer_head *bh, *head, *tail;
250 page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
255 head = alloc_page_buffers(page, size, 0);
256 if (unlikely(!head)) {
264 bh->b_state = (1UL << BH_NILFS_Allocated) | state;
267 bh = bh->b_this_page;
270 tail->b_this_page = head;
271 attach_page_buffers(page, head);
276 void nilfs_free_private_page(struct page *page)
278 BUG_ON(!PageLocked(page));
279 BUG_ON(page->mapping);
281 if (page_has_buffers(page) && !try_to_free_buffers(page))
282 NILFS_PAGE_BUG(page, "failed to free page");
289 * nilfs_copy_page -- copy the page with buffers
290 * @dst: destination page
292 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
294 * This fuction is for both data pages and btnode pages. The dirty flag
295 * should be treated by caller. The page must not be under i/o.
296 * Both src and dst page must be locked
298 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
300 struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
301 unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
303 BUG_ON(PageWriteback(dst));
305 sbh = sbufs = page_buffers(src);
306 if (!page_has_buffers(dst))
307 create_empty_buffers(dst, sbh->b_size, 0);
310 mask |= (1UL << BH_Dirty);
312 dbh = dbufs = page_buffers(dst);
316 dbh->b_state = sbh->b_state & mask;
317 dbh->b_blocknr = sbh->b_blocknr;
318 dbh->b_bdev = sbh->b_bdev;
319 sbh = sbh->b_this_page;
320 dbh = dbh->b_this_page;
321 } while (dbh != dbufs);
323 copy_highpage(dst, src);
325 if (PageUptodate(src) && !PageUptodate(dst))
326 SetPageUptodate(dst);
327 else if (!PageUptodate(src) && PageUptodate(dst))
328 ClearPageUptodate(dst);
329 if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
330 SetPageMappedToDisk(dst);
331 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
332 ClearPageMappedToDisk(dst);
337 sbh = sbh->b_this_page;
338 dbh = dbh->b_this_page;
339 } while (dbh != dbufs);
342 int nilfs_copy_dirty_pages(struct address_space *dmap,
343 struct address_space *smap)
350 pagevec_init(&pvec, 0);
352 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
356 for (i = 0; i < pagevec_count(&pvec); i++) {
357 struct page *page = pvec.pages[i], *dpage;
360 if (unlikely(!PageDirty(page)))
361 NILFS_PAGE_BUG(page, "inconsistent dirty state");
363 dpage = grab_cache_page(dmap, page->index);
364 if (unlikely(!dpage)) {
365 /* No empty page is added to the page cache */
370 if (unlikely(!page_has_buffers(page)))
372 "found empty page in dat page cache");
374 nilfs_copy_page(dpage, page, 1);
375 __set_page_dirty_nobuffers(dpage);
378 page_cache_release(dpage);
381 pagevec_release(&pvec);
390 * nilfs_copy_back_pages -- copy back pages to orignal cache from shadow cache
391 * @dmap: destination page cache
392 * @smap: source page cache
394 * No pages must no be added to the cache during this process.
395 * This must be ensured by the caller.
397 void nilfs_copy_back_pages(struct address_space *dmap,
398 struct address_space *smap)
405 pagevec_init(&pvec, 0);
407 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
410 index = pvec.pages[n - 1]->index + 1;
412 for (i = 0; i < pagevec_count(&pvec); i++) {
413 struct page *page = pvec.pages[i], *dpage;
414 pgoff_t offset = page->index;
417 dpage = find_lock_page(dmap, offset);
419 /* override existing page on the destination cache */
420 WARN_ON(PageDirty(dpage));
421 nilfs_copy_page(dpage, page, 0);
423 page_cache_release(dpage);
427 /* move the page to the destination cache */
428 spin_lock_irq(&smap->tree_lock);
429 page2 = radix_tree_delete(&smap->page_tree, offset);
430 WARN_ON(page2 != page);
433 spin_unlock_irq(&smap->tree_lock);
435 spin_lock_irq(&dmap->tree_lock);
436 err = radix_tree_insert(&dmap->page_tree, offset, page);
437 if (unlikely(err < 0)) {
438 WARN_ON(err == -EEXIST);
439 page->mapping = NULL;
440 page_cache_release(page); /* for cache */
442 page->mapping = dmap;
445 radix_tree_tag_set(&dmap->page_tree,
447 PAGECACHE_TAG_DIRTY);
449 spin_unlock_irq(&dmap->tree_lock);
453 pagevec_release(&pvec);
459 void nilfs_clear_dirty_pages(struct address_space *mapping)
465 pagevec_init(&pvec, 0);
467 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
469 for (i = 0; i < pagevec_count(&pvec); i++) {
470 struct page *page = pvec.pages[i];
471 struct buffer_head *bh, *head;
474 ClearPageUptodate(page);
475 ClearPageMappedToDisk(page);
476 bh = head = page_buffers(page);
479 clear_buffer_dirty(bh);
480 clear_buffer_nilfs_volatile(bh);
481 clear_buffer_uptodate(bh);
482 clear_buffer_mapped(bh);
484 bh = bh->b_this_page;
485 } while (bh != head);
487 __nilfs_clear_page_dirty(page);
490 pagevec_release(&pvec);
495 unsigned nilfs_page_count_clean_buffers(struct page *page,
496 unsigned from, unsigned to)
498 unsigned block_start, block_end;
499 struct buffer_head *bh, *head;
502 for (bh = head = page_buffers(page), block_start = 0;
503 bh != head || !block_start;
504 block_start = block_end, bh = bh->b_this_page) {
505 block_end = block_start + bh->b_size;
506 if (block_end > from && block_start < to && !buffer_dirty(bh))
513 * NILFS2 needs clear_page_dirty() in the following two cases:
515 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
516 * page dirty flags when it copies back pages from the shadow cache
517 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache
518 * (dat->{i_mapping,i_btnode_cache}).
520 * 2) Some B-tree operations like insertion or deletion may dispose buffers
521 * in dirty state, and this needs to cancel the dirty state of their pages.
523 int __nilfs_clear_page_dirty(struct page *page)
525 struct address_space *mapping = page->mapping;
528 spin_lock_irq(&mapping->tree_lock);
529 if (test_bit(PG_dirty, &page->flags)) {
530 radix_tree_tag_clear(&mapping->page_tree,
532 PAGECACHE_TAG_DIRTY);
533 spin_unlock_irq(&mapping->tree_lock);
534 return clear_page_dirty_for_io(page);
536 spin_unlock_irq(&mapping->tree_lock);
539 return TestClearPageDirty(page);