]> git.karo-electronics.de Git - linux-beck.git/blob - fs/nilfs2/super.c
d304faa66f49f4c11c4a6e70f1b8ee9a8262f4ae
[linux-beck.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi <ryusuke@osrg.net>
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63                    "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 static void nilfs_set_error(struct super_block *sb)
75 {
76         struct the_nilfs *nilfs = sb->s_fs_info;
77         struct nilfs_super_block **sbp;
78
79         down_write(&nilfs->ns_sem);
80         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
82                 sbp = nilfs_prepare_super(sb, 0);
83                 if (likely(sbp)) {
84                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85                         if (sbp[1])
86                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88                 }
89         }
90         up_write(&nilfs->ns_sem);
91 }
92
93 /**
94  * nilfs_error() - report failure condition on a filesystem
95  *
96  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
97  * reporting an error message.  It should be called when NILFS detects
98  * incoherences or defects of meta data on disk.  As for sustainable
99  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
100  * function should be used instead.
101  *
102  * The segment constructor must not call this function because it can
103  * kill itself.
104  */
105 void nilfs_error(struct super_block *sb, const char *function,
106                  const char *fmt, ...)
107 {
108         struct the_nilfs *nilfs = sb->s_fs_info;
109         struct va_format vaf;
110         va_list args;
111
112         va_start(args, fmt);
113
114         vaf.fmt = fmt;
115         vaf.va = &args;
116
117         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
118                sb->s_id, function, &vaf);
119
120         va_end(args);
121
122         if (!(sb->s_flags & MS_RDONLY)) {
123                 nilfs_set_error(sb);
124
125                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
126                         printk(KERN_CRIT "Remounting filesystem read-only\n");
127                         sb->s_flags |= MS_RDONLY;
128                 }
129         }
130
131         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
132                 panic("NILFS (device %s): panic forced after error\n",
133                       sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137                    const char *fmt, ...)
138 {
139         struct va_format vaf;
140         va_list args;
141
142         va_start(args, fmt);
143
144         vaf.fmt = fmt;
145         vaf.va = &args;
146
147         printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
148                sb->s_id, function, &vaf);
149
150         va_end(args);
151 }
152
153
154 struct inode *nilfs_alloc_inode(struct super_block *sb)
155 {
156         struct nilfs_inode_info *ii;
157
158         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159         if (!ii)
160                 return NULL;
161         ii->i_bh = NULL;
162         ii->i_state = 0;
163         ii->i_cno = 0;
164         ii->vfs_inode.i_version = 1;
165         nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
166         return &ii->vfs_inode;
167 }
168
169 static void nilfs_i_callback(struct rcu_head *head)
170 {
171         struct inode *inode = container_of(head, struct inode, i_rcu);
172         struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
173
174         if (mdi) {
175                 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
176                 kfree(mdi);
177         }
178         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
179 }
180
181 void nilfs_destroy_inode(struct inode *inode)
182 {
183         call_rcu(&inode->i_rcu, nilfs_i_callback);
184 }
185
186 static int nilfs_sync_super(struct super_block *sb, int flag)
187 {
188         struct the_nilfs *nilfs = sb->s_fs_info;
189         int err;
190
191  retry:
192         set_buffer_dirty(nilfs->ns_sbh[0]);
193         if (nilfs_test_opt(nilfs, BARRIER)) {
194                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
195                                           WRITE_SYNC | WRITE_FLUSH_FUA);
196         } else {
197                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
198         }
199
200         if (unlikely(err)) {
201                 printk(KERN_ERR
202                        "NILFS: unable to write superblock (err=%d)\n", err);
203                 if (err == -EIO && nilfs->ns_sbh[1]) {
204                         /*
205                          * sbp[0] points to newer log than sbp[1],
206                          * so copy sbp[0] to sbp[1] to take over sbp[0].
207                          */
208                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
209                                nilfs->ns_sbsize);
210                         nilfs_fall_back_super_block(nilfs);
211                         goto retry;
212                 }
213         } else {
214                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
215
216                 nilfs->ns_sbwcount++;
217
218                 /*
219                  * The latest segment becomes trailable from the position
220                  * written in superblock.
221                  */
222                 clear_nilfs_discontinued(nilfs);
223
224                 /* update GC protection for recent segments */
225                 if (nilfs->ns_sbh[1]) {
226                         if (flag == NILFS_SB_COMMIT_ALL) {
227                                 set_buffer_dirty(nilfs->ns_sbh[1]);
228                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
229                                         goto out;
230                         }
231                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
232                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
233                                 sbp = nilfs->ns_sbp[1];
234                 }
235
236                 spin_lock(&nilfs->ns_last_segment_lock);
237                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
238                 spin_unlock(&nilfs->ns_last_segment_lock);
239         }
240  out:
241         return err;
242 }
243
244 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
245                           struct the_nilfs *nilfs)
246 {
247         sector_t nfreeblocks;
248
249         /* nilfs->ns_sem must be locked by the caller. */
250         nilfs_count_free_blocks(nilfs, &nfreeblocks);
251         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
252
253         spin_lock(&nilfs->ns_last_segment_lock);
254         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
255         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
256         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
257         spin_unlock(&nilfs->ns_last_segment_lock);
258 }
259
260 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
261                                                int flip)
262 {
263         struct the_nilfs *nilfs = sb->s_fs_info;
264         struct nilfs_super_block **sbp = nilfs->ns_sbp;
265
266         /* nilfs->ns_sem must be locked by the caller. */
267         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
268                 if (sbp[1] &&
269                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
270                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
271                 } else {
272                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
273                                sb->s_id);
274                         return NULL;
275                 }
276         } else if (sbp[1] &&
277                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
278                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
279         }
280
281         if (flip && sbp[1])
282                 nilfs_swap_super_block(nilfs);
283
284         return sbp;
285 }
286
287 int nilfs_commit_super(struct super_block *sb, int flag)
288 {
289         struct the_nilfs *nilfs = sb->s_fs_info;
290         struct nilfs_super_block **sbp = nilfs->ns_sbp;
291         time_t t;
292
293         /* nilfs->ns_sem must be locked by the caller. */
294         t = get_seconds();
295         nilfs->ns_sbwtime = t;
296         sbp[0]->s_wtime = cpu_to_le64(t);
297         sbp[0]->s_sum = 0;
298         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
299                                              (unsigned char *)sbp[0],
300                                              nilfs->ns_sbsize));
301         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
302                 sbp[1]->s_wtime = sbp[0]->s_wtime;
303                 sbp[1]->s_sum = 0;
304                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
305                                             (unsigned char *)sbp[1],
306                                             nilfs->ns_sbsize));
307         }
308         clear_nilfs_sb_dirty(nilfs);
309         nilfs->ns_flushed_device = 1;
310         /* make sure store to ns_flushed_device cannot be reordered */
311         smp_wmb();
312         return nilfs_sync_super(sb, flag);
313 }
314
315 /**
316  * nilfs_cleanup_super() - write filesystem state for cleanup
317  * @sb: super block instance to be unmounted or degraded to read-only
318  *
319  * This function restores state flags in the on-disk super block.
320  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
321  * filesystem was not clean previously.
322  */
323 int nilfs_cleanup_super(struct super_block *sb)
324 {
325         struct the_nilfs *nilfs = sb->s_fs_info;
326         struct nilfs_super_block **sbp;
327         int flag = NILFS_SB_COMMIT;
328         int ret = -EIO;
329
330         sbp = nilfs_prepare_super(sb, 0);
331         if (sbp) {
332                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
333                 nilfs_set_log_cursor(sbp[0], nilfs);
334                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
335                         /*
336                          * make the "clean" flag also to the opposite
337                          * super block if both super blocks point to
338                          * the same checkpoint.
339                          */
340                         sbp[1]->s_state = sbp[0]->s_state;
341                         flag = NILFS_SB_COMMIT_ALL;
342                 }
343                 ret = nilfs_commit_super(sb, flag);
344         }
345         return ret;
346 }
347
348 /**
349  * nilfs_move_2nd_super - relocate secondary super block
350  * @sb: super block instance
351  * @sb2off: new offset of the secondary super block (in bytes)
352  */
353 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
354 {
355         struct the_nilfs *nilfs = sb->s_fs_info;
356         struct buffer_head *nsbh;
357         struct nilfs_super_block *nsbp;
358         sector_t blocknr, newblocknr;
359         unsigned long offset;
360         int sb2i;  /* array index of the secondary superblock */
361         int ret = 0;
362
363         /* nilfs->ns_sem must be locked by the caller. */
364         if (nilfs->ns_sbh[1] &&
365             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
366                 sb2i = 1;
367                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
368         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
369                 sb2i = 0;
370                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
371         } else {
372                 sb2i = -1;
373                 blocknr = 0;
374         }
375         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
376                 goto out;  /* super block location is unchanged */
377
378         /* Get new super block buffer */
379         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
380         offset = sb2off & (nilfs->ns_blocksize - 1);
381         nsbh = sb_getblk(sb, newblocknr);
382         if (!nsbh) {
383                 printk(KERN_WARNING
384                        "NILFS warning: unable to move secondary superblock "
385                        "to block %llu\n", (unsigned long long)newblocknr);
386                 ret = -EIO;
387                 goto out;
388         }
389         nsbp = (void *)nsbh->b_data + offset;
390         memset(nsbp, 0, nilfs->ns_blocksize);
391
392         if (sb2i >= 0) {
393                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
394                 brelse(nilfs->ns_sbh[sb2i]);
395                 nilfs->ns_sbh[sb2i] = nsbh;
396                 nilfs->ns_sbp[sb2i] = nsbp;
397         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
398                 /* secondary super block will be restored to index 1 */
399                 nilfs->ns_sbh[1] = nsbh;
400                 nilfs->ns_sbp[1] = nsbp;
401         } else {
402                 brelse(nsbh);
403         }
404 out:
405         return ret;
406 }
407
408 /**
409  * nilfs_resize_fs - resize the filesystem
410  * @sb: super block instance
411  * @newsize: new size of the filesystem (in bytes)
412  */
413 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
414 {
415         struct the_nilfs *nilfs = sb->s_fs_info;
416         struct nilfs_super_block **sbp;
417         __u64 devsize, newnsegs;
418         loff_t sb2off;
419         int ret;
420
421         ret = -ERANGE;
422         devsize = i_size_read(sb->s_bdev->bd_inode);
423         if (newsize > devsize)
424                 goto out;
425
426         /*
427          * Write lock is required to protect some functions depending
428          * on the number of segments, the number of reserved segments,
429          * and so forth.
430          */
431         down_write(&nilfs->ns_segctor_sem);
432
433         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
434         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
435         do_div(newnsegs, nilfs->ns_blocks_per_segment);
436
437         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
438         up_write(&nilfs->ns_segctor_sem);
439         if (ret < 0)
440                 goto out;
441
442         ret = nilfs_construct_segment(sb);
443         if (ret < 0)
444                 goto out;
445
446         down_write(&nilfs->ns_sem);
447         nilfs_move_2nd_super(sb, sb2off);
448         ret = -EIO;
449         sbp = nilfs_prepare_super(sb, 0);
450         if (likely(sbp)) {
451                 nilfs_set_log_cursor(sbp[0], nilfs);
452                 /*
453                  * Drop NILFS_RESIZE_FS flag for compatibility with
454                  * mount-time resize which may be implemented in a
455                  * future release.
456                  */
457                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
458                                               ~NILFS_RESIZE_FS);
459                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
460                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
461                 if (sbp[1])
462                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
463                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
464         }
465         up_write(&nilfs->ns_sem);
466
467         /*
468          * Reset the range of allocatable segments last.  This order
469          * is important in the case of expansion because the secondary
470          * superblock must be protected from log write until migration
471          * completes.
472          */
473         if (!ret)
474                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
475 out:
476         return ret;
477 }
478
479 static void nilfs_put_super(struct super_block *sb)
480 {
481         struct the_nilfs *nilfs = sb->s_fs_info;
482
483         nilfs_detach_log_writer(sb);
484
485         if (!(sb->s_flags & MS_RDONLY)) {
486                 down_write(&nilfs->ns_sem);
487                 nilfs_cleanup_super(sb);
488                 up_write(&nilfs->ns_sem);
489         }
490
491         iput(nilfs->ns_sufile);
492         iput(nilfs->ns_cpfile);
493         iput(nilfs->ns_dat);
494
495         destroy_nilfs(nilfs);
496         sb->s_fs_info = NULL;
497 }
498
499 static int nilfs_sync_fs(struct super_block *sb, int wait)
500 {
501         struct the_nilfs *nilfs = sb->s_fs_info;
502         struct nilfs_super_block **sbp;
503         int err = 0;
504
505         /* This function is called when super block should be written back */
506         if (wait)
507                 err = nilfs_construct_segment(sb);
508
509         down_write(&nilfs->ns_sem);
510         if (nilfs_sb_dirty(nilfs)) {
511                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
512                 if (likely(sbp)) {
513                         nilfs_set_log_cursor(sbp[0], nilfs);
514                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
515                 }
516         }
517         up_write(&nilfs->ns_sem);
518
519         if (!err)
520                 err = nilfs_flush_device(nilfs);
521
522         return err;
523 }
524
525 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
526                             struct nilfs_root **rootp)
527 {
528         struct the_nilfs *nilfs = sb->s_fs_info;
529         struct nilfs_root *root;
530         struct nilfs_checkpoint *raw_cp;
531         struct buffer_head *bh_cp;
532         int err = -ENOMEM;
533
534         root = nilfs_find_or_create_root(
535                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
536         if (!root)
537                 return err;
538
539         if (root->ifile)
540                 goto reuse; /* already attached checkpoint */
541
542         down_read(&nilfs->ns_segctor_sem);
543         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
544                                           &bh_cp);
545         up_read(&nilfs->ns_segctor_sem);
546         if (unlikely(err)) {
547                 if (err == -ENOENT || err == -EINVAL) {
548                         printk(KERN_ERR
549                                "NILFS: Invalid checkpoint "
550                                "(checkpoint number=%llu)\n",
551                                (unsigned long long)cno);
552                         err = -EINVAL;
553                 }
554                 goto failed;
555         }
556
557         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
558                                &raw_cp->cp_ifile_inode, &root->ifile);
559         if (err)
560                 goto failed_bh;
561
562         atomic64_set(&root->inodes_count,
563                         le64_to_cpu(raw_cp->cp_inodes_count));
564         atomic64_set(&root->blocks_count,
565                         le64_to_cpu(raw_cp->cp_blocks_count));
566
567         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
568
569  reuse:
570         *rootp = root;
571         return 0;
572
573  failed_bh:
574         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
575  failed:
576         nilfs_put_root(root);
577
578         return err;
579 }
580
581 static int nilfs_freeze(struct super_block *sb)
582 {
583         struct the_nilfs *nilfs = sb->s_fs_info;
584         int err;
585
586         if (sb->s_flags & MS_RDONLY)
587                 return 0;
588
589         /* Mark super block clean */
590         down_write(&nilfs->ns_sem);
591         err = nilfs_cleanup_super(sb);
592         up_write(&nilfs->ns_sem);
593         return err;
594 }
595
596 static int nilfs_unfreeze(struct super_block *sb)
597 {
598         struct the_nilfs *nilfs = sb->s_fs_info;
599
600         if (sb->s_flags & MS_RDONLY)
601                 return 0;
602
603         down_write(&nilfs->ns_sem);
604         nilfs_setup_super(sb, false);
605         up_write(&nilfs->ns_sem);
606         return 0;
607 }
608
609 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
610 {
611         struct super_block *sb = dentry->d_sb;
612         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
613         struct the_nilfs *nilfs = root->nilfs;
614         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
615         unsigned long long blocks;
616         unsigned long overhead;
617         unsigned long nrsvblocks;
618         sector_t nfreeblocks;
619         u64 nmaxinodes, nfreeinodes;
620         int err;
621
622         /*
623          * Compute all of the segment blocks
624          *
625          * The blocks before first segment and after last segment
626          * are excluded.
627          */
628         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
629                 - nilfs->ns_first_data_block;
630         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
631
632         /*
633          * Compute the overhead
634          *
635          * When distributing meta data blocks outside segment structure,
636          * We must count them as the overhead.
637          */
638         overhead = 0;
639
640         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
641         if (unlikely(err))
642                 return err;
643
644         err = nilfs_ifile_count_free_inodes(root->ifile,
645                                             &nmaxinodes, &nfreeinodes);
646         if (unlikely(err)) {
647                 printk(KERN_WARNING
648                         "NILFS warning: fail to count free inodes: err %d.\n",
649                         err);
650                 if (err == -ERANGE) {
651                         /*
652                          * If nilfs_palloc_count_max_entries() returns
653                          * -ERANGE error code then we simply treat
654                          * curent inodes count as maximum possible and
655                          * zero as free inodes value.
656                          */
657                         nmaxinodes = atomic64_read(&root->inodes_count);
658                         nfreeinodes = 0;
659                         err = 0;
660                 } else
661                         return err;
662         }
663
664         buf->f_type = NILFS_SUPER_MAGIC;
665         buf->f_bsize = sb->s_blocksize;
666         buf->f_blocks = blocks - overhead;
667         buf->f_bfree = nfreeblocks;
668         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
669                 (buf->f_bfree - nrsvblocks) : 0;
670         buf->f_files = nmaxinodes;
671         buf->f_ffree = nfreeinodes;
672         buf->f_namelen = NILFS_NAME_LEN;
673         buf->f_fsid.val[0] = (u32)id;
674         buf->f_fsid.val[1] = (u32)(id >> 32);
675
676         return 0;
677 }
678
679 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
680 {
681         struct super_block *sb = dentry->d_sb;
682         struct the_nilfs *nilfs = sb->s_fs_info;
683         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
684
685         if (!nilfs_test_opt(nilfs, BARRIER))
686                 seq_puts(seq, ",nobarrier");
687         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
688                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
689         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
690                 seq_puts(seq, ",errors=panic");
691         if (nilfs_test_opt(nilfs, ERRORS_CONT))
692                 seq_puts(seq, ",errors=continue");
693         if (nilfs_test_opt(nilfs, STRICT_ORDER))
694                 seq_puts(seq, ",order=strict");
695         if (nilfs_test_opt(nilfs, NORECOVERY))
696                 seq_puts(seq, ",norecovery");
697         if (nilfs_test_opt(nilfs, DISCARD))
698                 seq_puts(seq, ",discard");
699
700         return 0;
701 }
702
703 static const struct super_operations nilfs_sops = {
704         .alloc_inode    = nilfs_alloc_inode,
705         .destroy_inode  = nilfs_destroy_inode,
706         .dirty_inode    = nilfs_dirty_inode,
707         .evict_inode    = nilfs_evict_inode,
708         .put_super      = nilfs_put_super,
709         .sync_fs        = nilfs_sync_fs,
710         .freeze_fs      = nilfs_freeze,
711         .unfreeze_fs    = nilfs_unfreeze,
712         .statfs         = nilfs_statfs,
713         .remount_fs     = nilfs_remount,
714         .show_options = nilfs_show_options
715 };
716
717 enum {
718         Opt_err_cont, Opt_err_panic, Opt_err_ro,
719         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
720         Opt_discard, Opt_nodiscard, Opt_err,
721 };
722
723 static match_table_t tokens = {
724         {Opt_err_cont, "errors=continue"},
725         {Opt_err_panic, "errors=panic"},
726         {Opt_err_ro, "errors=remount-ro"},
727         {Opt_barrier, "barrier"},
728         {Opt_nobarrier, "nobarrier"},
729         {Opt_snapshot, "cp=%u"},
730         {Opt_order, "order=%s"},
731         {Opt_norecovery, "norecovery"},
732         {Opt_discard, "discard"},
733         {Opt_nodiscard, "nodiscard"},
734         {Opt_err, NULL}
735 };
736
737 static int parse_options(char *options, struct super_block *sb, int is_remount)
738 {
739         struct the_nilfs *nilfs = sb->s_fs_info;
740         char *p;
741         substring_t args[MAX_OPT_ARGS];
742
743         if (!options)
744                 return 1;
745
746         while ((p = strsep(&options, ",")) != NULL) {
747                 int token;
748                 if (!*p)
749                         continue;
750
751                 token = match_token(p, tokens, args);
752                 switch (token) {
753                 case Opt_barrier:
754                         nilfs_set_opt(nilfs, BARRIER);
755                         break;
756                 case Opt_nobarrier:
757                         nilfs_clear_opt(nilfs, BARRIER);
758                         break;
759                 case Opt_order:
760                         if (strcmp(args[0].from, "relaxed") == 0)
761                                 /* Ordered data semantics */
762                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
763                         else if (strcmp(args[0].from, "strict") == 0)
764                                 /* Strict in-order semantics */
765                                 nilfs_set_opt(nilfs, STRICT_ORDER);
766                         else
767                                 return 0;
768                         break;
769                 case Opt_err_panic:
770                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
771                         break;
772                 case Opt_err_ro:
773                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
774                         break;
775                 case Opt_err_cont:
776                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
777                         break;
778                 case Opt_snapshot:
779                         if (is_remount) {
780                                 printk(KERN_ERR
781                                        "NILFS: \"%s\" option is invalid "
782                                        "for remount.\n", p);
783                                 return 0;
784                         }
785                         break;
786                 case Opt_norecovery:
787                         nilfs_set_opt(nilfs, NORECOVERY);
788                         break;
789                 case Opt_discard:
790                         nilfs_set_opt(nilfs, DISCARD);
791                         break;
792                 case Opt_nodiscard:
793                         nilfs_clear_opt(nilfs, DISCARD);
794                         break;
795                 default:
796                         printk(KERN_ERR
797                                "NILFS: Unrecognized mount option \"%s\"\n", p);
798                         return 0;
799                 }
800         }
801         return 1;
802 }
803
804 static inline void
805 nilfs_set_default_options(struct super_block *sb,
806                           struct nilfs_super_block *sbp)
807 {
808         struct the_nilfs *nilfs = sb->s_fs_info;
809
810         nilfs->ns_mount_opt =
811                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
812 }
813
814 static int nilfs_setup_super(struct super_block *sb, int is_mount)
815 {
816         struct the_nilfs *nilfs = sb->s_fs_info;
817         struct nilfs_super_block **sbp;
818         int max_mnt_count;
819         int mnt_count;
820
821         /* nilfs->ns_sem must be locked by the caller. */
822         sbp = nilfs_prepare_super(sb, 0);
823         if (!sbp)
824                 return -EIO;
825
826         if (!is_mount)
827                 goto skip_mount_setup;
828
829         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
830         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
831
832         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
833                 printk(KERN_WARNING
834                        "NILFS warning: mounting fs with errors\n");
835 #if 0
836         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
837                 printk(KERN_WARNING
838                        "NILFS warning: maximal mount count reached\n");
839 #endif
840         }
841         if (!max_mnt_count)
842                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
843
844         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
845         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
846
847 skip_mount_setup:
848         sbp[0]->s_state =
849                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
850         /* synchronize sbp[1] with sbp[0] */
851         if (sbp[1])
852                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
853         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
854 }
855
856 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
857                                                  u64 pos, int blocksize,
858                                                  struct buffer_head **pbh)
859 {
860         unsigned long long sb_index = pos;
861         unsigned long offset;
862
863         offset = do_div(sb_index, blocksize);
864         *pbh = sb_bread(sb, sb_index);
865         if (!*pbh)
866                 return NULL;
867         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
868 }
869
870 int nilfs_store_magic_and_option(struct super_block *sb,
871                                  struct nilfs_super_block *sbp,
872                                  char *data)
873 {
874         struct the_nilfs *nilfs = sb->s_fs_info;
875
876         sb->s_magic = le16_to_cpu(sbp->s_magic);
877
878         /* FS independent flags */
879 #ifdef NILFS_ATIME_DISABLE
880         sb->s_flags |= MS_NOATIME;
881 #endif
882
883         nilfs_set_default_options(sb, sbp);
884
885         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
886         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
887         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
888         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
889
890         return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
891 }
892
893 int nilfs_check_feature_compatibility(struct super_block *sb,
894                                       struct nilfs_super_block *sbp)
895 {
896         __u64 features;
897
898         features = le64_to_cpu(sbp->s_feature_incompat) &
899                 ~NILFS_FEATURE_INCOMPAT_SUPP;
900         if (features) {
901                 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
902                        "optional features (%llx)\n",
903                        (unsigned long long)features);
904                 return -EINVAL;
905         }
906         features = le64_to_cpu(sbp->s_feature_compat_ro) &
907                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
908         if (!(sb->s_flags & MS_RDONLY) && features) {
909                 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
910                        "unsupported optional features (%llx)\n",
911                        (unsigned long long)features);
912                 return -EINVAL;
913         }
914         return 0;
915 }
916
917 static int nilfs_get_root_dentry(struct super_block *sb,
918                                  struct nilfs_root *root,
919                                  struct dentry **root_dentry)
920 {
921         struct inode *inode;
922         struct dentry *dentry;
923         int ret = 0;
924
925         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
926         if (IS_ERR(inode)) {
927                 printk(KERN_ERR "NILFS: get root inode failed\n");
928                 ret = PTR_ERR(inode);
929                 goto out;
930         }
931         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
932                 iput(inode);
933                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
934                 ret = -EINVAL;
935                 goto out;
936         }
937
938         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
939                 dentry = d_find_alias(inode);
940                 if (!dentry) {
941                         dentry = d_make_root(inode);
942                         if (!dentry) {
943                                 ret = -ENOMEM;
944                                 goto failed_dentry;
945                         }
946                 } else {
947                         iput(inode);
948                 }
949         } else {
950                 dentry = d_obtain_root(inode);
951                 if (IS_ERR(dentry)) {
952                         ret = PTR_ERR(dentry);
953                         goto failed_dentry;
954                 }
955         }
956         *root_dentry = dentry;
957  out:
958         return ret;
959
960  failed_dentry:
961         printk(KERN_ERR "NILFS: get root dentry failed\n");
962         goto out;
963 }
964
965 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
966                                  struct dentry **root_dentry)
967 {
968         struct the_nilfs *nilfs = s->s_fs_info;
969         struct nilfs_root *root;
970         int ret;
971
972         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
973
974         down_read(&nilfs->ns_segctor_sem);
975         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
976         up_read(&nilfs->ns_segctor_sem);
977         if (ret < 0) {
978                 ret = (ret == -ENOENT) ? -EINVAL : ret;
979                 goto out;
980         } else if (!ret) {
981                 printk(KERN_ERR "NILFS: The specified checkpoint is "
982                        "not a snapshot (checkpoint number=%llu).\n",
983                        (unsigned long long)cno);
984                 ret = -EINVAL;
985                 goto out;
986         }
987
988         ret = nilfs_attach_checkpoint(s, cno, false, &root);
989         if (ret) {
990                 printk(KERN_ERR "NILFS: error loading snapshot "
991                        "(checkpoint number=%llu).\n",
992                (unsigned long long)cno);
993                 goto out;
994         }
995         ret = nilfs_get_root_dentry(s, root, root_dentry);
996         nilfs_put_root(root);
997  out:
998         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
999         return ret;
1000 }
1001
1002 /**
1003  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1004  * @root_dentry: root dentry of the tree to be shrunk
1005  *
1006  * This function returns true if the tree was in-use.
1007  */
1008 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1009 {
1010         shrink_dcache_parent(root_dentry);
1011         return d_count(root_dentry) > 1;
1012 }
1013
1014 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1015 {
1016         struct the_nilfs *nilfs = sb->s_fs_info;
1017         struct nilfs_root *root;
1018         struct inode *inode;
1019         struct dentry *dentry;
1020         int ret;
1021
1022         if (cno > nilfs->ns_cno)
1023                 return false;
1024
1025         if (cno >= nilfs_last_cno(nilfs))
1026                 return true;    /* protect recent checkpoints */
1027
1028         ret = false;
1029         root = nilfs_lookup_root(nilfs, cno);
1030         if (root) {
1031                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1032                 if (inode) {
1033                         dentry = d_find_alias(inode);
1034                         if (dentry) {
1035                                 ret = nilfs_tree_is_busy(dentry);
1036                                 dput(dentry);
1037                         }
1038                         iput(inode);
1039                 }
1040                 nilfs_put_root(root);
1041         }
1042         return ret;
1043 }
1044
1045 /**
1046  * nilfs_fill_super() - initialize a super block instance
1047  * @sb: super_block
1048  * @data: mount options
1049  * @silent: silent mode flag
1050  *
1051  * This function is called exclusively by nilfs->ns_mount_mutex.
1052  * So, the recovery process is protected from other simultaneous mounts.
1053  */
1054 static int
1055 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1056 {
1057         struct the_nilfs *nilfs;
1058         struct nilfs_root *fsroot;
1059         __u64 cno;
1060         int err;
1061
1062         nilfs = alloc_nilfs(sb->s_bdev);
1063         if (!nilfs)
1064                 return -ENOMEM;
1065
1066         sb->s_fs_info = nilfs;
1067
1068         err = init_nilfs(nilfs, sb, (char *)data);
1069         if (err)
1070                 goto failed_nilfs;
1071
1072         sb->s_op = &nilfs_sops;
1073         sb->s_export_op = &nilfs_export_ops;
1074         sb->s_root = NULL;
1075         sb->s_time_gran = 1;
1076         sb->s_max_links = NILFS_LINK_MAX;
1077
1078         sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1079
1080         err = load_nilfs(nilfs, sb);
1081         if (err)
1082                 goto failed_nilfs;
1083
1084         cno = nilfs_last_cno(nilfs);
1085         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1086         if (err) {
1087                 printk(KERN_ERR "NILFS: error loading last checkpoint "
1088                        "(checkpoint number=%llu).\n", (unsigned long long)cno);
1089                 goto failed_unload;
1090         }
1091
1092         if (!(sb->s_flags & MS_RDONLY)) {
1093                 err = nilfs_attach_log_writer(sb, fsroot);
1094                 if (err)
1095                         goto failed_checkpoint;
1096         }
1097
1098         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1099         if (err)
1100                 goto failed_segctor;
1101
1102         nilfs_put_root(fsroot);
1103
1104         if (!(sb->s_flags & MS_RDONLY)) {
1105                 down_write(&nilfs->ns_sem);
1106                 nilfs_setup_super(sb, true);
1107                 up_write(&nilfs->ns_sem);
1108         }
1109
1110         return 0;
1111
1112  failed_segctor:
1113         nilfs_detach_log_writer(sb);
1114
1115  failed_checkpoint:
1116         nilfs_put_root(fsroot);
1117
1118  failed_unload:
1119         iput(nilfs->ns_sufile);
1120         iput(nilfs->ns_cpfile);
1121         iput(nilfs->ns_dat);
1122
1123  failed_nilfs:
1124         destroy_nilfs(nilfs);
1125         return err;
1126 }
1127
1128 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1129 {
1130         struct the_nilfs *nilfs = sb->s_fs_info;
1131         unsigned long old_sb_flags;
1132         unsigned long old_mount_opt;
1133         int err;
1134
1135         sync_filesystem(sb);
1136         old_sb_flags = sb->s_flags;
1137         old_mount_opt = nilfs->ns_mount_opt;
1138
1139         if (!parse_options(data, sb, 1)) {
1140                 err = -EINVAL;
1141                 goto restore_opts;
1142         }
1143         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1144
1145         err = -EINVAL;
1146
1147         if (!nilfs_valid_fs(nilfs)) {
1148                 printk(KERN_WARNING "NILFS (device %s): couldn't "
1149                        "remount because the filesystem is in an "
1150                        "incomplete recovery state.\n", sb->s_id);
1151                 goto restore_opts;
1152         }
1153
1154         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1155                 goto out;
1156         if (*flags & MS_RDONLY) {
1157                 /* Shutting down log writer */
1158                 nilfs_detach_log_writer(sb);
1159                 sb->s_flags |= MS_RDONLY;
1160
1161                 /*
1162                  * Remounting a valid RW partition RDONLY, so set
1163                  * the RDONLY flag and then mark the partition as valid again.
1164                  */
1165                 down_write(&nilfs->ns_sem);
1166                 nilfs_cleanup_super(sb);
1167                 up_write(&nilfs->ns_sem);
1168         } else {
1169                 __u64 features;
1170                 struct nilfs_root *root;
1171
1172                 /*
1173                  * Mounting a RDONLY partition read-write, so reread and
1174                  * store the current valid flag.  (It may have been changed
1175                  * by fsck since we originally mounted the partition.)
1176                  */
1177                 down_read(&nilfs->ns_sem);
1178                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1179                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1180                 up_read(&nilfs->ns_sem);
1181                 if (features) {
1182                         printk(KERN_WARNING "NILFS (device %s): couldn't "
1183                                "remount RDWR because of unsupported optional "
1184                                "features (%llx)\n",
1185                                sb->s_id, (unsigned long long)features);
1186                         err = -EROFS;
1187                         goto restore_opts;
1188                 }
1189
1190                 sb->s_flags &= ~MS_RDONLY;
1191
1192                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1193                 err = nilfs_attach_log_writer(sb, root);
1194                 if (err)
1195                         goto restore_opts;
1196
1197                 down_write(&nilfs->ns_sem);
1198                 nilfs_setup_super(sb, true);
1199                 up_write(&nilfs->ns_sem);
1200         }
1201  out:
1202         return 0;
1203
1204  restore_opts:
1205         sb->s_flags = old_sb_flags;
1206         nilfs->ns_mount_opt = old_mount_opt;
1207         return err;
1208 }
1209
1210 struct nilfs_super_data {
1211         struct block_device *bdev;
1212         __u64 cno;
1213         int flags;
1214 };
1215
1216 /**
1217  * nilfs_identify - pre-read mount options needed to identify mount instance
1218  * @data: mount options
1219  * @sd: nilfs_super_data
1220  */
1221 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1222 {
1223         char *p, *options = data;
1224         substring_t args[MAX_OPT_ARGS];
1225         int token;
1226         int ret = 0;
1227
1228         do {
1229                 p = strsep(&options, ",");
1230                 if (p != NULL && *p) {
1231                         token = match_token(p, tokens, args);
1232                         if (token == Opt_snapshot) {
1233                                 if (!(sd->flags & MS_RDONLY)) {
1234                                         ret++;
1235                                 } else {
1236                                         sd->cno = simple_strtoull(args[0].from,
1237                                                                   NULL, 0);
1238                                         /*
1239                                          * No need to see the end pointer;
1240                                          * match_token() has done syntax
1241                                          * checking.
1242                                          */
1243                                         if (sd->cno == 0)
1244                                                 ret++;
1245                                 }
1246                         }
1247                         if (ret)
1248                                 printk(KERN_ERR
1249                                        "NILFS: invalid mount option: %s\n", p);
1250                 }
1251                 if (!options)
1252                         break;
1253                 BUG_ON(options == data);
1254                 *(options - 1) = ',';
1255         } while (!ret);
1256         return ret;
1257 }
1258
1259 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1260 {
1261         s->s_bdev = data;
1262         s->s_dev = s->s_bdev->bd_dev;
1263         return 0;
1264 }
1265
1266 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1267 {
1268         return (void *)s->s_bdev == data;
1269 }
1270
1271 static struct dentry *
1272 nilfs_mount(struct file_system_type *fs_type, int flags,
1273              const char *dev_name, void *data)
1274 {
1275         struct nilfs_super_data sd;
1276         struct super_block *s;
1277         fmode_t mode = FMODE_READ | FMODE_EXCL;
1278         struct dentry *root_dentry;
1279         int err, s_new = false;
1280
1281         if (!(flags & MS_RDONLY))
1282                 mode |= FMODE_WRITE;
1283
1284         sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1285         if (IS_ERR(sd.bdev))
1286                 return ERR_CAST(sd.bdev);
1287
1288         sd.cno = 0;
1289         sd.flags = flags;
1290         if (nilfs_identify((char *)data, &sd)) {
1291                 err = -EINVAL;
1292                 goto failed;
1293         }
1294
1295         /*
1296          * once the super is inserted into the list by sget, s_umount
1297          * will protect the lockfs code from trying to start a snapshot
1298          * while we are mounting
1299          */
1300         mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1301         if (sd.bdev->bd_fsfreeze_count > 0) {
1302                 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1303                 err = -EBUSY;
1304                 goto failed;
1305         }
1306         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1307                  sd.bdev);
1308         mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1309         if (IS_ERR(s)) {
1310                 err = PTR_ERR(s);
1311                 goto failed;
1312         }
1313
1314         if (!s->s_root) {
1315                 s_new = true;
1316
1317                 /* New superblock instance created */
1318                 s->s_mode = mode;
1319                 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1320                 sb_set_blocksize(s, block_size(sd.bdev));
1321
1322                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1323                 if (err)
1324                         goto failed_super;
1325
1326                 s->s_flags |= MS_ACTIVE;
1327         } else if (!sd.cno) {
1328                 if (nilfs_tree_is_busy(s->s_root)) {
1329                         if ((flags ^ s->s_flags) & MS_RDONLY) {
1330                                 printk(KERN_ERR "NILFS: the device already "
1331                                        "has a %s mount.\n",
1332                                        (s->s_flags & MS_RDONLY) ?
1333                                        "read-only" : "read/write");
1334                                 err = -EBUSY;
1335                                 goto failed_super;
1336                         }
1337                 } else {
1338                         /*
1339                          * Try remount to setup mount states if the current
1340                          * tree is not mounted and only snapshots use this sb.
1341                          */
1342                         err = nilfs_remount(s, &flags, data);
1343                         if (err)
1344                                 goto failed_super;
1345                 }
1346         }
1347
1348         if (sd.cno) {
1349                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1350                 if (err)
1351                         goto failed_super;
1352         } else {
1353                 root_dentry = dget(s->s_root);
1354         }
1355
1356         if (!s_new)
1357                 blkdev_put(sd.bdev, mode);
1358
1359         return root_dentry;
1360
1361  failed_super:
1362         deactivate_locked_super(s);
1363
1364  failed:
1365         if (!s_new)
1366                 blkdev_put(sd.bdev, mode);
1367         return ERR_PTR(err);
1368 }
1369
1370 struct file_system_type nilfs_fs_type = {
1371         .owner    = THIS_MODULE,
1372         .name     = "nilfs2",
1373         .mount    = nilfs_mount,
1374         .kill_sb  = kill_block_super,
1375         .fs_flags = FS_REQUIRES_DEV,
1376 };
1377 MODULE_ALIAS_FS("nilfs2");
1378
1379 static void nilfs_inode_init_once(void *obj)
1380 {
1381         struct nilfs_inode_info *ii = obj;
1382
1383         INIT_LIST_HEAD(&ii->i_dirty);
1384 #ifdef CONFIG_NILFS_XATTR
1385         init_rwsem(&ii->xattr_sem);
1386 #endif
1387         address_space_init_once(&ii->i_btnode_cache);
1388         ii->i_bmap = &ii->i_bmap_data;
1389         inode_init_once(&ii->vfs_inode);
1390 }
1391
1392 static void nilfs_segbuf_init_once(void *obj)
1393 {
1394         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1395 }
1396
1397 static void nilfs_destroy_cachep(void)
1398 {
1399         /*
1400          * Make sure all delayed rcu free inodes are flushed before we
1401          * destroy cache.
1402          */
1403         rcu_barrier();
1404
1405         kmem_cache_destroy(nilfs_inode_cachep);
1406         kmem_cache_destroy(nilfs_transaction_cachep);
1407         kmem_cache_destroy(nilfs_segbuf_cachep);
1408         kmem_cache_destroy(nilfs_btree_path_cache);
1409 }
1410
1411 static int __init nilfs_init_cachep(void)
1412 {
1413         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1414                         sizeof(struct nilfs_inode_info), 0,
1415                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1416                         nilfs_inode_init_once);
1417         if (!nilfs_inode_cachep)
1418                 goto fail;
1419
1420         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1421                         sizeof(struct nilfs_transaction_info), 0,
1422                         SLAB_RECLAIM_ACCOUNT, NULL);
1423         if (!nilfs_transaction_cachep)
1424                 goto fail;
1425
1426         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1427                         sizeof(struct nilfs_segment_buffer), 0,
1428                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1429         if (!nilfs_segbuf_cachep)
1430                 goto fail;
1431
1432         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1433                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1434                         0, 0, NULL);
1435         if (!nilfs_btree_path_cache)
1436                 goto fail;
1437
1438         return 0;
1439
1440 fail:
1441         nilfs_destroy_cachep();
1442         return -ENOMEM;
1443 }
1444
1445 static int __init init_nilfs_fs(void)
1446 {
1447         int err;
1448
1449         err = nilfs_init_cachep();
1450         if (err)
1451                 goto fail;
1452
1453         err = nilfs_sysfs_init();
1454         if (err)
1455                 goto free_cachep;
1456
1457         err = register_filesystem(&nilfs_fs_type);
1458         if (err)
1459                 goto deinit_sysfs_entry;
1460
1461         printk(KERN_INFO "NILFS version 2 loaded\n");
1462         return 0;
1463
1464 deinit_sysfs_entry:
1465         nilfs_sysfs_exit();
1466 free_cachep:
1467         nilfs_destroy_cachep();
1468 fail:
1469         return err;
1470 }
1471
1472 static void __exit exit_nilfs_fs(void)
1473 {
1474         nilfs_destroy_cachep();
1475         nilfs_sysfs_exit();
1476         unregister_filesystem(&nilfs_fs_type);
1477 }
1478
1479 module_init(init_nilfs_fs)
1480 module_exit(exit_nilfs_fs)