]> git.karo-electronics.de Git - linux-beck.git/blob - fs/nilfs2/page.c
b10057eb4d8e4e0fd29c1726c61695352b53f898
[linux-beck.git] / fs / nilfs2 / page.c
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi <ryusuke@osrg.net>,
17  *            Seiji Kihara <kihara@osrg.net>.
18  */
19
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/swap.h>
23 #include <linux/bitops.h>
24 #include <linux/page-flags.h>
25 #include <linux/list.h>
26 #include <linux/highmem.h>
27 #include <linux/pagevec.h>
28 #include <linux/gfp.h>
29 #include "nilfs.h"
30 #include "page.h"
31 #include "mdt.h"
32
33
34 #define NILFS_BUFFER_INHERENT_BITS  \
35         ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
36          (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
37
38 static struct buffer_head *
39 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
40                        int blkbits, unsigned long b_state)
41
42 {
43         unsigned long first_block;
44         struct buffer_head *bh;
45
46         if (!page_has_buffers(page))
47                 create_empty_buffers(page, 1 << blkbits, b_state);
48
49         first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
50         bh = nilfs_page_get_nth_block(page, block - first_block);
51
52         touch_buffer(bh);
53         wait_on_buffer(bh);
54         return bh;
55 }
56
57 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
58                                       struct address_space *mapping,
59                                       unsigned long blkoff,
60                                       unsigned long b_state)
61 {
62         int blkbits = inode->i_blkbits;
63         pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
64         struct page *page;
65         struct buffer_head *bh;
66
67         page = grab_cache_page(mapping, index);
68         if (unlikely(!page))
69                 return NULL;
70
71         bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
72         if (unlikely(!bh)) {
73                 unlock_page(page);
74                 put_page(page);
75                 return NULL;
76         }
77         return bh;
78 }
79
80 /**
81  * nilfs_forget_buffer - discard dirty state
82  * @inode: owner inode of the buffer
83  * @bh: buffer head of the buffer to be discarded
84  */
85 void nilfs_forget_buffer(struct buffer_head *bh)
86 {
87         struct page *page = bh->b_page;
88         const unsigned long clear_bits =
89                 (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
90                  1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
91                  1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
92
93         lock_buffer(bh);
94         set_mask_bits(&bh->b_state, clear_bits, 0);
95         if (nilfs_page_buffers_clean(page))
96                 __nilfs_clear_page_dirty(page);
97
98         bh->b_blocknr = -1;
99         ClearPageUptodate(page);
100         ClearPageMappedToDisk(page);
101         unlock_buffer(bh);
102         brelse(bh);
103 }
104
105 /**
106  * nilfs_copy_buffer -- copy buffer data and flags
107  * @dbh: destination buffer
108  * @sbh: source buffer
109  */
110 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
111 {
112         void *kaddr0, *kaddr1;
113         unsigned long bits;
114         struct page *spage = sbh->b_page, *dpage = dbh->b_page;
115         struct buffer_head *bh;
116
117         kaddr0 = kmap_atomic(spage);
118         kaddr1 = kmap_atomic(dpage);
119         memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
120         kunmap_atomic(kaddr1);
121         kunmap_atomic(kaddr0);
122
123         dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
124         dbh->b_blocknr = sbh->b_blocknr;
125         dbh->b_bdev = sbh->b_bdev;
126
127         bh = dbh;
128         bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
129         while ((bh = bh->b_this_page) != dbh) {
130                 lock_buffer(bh);
131                 bits &= bh->b_state;
132                 unlock_buffer(bh);
133         }
134         if (bits & (1UL << BH_Uptodate))
135                 SetPageUptodate(dpage);
136         else
137                 ClearPageUptodate(dpage);
138         if (bits & (1UL << BH_Mapped))
139                 SetPageMappedToDisk(dpage);
140         else
141                 ClearPageMappedToDisk(dpage);
142 }
143
144 /**
145  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
146  * @page: page to be checked
147  *
148  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
149  * Otherwise, it returns non-zero value.
150  */
151 int nilfs_page_buffers_clean(struct page *page)
152 {
153         struct buffer_head *bh, *head;
154
155         bh = head = page_buffers(page);
156         do {
157                 if (buffer_dirty(bh))
158                         return 0;
159                 bh = bh->b_this_page;
160         } while (bh != head);
161         return 1;
162 }
163
164 void nilfs_page_bug(struct page *page)
165 {
166         struct address_space *m;
167         unsigned long ino;
168
169         if (unlikely(!page)) {
170                 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
171                 return;
172         }
173
174         m = page->mapping;
175         ino = m ? m->host->i_ino : 0;
176
177         printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
178                "mapping=%p ino=%lu\n",
179                page, page_ref_count(page),
180                (unsigned long long)page->index, page->flags, m, ino);
181
182         if (page_has_buffers(page)) {
183                 struct buffer_head *bh, *head;
184                 int i = 0;
185
186                 bh = head = page_buffers(page);
187                 do {
188                         printk(KERN_CRIT
189                                " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
190                                i++, bh, atomic_read(&bh->b_count),
191                                (unsigned long long)bh->b_blocknr, bh->b_state);
192                         bh = bh->b_this_page;
193                 } while (bh != head);
194         }
195 }
196
197 /**
198  * nilfs_copy_page -- copy the page with buffers
199  * @dst: destination page
200  * @src: source page
201  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
202  *
203  * This function is for both data pages and btnode pages.  The dirty flag
204  * should be treated by caller.  The page must not be under i/o.
205  * Both src and dst page must be locked
206  */
207 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
208 {
209         struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
210         unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
211
212         BUG_ON(PageWriteback(dst));
213
214         sbh = sbufs = page_buffers(src);
215         if (!page_has_buffers(dst))
216                 create_empty_buffers(dst, sbh->b_size, 0);
217
218         if (copy_dirty)
219                 mask |= (1UL << BH_Dirty);
220
221         dbh = dbufs = page_buffers(dst);
222         do {
223                 lock_buffer(sbh);
224                 lock_buffer(dbh);
225                 dbh->b_state = sbh->b_state & mask;
226                 dbh->b_blocknr = sbh->b_blocknr;
227                 dbh->b_bdev = sbh->b_bdev;
228                 sbh = sbh->b_this_page;
229                 dbh = dbh->b_this_page;
230         } while (dbh != dbufs);
231
232         copy_highpage(dst, src);
233
234         if (PageUptodate(src) && !PageUptodate(dst))
235                 SetPageUptodate(dst);
236         else if (!PageUptodate(src) && PageUptodate(dst))
237                 ClearPageUptodate(dst);
238         if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
239                 SetPageMappedToDisk(dst);
240         else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
241                 ClearPageMappedToDisk(dst);
242
243         do {
244                 unlock_buffer(sbh);
245                 unlock_buffer(dbh);
246                 sbh = sbh->b_this_page;
247                 dbh = dbh->b_this_page;
248         } while (dbh != dbufs);
249 }
250
251 int nilfs_copy_dirty_pages(struct address_space *dmap,
252                            struct address_space *smap)
253 {
254         struct pagevec pvec;
255         unsigned int i;
256         pgoff_t index = 0;
257         int err = 0;
258
259         pagevec_init(&pvec, 0);
260 repeat:
261         if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
262                                 PAGEVEC_SIZE))
263                 return 0;
264
265         for (i = 0; i < pagevec_count(&pvec); i++) {
266                 struct page *page = pvec.pages[i], *dpage;
267
268                 lock_page(page);
269                 if (unlikely(!PageDirty(page)))
270                         NILFS_PAGE_BUG(page, "inconsistent dirty state");
271
272                 dpage = grab_cache_page(dmap, page->index);
273                 if (unlikely(!dpage)) {
274                         /* No empty page is added to the page cache */
275                         err = -ENOMEM;
276                         unlock_page(page);
277                         break;
278                 }
279                 if (unlikely(!page_has_buffers(page)))
280                         NILFS_PAGE_BUG(page,
281                                        "found empty page in dat page cache");
282
283                 nilfs_copy_page(dpage, page, 1);
284                 __set_page_dirty_nobuffers(dpage);
285
286                 unlock_page(dpage);
287                 put_page(dpage);
288                 unlock_page(page);
289         }
290         pagevec_release(&pvec);
291         cond_resched();
292
293         if (likely(!err))
294                 goto repeat;
295         return err;
296 }
297
298 /**
299  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
300  * @dmap: destination page cache
301  * @smap: source page cache
302  *
303  * No pages must no be added to the cache during this process.
304  * This must be ensured by the caller.
305  */
306 void nilfs_copy_back_pages(struct address_space *dmap,
307                            struct address_space *smap)
308 {
309         struct pagevec pvec;
310         unsigned int i, n;
311         pgoff_t index = 0;
312         int err;
313
314         pagevec_init(&pvec, 0);
315 repeat:
316         n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
317         if (!n)
318                 return;
319         index = pvec.pages[n - 1]->index + 1;
320
321         for (i = 0; i < pagevec_count(&pvec); i++) {
322                 struct page *page = pvec.pages[i], *dpage;
323                 pgoff_t offset = page->index;
324
325                 lock_page(page);
326                 dpage = find_lock_page(dmap, offset);
327                 if (dpage) {
328                         /* override existing page on the destination cache */
329                         WARN_ON(PageDirty(dpage));
330                         nilfs_copy_page(dpage, page, 0);
331                         unlock_page(dpage);
332                         put_page(dpage);
333                 } else {
334                         struct page *page2;
335
336                         /* move the page to the destination cache */
337                         spin_lock_irq(&smap->tree_lock);
338                         page2 = radix_tree_delete(&smap->page_tree, offset);
339                         WARN_ON(page2 != page);
340
341                         smap->nrpages--;
342                         spin_unlock_irq(&smap->tree_lock);
343
344                         spin_lock_irq(&dmap->tree_lock);
345                         err = radix_tree_insert(&dmap->page_tree, offset, page);
346                         if (unlikely(err < 0)) {
347                                 WARN_ON(err == -EEXIST);
348                                 page->mapping = NULL;
349                                 put_page(page); /* for cache */
350                         } else {
351                                 page->mapping = dmap;
352                                 dmap->nrpages++;
353                                 if (PageDirty(page))
354                                         radix_tree_tag_set(&dmap->page_tree,
355                                                            offset,
356                                                            PAGECACHE_TAG_DIRTY);
357                         }
358                         spin_unlock_irq(&dmap->tree_lock);
359                 }
360                 unlock_page(page);
361         }
362         pagevec_release(&pvec);
363         cond_resched();
364
365         goto repeat;
366 }
367
368 /**
369  * nilfs_clear_dirty_pages - discard dirty pages in address space
370  * @mapping: address space with dirty pages for discarding
371  * @silent: suppress [true] or print [false] warning messages
372  */
373 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
374 {
375         struct pagevec pvec;
376         unsigned int i;
377         pgoff_t index = 0;
378
379         pagevec_init(&pvec, 0);
380
381         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
382                                   PAGEVEC_SIZE)) {
383                 for (i = 0; i < pagevec_count(&pvec); i++) {
384                         struct page *page = pvec.pages[i];
385
386                         lock_page(page);
387                         nilfs_clear_dirty_page(page, silent);
388                         unlock_page(page);
389                 }
390                 pagevec_release(&pvec);
391                 cond_resched();
392         }
393 }
394
395 /**
396  * nilfs_clear_dirty_page - discard dirty page
397  * @page: dirty page that will be discarded
398  * @silent: suppress [true] or print [false] warning messages
399  */
400 void nilfs_clear_dirty_page(struct page *page, bool silent)
401 {
402         struct inode *inode = page->mapping->host;
403         struct super_block *sb = inode->i_sb;
404
405         BUG_ON(!PageLocked(page));
406
407         if (!silent) {
408                 nilfs_warning(sb, __func__,
409                                 "discard page: offset %lld, ino %lu",
410                                 page_offset(page), inode->i_ino);
411         }
412
413         ClearPageUptodate(page);
414         ClearPageMappedToDisk(page);
415
416         if (page_has_buffers(page)) {
417                 struct buffer_head *bh, *head;
418                 const unsigned long clear_bits =
419                         (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped |
420                          1 << BH_Async_Write | 1 << BH_NILFS_Volatile |
421                          1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected);
422
423                 bh = head = page_buffers(page);
424                 do {
425                         lock_buffer(bh);
426                         if (!silent) {
427                                 nilfs_warning(sb, __func__,
428                                         "discard block %llu, size %zu",
429                                         (u64)bh->b_blocknr, bh->b_size);
430                         }
431                         set_mask_bits(&bh->b_state, clear_bits, 0);
432                         unlock_buffer(bh);
433                 } while (bh = bh->b_this_page, bh != head);
434         }
435
436         __nilfs_clear_page_dirty(page);
437 }
438
439 unsigned nilfs_page_count_clean_buffers(struct page *page,
440                                         unsigned from, unsigned to)
441 {
442         unsigned block_start, block_end;
443         struct buffer_head *bh, *head;
444         unsigned nc = 0;
445
446         for (bh = head = page_buffers(page), block_start = 0;
447              bh != head || !block_start;
448              block_start = block_end, bh = bh->b_this_page) {
449                 block_end = block_start + bh->b_size;
450                 if (block_end > from && block_start < to && !buffer_dirty(bh))
451                         nc++;
452         }
453         return nc;
454 }
455
456 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
457 {
458         mapping->host = inode;
459         mapping->flags = 0;
460         mapping_set_gfp_mask(mapping, GFP_NOFS);
461         mapping->private_data = NULL;
462         mapping->a_ops = &empty_aops;
463 }
464
465 /*
466  * NILFS2 needs clear_page_dirty() in the following two cases:
467  *
468  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
469  *    page dirty flags when it copies back pages from the shadow cache
470  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
471  *    (dat->{i_mapping,i_btnode_cache}).
472  *
473  * 2) Some B-tree operations like insertion or deletion may dispose buffers
474  *    in dirty state, and this needs to cancel the dirty state of their pages.
475  */
476 int __nilfs_clear_page_dirty(struct page *page)
477 {
478         struct address_space *mapping = page->mapping;
479
480         if (mapping) {
481                 spin_lock_irq(&mapping->tree_lock);
482                 if (test_bit(PG_dirty, &page->flags)) {
483                         radix_tree_tag_clear(&mapping->page_tree,
484                                              page_index(page),
485                                              PAGECACHE_TAG_DIRTY);
486                         spin_unlock_irq(&mapping->tree_lock);
487                         return clear_page_dirty_for_io(page);
488                 }
489                 spin_unlock_irq(&mapping->tree_lock);
490                 return 0;
491         }
492         return TestClearPageDirty(page);
493 }
494
495 /**
496  * nilfs_find_uncommitted_extent - find extent of uncommitted data
497  * @inode: inode
498  * @start_blk: start block offset (in)
499  * @blkoff: start offset of the found extent (out)
500  *
501  * This function searches an extent of buffers marked "delayed" which
502  * starts from a block offset equal to or larger than @start_blk.  If
503  * such an extent was found, this will store the start offset in
504  * @blkoff and return its length in blocks.  Otherwise, zero is
505  * returned.
506  */
507 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
508                                             sector_t start_blk,
509                                             sector_t *blkoff)
510 {
511         unsigned int i;
512         pgoff_t index;
513         unsigned int nblocks_in_page;
514         unsigned long length = 0;
515         sector_t b;
516         struct pagevec pvec;
517         struct page *page;
518
519         if (inode->i_mapping->nrpages == 0)
520                 return 0;
521
522         index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
523         nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
524
525         pagevec_init(&pvec, 0);
526
527 repeat:
528         pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
529                                         pvec.pages);
530         if (pvec.nr == 0)
531                 return length;
532
533         if (length > 0 && pvec.pages[0]->index > index)
534                 goto out;
535
536         b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
537         i = 0;
538         do {
539                 page = pvec.pages[i];
540
541                 lock_page(page);
542                 if (page_has_buffers(page)) {
543                         struct buffer_head *bh, *head;
544
545                         bh = head = page_buffers(page);
546                         do {
547                                 if (b < start_blk)
548                                         continue;
549                                 if (buffer_delay(bh)) {
550                                         if (length == 0)
551                                                 *blkoff = b;
552                                         length++;
553                                 } else if (length > 0) {
554                                         goto out_locked;
555                                 }
556                         } while (++b, bh = bh->b_this_page, bh != head);
557                 } else {
558                         if (length > 0)
559                                 goto out_locked;
560
561                         b += nblocks_in_page;
562                 }
563                 unlock_page(page);
564
565         } while (++i < pagevec_count(&pvec));
566
567         index = page->index + 1;
568         pagevec_release(&pvec);
569         cond_resched();
570         goto repeat;
571
572 out_locked:
573         unlock_page(page);
574 out:
575         pagevec_release(&pvec);
576         return length;
577 }